Stochastic Models of Complex Systems

Hand-out 2

Poisson process, random sequential update, exponentials

Let $X \sim \operatorname{Poi}(\lambda)$ be a Poisson random variable with intensity $\lambda \geq 0$, i.e.

$$
\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for all } k \in \mathbb{N}_{0}
$$

We have $\mathbb{E}(X)=\lambda, \operatorname{Var}(X)=\lambda$ and the probability generating function of X is

$$
G_{X}(s)=\mathbb{E}\left(s^{X}\right)=\sum_{k=0}^{\infty} s^{k} \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{\lambda(s-1)}
$$

Therefore, if $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right), i=1, \ldots, n$ are independent Poisson, then the sum is also Poisson,

$$
S=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poi}\left(\lambda_{1}+\ldots+\lambda_{n}\right)
$$

For $\alpha \in[0,1]$, an α-thinning $\alpha \circ X$ of an integer random variable $X \in \mathbb{N}_{0}$ is defined as

$$
\alpha \circ X=\sum_{k=1}^{X} Z_{k} \quad \text { with } \quad Z_{k} \sim B e(\alpha) \in\{0,1\} \quad \text { iid Bernoulli } .
$$

For Poisson variables we have

$$
X \sim \operatorname{Poi}(\lambda), \alpha \in[0,1] \quad \Rightarrow \quad \alpha \circ X \sim \operatorname{Poi}(\alpha \lambda)
$$

This follows directly from computing the generating function

$$
G_{\alpha \circ X}(s)=\mathbb{E}\left(e^{\sum_{k=1}^{X} Z_{k}}\right)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} e^{-\lambda} \mathbb{E}\left(s^{Z_{k}}\right)^{n}=G_{X}\left(G_{Z}(s)\right)=e^{\lambda \alpha(s-1)}
$$

where we have used $G_{Z}(s)=1-\alpha+\alpha s=1+\alpha(s-1)$.
A Poisson process $N=\left(N_{t}: t \geq 0\right) \sim P P(\lambda)$ with rate $\lambda>0$ is a Markov chain with independent stationary increments, and $N_{t} \sim \operatorname{Poi}(\lambda t)$ for all $t \geq 0$. We know from lectures that the holding times of the chain are independent $\operatorname{Exp}(\lambda)$ variables with mean $1 / \lambda$. The above properties for Poisson random variables imply the following for processes:

- Adding Poisson processes.

Let $N^{i} \sim P P\left(\lambda_{i}\right)$ be independent Poisson processes, and define their sum $M=\left(M_{t}: t \geq 0\right)$ via $M_{t}:=N_{t}^{1}+\ldots+N_{t}^{n}$ for all $t \geq 0$. Then $M \sim P P\left(\lambda_{1}+\ldots+\lambda_{n}\right)$ is a Poisson process.

- Thinning.

An α-thinning $\alpha \circ N$ of a Poisson process $N \sim P P(\lambda)$ is defined via $(\alpha \circ N)_{t}=\alpha \circ N_{t}$ for all $t \geq 0$, i.e. independently keep jumps with probability α. Then $\alpha \circ N \sim P P(\alpha \lambda)$ is again a Poisson process.

Random sequential update.

The properties of Poisson processes can be used to set up an efficient sampling algorithm for stochastic particle systems, often called random sequential update (an adaption of the 'Gillespie algorithm'). Here we focus on a system with state space $S=\{0,1\}^{\Lambda}$ with lattice Λ and flip dynamics, for example the contact process (see picture).
To resolve the full dynamics on site $x \in \Lambda$, the sampling rate should be $r_{x}=\max _{\eta \in S} c\left(\eta, \eta^{x}\right)$ determined by the fastest process. From the graphical construction the independent PPs on each site add up, and the next possible event in the whole system happens at rate $R=\sum_{x \in \Lambda} r_{x}$. By the thinning property, the probability that it happens on site x is given by $p_{x}=r_{x} / R$. This leads to the following algorithm to construct a sample path for the particle system:
Pick η_{0} from the initial distribution and set $t=0$. Then repeat iteratively:
(1) update the time counter by $t+=\operatorname{Exp}(R)$,
(2) pick a site x with probability p_{x},
(3) update (flip) site x with probability $c\left(\eta, \eta^{x}\right) / r_{x}$.

For example, for the contact process on $\Lambda=\{1, \ldots, L\}$ with periodic boundary conditions and rates

$$
c\left(\eta, \eta^{x}\right)=\eta(x)+\lambda(1-\eta(x))(\eta(x-1)+\eta(x+1))
$$

we have $r_{x}=r=\max \{1,2 \lambda\}$, and thus $p_{x}=1 / L$ choosing sites uniformly and $R=r L$.
For particle hopping like in exclusion processes an analogous construction works with the extra step of choosing a target site between (2) and (3).

Simplified time counter.

Since $R=O(L)$ is of order of the system size, the increments $\tau_{i} \sim \operatorname{Exp}(R)$ of the time counter are of order $1 / L$. By the scaling property $\alpha \operatorname{Exp}(\beta) \sim \operatorname{Exp}(\beta / \alpha)$ of exponential rv's (check!), we have

$$
\tau_{i} \sim \operatorname{Exp}(R) \sim \frac{1}{R} \tilde{\tau}_{i} \quad \text { with normalized } \quad \tilde{\tau}_{i} \sim \operatorname{Exp}(1) .
$$

To simulate up to a time $T=O(1)$ we therefore need of order $R T=O(L)$ sampling increments τ_{i}. The time counter of the simulation is then

$$
t=\sum_{i=1}^{R T} \tau_{i}=\frac{1}{R} \sum_{i=1}^{R T} \tilde{\tau}_{i}=T+O\left(L^{-1 / 2}\right) \rightarrow T \quad \text { as } L \rightarrow \infty
$$

by the law of large numbers. So if we just replace the increments τ_{i} by their mean $1 / R$, i.e. use
(1)' update the time counter by $t+=1 / R$
instead of the computationally more expensive (1), the error in t is of order $L^{-1 / 2}$ by the central limit theorem. This is often negligible for large L unless one is interested in very precise time statistics.

Further related properties of exponentials.

Let $\tau_{1}, \tau_{2}, \ldots$ be a sequence of independent $\operatorname{Exp}\left(\lambda_{i}\right)$ rv's. Then

- $\min \left\{\tau_{1}, \ldots, \tau_{n}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\ldots+\lambda_{n}\right) \quad$ (related to the sum of Poisson processes),
- If $\lambda_{i}=\lambda$ are identical, and $N \sim \operatorname{Geo}(p)$ is an independent geometric rv with mean $1 / p$, then

$$
\left.\sum_{i=1}^{N} \tau_{i} \sim \operatorname{Exp}(p \lambda) \quad \text { (related to the marginal waiting time on a site } x\right) .
$$

This can be proved by direct computation $\left(\mathbb{P}\left(\min \tau_{i}>t\right)=\prod_{i} \mathbb{P}\left(\tau_{i}>t\right)\right)$ and using generating/characteristic functions, respectively (try it!).

