Stochastic Models of Complex Systems

Hand-out 1

Generating functions, branching processes

For a given sequence of numbers $a_0, a_1, \ldots \in \mathbb{R}$ we define the **generating function**

$$G(s) = \sum_{n=0}^{\infty} a_n \, s^n \, .$$

 $s \ge 0$ is a dummy variable, and if the sequence is bounded the domain of definition of this power series includes the interval [0, 1).

Examples.

- If $a_0 = a_1 = 1/2$ and $a_n = 0$ for $n \ge 2$, then $G(s) = \frac{1}{2}(1+s)$, $s \in [0, \infty)$.
- If $a_n = 2^{-n-1}$ then $G(s) = \sum_{n=0}^{\infty} s^{-n-1} s^n = (2-s)^{-1}$, $s \in [0,2)$.

G(s) is a convenient way of encoding the sequence, and often one can get an explicit formula. Given a generating function G(s), we can recover the sequence by differentiation

$$a_0 = G(0)$$
, $a_1 = G'(0)$, $a_2 = \frac{1}{2}G''(0)$, ... $a_n = \frac{1}{n!}G^{(n)}(0)$.

We will often use genering functions to encode the sequence of probabilities $p_n = \mathbb{P}(X = n)$ of a non-negative, integer-valued random variable X,

$$G_X(s) = \sum_{n=0}^{\infty} p_n s^n = \mathbb{E}(s^X), \quad s \in [0, 1].$$

We call G_X also **probability generating function** of X, and

$$G_X(1) = 1 \;, \quad G_X'(1) = \mathbb{E}(X) \quad \text{and} \quad \mathrm{Var}(X) = G_X''(1) + G_X'(1) - \left(G_X'(1)\right)^2 \;.$$

Useful properties.

• If X, Y are independent non-negative, integer-valued random variables, then

$$G_{X+Y}(s) = G_X(s) G_Y(s)$$
.

This is often much easier than evaluating the *convolution sum*

$$\mathbb{P}(X+Y=n) = \sum_{k=0}^{n} \mathbb{P}(X=k) \, \mathbb{P}(Y=n-k) .$$

• More generally, if X_1, X_2, \ldots are independent, identically distributed random variables (iidrv's), and N is a random number of summands, then

$$Z = \sum_{k=1}^{N} X_k$$
 has generating function $G_Z(s) = G_N \big(G_{X_1}(s) \big)$.

A branching process $Z=(Z_n:n\in\mathbb{N})$ with state space $S=\mathbb{N}$ can be interpreted as a simple model for cell division or population growth. It is defined recursively by

$$Z_0 = 1$$
, $Z_{n+1} = X_1^n + \ldots + X_{Z_n}^n$ for all $n \ge 0$,

where the $X_i^n \in \mathbb{N}$ are iidrv's denoting the offspring of individuum i in generation n. Z_n is then the size of the population in generation n.

Let $G(s) := \mathbb{E}(s^{X_1^0})$ be the probability generating function of a single offspring X_1^0 and

$$G_n(s) := \mathbb{E}(s^{Z_n}) = \sum_{k=0}^{\infty} \mathbb{P}(Z_n = k) s^k.$$

Then we can derive the last formula on the previous page,

$$G_{n+1}(s) = \mathbb{E}(s^{Z_{n+1}}) = \mathbb{E}(s^{X_1^n + \dots + X_{Z_n}^n}) = \sum_{k=0}^{\infty} \mathbb{P}(Z_n = k) \mathbb{E}(s^{X_1^n + \dots + X_k^n}) =$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(Z_n = k) \underbrace{\mathbb{E}(s^{X_1^n})^k}_{=G(s)} = G_n(G(s)).$$

With average offspring $\mu := \mathbb{E}(X_1^0) = G'(0)$ we get with the chain rule and G(1) = 1,

$$\mathbb{E}(Z_{n+1}) = G'_{n+1}(1) = \left(G_n(G(s))\right)'\Big|_{s=1} = G'_n(G(1)) G'(1) = \mathbb{E}(Z_n) \mu.$$

With the initial condition $Z_0=1$, this implies $\mathbb{E}(Z_n)=\mu^n\stackrel{n\to\infty}{\longrightarrow} \left\{ egin{array}{l} \infty \ , \ \mu>1 \\ 0 \ , \ \mu<1 \end{array} \right.$

Probability of extinction.

 $Z_n = 0$ is an absorbing state of the branching process corresponding to extinction of the population. Typically, the population either grows to infinite size or gets extinct in finite time. If T is the random time of extinction, we have

$$\mathbb{P}(T \le n) = \mathbb{P}(Z_n = 0) = G_n(0)$$

for the probability that the population is extinct in generation n. Thus for the process to get extinct eventually (we call this event 'extinction') we have

$$\mathbb{P}(\text{extinction}) = \mathbb{P}(T < \infty) = \lim_{n \to \infty} \mathbb{P}(T \le n) = \lim_{n \to \infty} G_n(0) .$$

So the event $T = \infty$ corresponds to 'non-extinction' or 'survival'.

Using a cobweb plot, one can easily see that this leads to

$$\mathbb{P}(\text{extinction}) = s^* \quad \text{where} \quad s^* = G(s^*) \;,$$

is the smallest fixed point of G on [0, 1].

The possible scenarios for the fate of the population are

 $\mu \leq 1 \quad \Rightarrow \quad \mathbb{P}(\text{extinction}) = 1 \quad \text{and the population dies out for sure} \; ,$

 $\mu > 1 \quad \Rightarrow \quad \mathbb{P}(\text{extinction}) < 1 \quad \text{and the population survives with positive probability} \; .$