Stochastic models of complex systems

Problem sheet 1

Sheet counts $25 / 100$ homework marks, $[\mathrm{x}]$ indicates weight of the question.

* Questions do not enter the mark.

1.1 Generators and eigenvalues

(a) Consider the Fibonacci numbers $\left(F_{n}: n \in \mathbb{N}_{0}\right)$ defined by the recursion

$$
F_{n}=F_{n-1}+F_{n-2} \quad(n \geq 2) \quad \text { with } \quad F_{0}=0, F_{1}=1
$$

Write $\binom{F_{n+1}}{F_{n}}=M\binom{F_{n}}{F_{n-1}}$ as a discrete-time dynamical system with $M \in \mathbb{R}^{2 \times 2}$.
Compute the eigenvalues of M and show that

$$
F_{n}=\frac{\eta^{n}-(1-\eta)^{n}}{\sqrt{5}} \quad \text { where } \quad \eta=\frac{1+\sqrt{5}}{2} \quad \text { is the Golden ratio }
$$

(b) Consider the continuous-time Markov chain X with generator $\quad G=\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -4 & 3 \\ 0 & 1 & -1\end{array}\right)$.
i. Draw a diagram for X (i.e. connect the three states by their jump rates), and give the transition matrix P^{Y} of the corresponding jump chain Y.
ii. Convince yourself that $P^{\prime}(0)=G, P^{\prime \prime}(0)=G^{2}$ etc., and that for some matrix B,

$$
P(t)=\exp (t G)=B^{-1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-\lambda_{2} t} & 0 \\
0 & 0 & e^{-\lambda_{3} t}
\end{array}\right) B
$$

Compute λ_{2} and λ_{3}. Use this to compute $p_{11}(t)$, i.e. determine the coefficients in

$$
p_{11}(t)=a+b e^{-\lambda_{2} t}+c e^{-\lambda_{3} t}
$$

iii. What is the stationary distribution π^{*} of X ?
(c)* Derive a recursion relation for the generating function $G(s)=\sum_{n} F_{n} s^{n}$ of the Fibonacci numbers and solve it. Sketch $G(s)$. For which $s \geq 0$ is it well defined?

1.2 Branching processes

Let $Z=\left(Z_{n}: n \in \mathbb{N}\right)$ be a branching process, defined recursively by

$$
Z_{0}=1, \quad Z_{n+1}=X_{1}^{n}+\ldots+X_{Z_{n}}^{n} \quad \text { for all } n \geq 0
$$

where the $X_{i}^{n} \in \mathbb{N}$ are iidrv's denoting the offspring of individuum i in generation n.
(a) Is Z a Markov process? What is its state space S ? Is the process irreducible? What are the communicating classes of S and the stationary distributions?
(b) Consider a geometric offspring distribution $X_{i}^{n} \sim G e o(p)$, i.e.

$$
p_{k}=\mathbb{P}\left(X_{i}^{n}=k\right)=p(1-p)^{k}, \quad p \in(0,1)
$$

Compute the prob. generating function $G(s)=\sum_{k} p_{k} s^{k}$ as well as $\mathbb{E}\left(X_{i}^{n}\right)$ and $\operatorname{Var}\left(X_{i}^{n}\right)$. Sketch $G(s)$ for (at least) three (wisely chosen) values of p and compute the probability of extinction as a function of p.
(c) Consider a Poisson offspring distribution $X_{i}^{n} \sim \operatorname{Poi}(\lambda)$, i.e.

$$
p_{k}=\mathbb{P}\left(X_{i}^{n}=k\right)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad \lambda>0
$$

Repeat the same analysis as in (b). (The equation for the probability of extinction cannot be solved in this case, find an approximate solution.)
(d) For Poisson offspring show that $\sum_{i=1}^{k} X_{i}^{n} \sim \operatorname{Poi}(k \lambda)$. Use this to compute the elements $p_{i j}$ of the transition matrix P of Z.
(e)* For geometric offspring with $p=1 / 2$, show that $G_{n}(s)=\frac{n-(n-1) s}{n+1-n s}$ and compute $\mathbb{P}\left(Z_{n}=0\right)$. If T is the (random) time of extinction, what is its distribution and its expected value?

1.3 Random walk

(a) Consider a simple symmetric random walk on $\{1, \ldots, L\}$ with

- periodic boundary conditions, i.e. $p_{L, L-1}=p_{L, 1}=p_{1, L}=p_{1,2}=1 / 2$,
- closed boundary conditions, i.e. $p_{L, L-1}=p_{L, L}=p_{1,1}=p_{1,2}=1 / 2$,
- reflecting boundary conditions, i.e. $p_{L, L-1}=p_{1,2}=1$,
- absorbing boundary conditions, i.e. $p_{L, L}=p_{1,1}=1$.
(All transition probabilities which are not specified above are 0 .)
In each case, sketch the transition matrix $P=\left(p_{i j}\right)_{i j}$ of the process, decide whether the process is irreducible, and give all stationary distributions $\boldsymbol{\pi}^{*}$.
(Hint: Use detailed balance.)
(b)* Consider an undirected connected graph (G, E) without loops and double edges. A simple random walk on (G, E) has transition probabilities $p_{i, j}=e_{i, j} / c_{i}$, where c_{i} is the number of outgoing edges in vertex i, and $e_{i, j} \in\{0,1\}$ denotes the presence of an edge (i, j).
Find a formula for the stationary distribution π^{*}.
Does your formula also hold on a directed, strongly connected graph?

