Stochastic Models of Complex Systems

Hand-out 1

Generating functions, branching processes

For a given sequence of numbers $a_{0}, a_{1}, \ldots \in \mathbb{R}$ we define the generating function

$$
G(s)=\sum_{n=0}^{\infty} a_{n} s^{n}
$$

$s \geq 0$ is a dummy variable, and if the sequence is bounded the domain of definition of this power series includes the interval $[0,1)$.

Examples.

- If $a_{0}=a_{1}=1 / 2$ and $a_{n}=0$ for $n \geq 2$, then $\quad G(s)=\frac{1}{2}(1+s), \quad s \in[0, \infty)$.
- If $a_{n}=2^{-n-1}$ then $\quad G(s)=\sum_{n=0}^{\infty} s^{-n-1} s^{n}=(2-s)^{-1}, \quad s \in[0,2)$.
$G(s)$ is a convenient way of encoding the sequence, and often one can get an explicit formula.
Given a generating function $G(s)$, we can recover the sequence by differentiation

$$
a_{0}=G(0), \quad a_{1}=G^{\prime}(0), \quad a_{2}=\frac{1}{2} G^{\prime \prime}(0), \quad \ldots \quad a_{n}=\frac{1}{n!} G^{(n)}(0)
$$

We will often use genering functions to encode the sequence of probabilities $p_{n}=\mathbb{P}(X=n)$ of a non-negative, integer-valued random variable X,

$$
G_{X}(s)=\sum_{n=0}^{\infty} p_{n} s^{n}=\mathbb{E}\left(s^{X}\right), \quad s \in[0,1]
$$

We call G_{X} also probability generating function of X, and

$$
G_{X}(1)=1, \quad G_{X}^{\prime}(1)=\mathbb{E}(X) \quad \text { and } \quad \operatorname{Var}(X)=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left(G_{X}^{\prime}(1)\right)^{2}
$$

Useful properties.

- If X, Y are independent non-negative, integer-valued random variables, then

$$
G_{X+Y}(s)=G_{X}(s) G_{Y}(s)
$$

This is often much easier than evaluating the convolution sum

$$
\mathbb{P}(X+Y=n)=\sum_{k=0}^{n} \mathbb{P}(X=k) \mathbb{P}(Y=n-k)
$$

- More generally, if X_{1}, X_{2}, \ldots are independent, identically distributed random variables (iidrv's), and N is a random number of summands, then

$$
Z=\sum_{k=1}^{N} X_{k} \quad \text { has generating function } \quad G_{Z}(s)=G_{N}\left(G_{X_{1}}(s)\right)
$$

A branching process $Z=\left(Z_{n}: n \in \mathbb{N}\right)$ with state space $S=\mathbb{N}$ can be interpreted as a simple model for cell division or population growth. It is defined recursively by

$$
Z_{0}=1, \quad Z_{n+1}=X_{1}^{n}+\ldots+X_{Z_{n}}^{n} \quad \text { for all } n \geq 0
$$

where the $X_{i}^{n} \in \mathbb{N}$ are iidrv's denoting the offspring of individuum i in generation $n . Z_{n}$ is then the size of the population in generation n.
Let $G(s):=\mathbb{E}\left(s^{X_{1}^{0}}\right)$ be the probability generating function of a single offspring X_{1}^{0} and

$$
G_{n}(s):=\mathbb{E}\left(s^{Z_{n}}\right)=\sum_{k=0}^{\infty} \mathbb{P}\left(Z_{n}=k\right) s^{k}
$$

Then we can derive the last formula on the previous page,

$$
\begin{aligned}
G_{n+1}(s) & =\mathbb{E}\left(s^{Z_{n+1}}\right)=\mathbb{E}\left(s^{X_{1}^{n}+\ldots+X_{Z_{n}}^{n}}\right)=\sum_{k=0}^{\infty} \mathbb{P}\left(Z_{n}=k\right) \mathbb{E}\left(s^{X_{1}^{n}+\ldots+X_{k}^{n}}\right)= \\
& =\sum_{k=0}^{\infty} \mathbb{P}\left(Z_{n}=k\right) \underbrace{\mathbb{E}\left(s^{X_{1}^{n}}\right)}_{=G(s)}=G_{n}(G(s)) .
\end{aligned}
$$

With average offspring $\mu:=\mathbb{E}\left(X_{1}^{0}\right)=G^{\prime}(0)$ we get with the chain rule and $G(1)=1$,

$$
\mathbb{E}\left(Z_{n+1}\right)=G_{n+1}^{\prime}(1)=\left.\left(G_{n}(G(s))\right)^{\prime}\right|_{s=1}=G_{n}^{\prime}(G(1)) G^{\prime}(1)=\mathbb{E}\left(Z_{n}\right) \mu
$$

With the initial condition $Z_{0}=1$, this implies $\mathbb{E}\left(Z_{n}\right)=\mu^{n} \xrightarrow{n \rightarrow \infty}\left\{\begin{array}{c}\infty \\ 0, \mu>1 \\ 0\end{array}, \mu<1\right.$.

Probability of extinction.

$Z_{n}=0$ is an absorbing state of the branching process corresponding to extinction of the population. Typically, the population either grows to infinite size or gets extinct in finite time. If T is the random time of extinction, we have

$$
\mathbb{P}(T \leq n)=\mathbb{P}\left(Z_{n}=0\right)=G_{n}(0)
$$

for the probability that the population is extinct in generation n. Thus for the process to get extinct eventually (we call this event 'extinction') we have

$$
\mathbb{P}(\text { extinction })=\mathbb{P}(T<\infty)=\lim _{n \rightarrow \infty} \mathbb{P}(T \leq n)=\lim _{n \rightarrow \infty} G_{n}(0)
$$

So the event $T=\infty$ corresponds to 'non-extinction' or 'survival'.
Using a cobweb plot, one can easily see that this leads to

$$
\mathbb{P}(\text { extinction })=s^{*} \quad \text { where } \quad s^{*}=G\left(s^{*}\right)
$$

is the smallest fixed point of G on $[0,1]$.
The possible scenarios for the fate of the population are

$$
\begin{aligned}
& \mu \leq 1 \quad \Rightarrow \quad \mathbb{P}(\text { extinction })=1 \quad \text { and the population dies out for sure } \\
& \mu>1 \quad \Rightarrow \quad \mathbb{P}(\text { extinction })<1 \quad \text { and the population survives with positive probability } .
\end{aligned}
$$

