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Stochastic Models of Complex Systems

Problem sheet 2

Sheet counts 40/100 homework marks, [x] indicates weight of the question.
* Questions do not enter the mark.

2.1 Birth-death processes [10]
A birth-death process X is a continuous-time Markov chain with state space S = N =
{0,1,...} and jump rates

i i1 forallie S, i-2hi—1 foralli>1.

(a) Write the generator GG and the master equation. Under which conditions is X irreducible?
Using detailed balance, find a formula for the stationary probablities 7; in terms of 7.

(b) Suppose a; = acfori > 0 and 3; = 3 for i > 0. This is called an M /M /1 queue.
- Under which conditions on « and 3 can the stationary distribution be normalized? Give
a formula for 7}, in that case.
- Derive a differential equation for y; = E(X}) (involves mo(t) on the right-hand side),
and show that with 7r(0) = 7* the right-hand side vanishes.

(c) Suppose a; = v and §; = i3 for i > 0. This is called an M /M /oo queue.
- Under which conditions on « and 3 can the stationary distribution be normalized? Give
a formula for 7}, in that case.
- Derive a closed equation for y; and solve it for general initial condition p.

(d) Suppose a; =i, B3 = ¢f fori > 0 and Xg = 1.
- Discuss qualitatively the behaviour of X; as t — oo.
- Derive a closed equation for y; and solve it for general initial condition pg.

2.2 Contact process [10]
Consider the CP (7 : ¢ > 0) on the complete graph A = {1,..., L} (all sites connected) with
state space S = {0, 1}* and transition rates

c(n ") = (@) + A1 =n@) > ny),
y#£T

where 1, n* € S are connected states such that 7n*(y) = { ,
G () ny) L y#a

(n with site x flipped).

(@) Let Ny =3, cp, ne(z) € {0, ..., L} be the number of infected sites at time ¢. Show that
(N¢ : t > 0) is a Markov chain with state space {0, ..., L} by computing the transition
rates ¢(n,m) forn,m € {0,...,L}.

Write down the master equation for the process (N; : ¢ > 0).

(b) Is the process (IV; : t > 0) irreducible, does it have absorbing states?

What are the stationary distributions?
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(c) Assume that E(Nf) = E(N;)" for all k > 1. This is called a mean-field assumption,
meaning basically that we replace the random variable /V; by its expected value.
Use this assumption to derive the mean-field rate equation for p(t) := E(V;)/L,
d
21 PO = f(p() = =p(t) + LA(L = p(1)) p(1) -

(d) Analyze this equation by finding the stable and unstable stationary points via f(p*) = 0.
What is the prediction for the stationary density p* depending on \?

2.3 Simulation of CP (Sample code on the course webpage) [20]

Consider the contact process (7 : t > 0) as defined in Q2.2, but now on the one-dimensional
lattice Az, = {1, ..., L} with connections only between nearest neighbours and periodic bound-
ary conditions.

The critical value \. is defined such that the infection on the infinite lattice A = 7Z started from
the fully infected lattice dies out for A < A, and survives for A > A.. It is known numerically
up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.

All simulations of the process should be done with initial condition ng(x) = 1 for all z € A.

(a) To get a general idea, simulate the process for e.g. L = 256 for several values of
A € [1,2]. Plot the number of infected individuals Ny = >° ., m(x) as a function
of time up to time 10 x L, averaging over 100 realizations in a double-logarithmic plot.
What is the expected behaviour of /V; depending on \?

For a given system size L, find the window of interest choosing A = 1,1.2,...,1.8,2
averaging over 100 realizations with times up to 10 x L. Then use fine increments of
0.01 for A and averages of at least 500 realizations to find an estimate of the critical value
Xe(L) € 1,2].

Repeat this for different lattice sizes, e.g. L = 128,256,512,1024, and plot your esti-
mates of \.(L) against 1/L. Extrapolate to 1/L — 0 to get an estimate of A\, = A.(c0).
This approach is called finite size scaling, in order to correct for systematic finite size
effects which influence the critical value.

(b) Let T be the hitting time of state 7 = 0, i.e. the lifetime of the infection. Measure the
lifetime of the infection for A = 1 and A = 2 by running the process until extinction of
the epidemic.

For A =1 < A\, we expect T' o C'log L+small fluctuations for some C' > 0. So use
large system sizes e.g. L = 128,256,512, 1024 (or larger), confirm that E(7") scales like
log L and determine C' by averaging at least 200 realizations of I for each L. Then shift
your data T; for each L by T; — E(T") and plot the "empirical tail’ of the distribution of
the shifted data (use log-scale on the y-axis).

For A = 2 > \. we expect ' ~ Exp(1/u) to be an exponential random variable with
mean = E(T) o e“F for some C' > 0. So use *small* system sizes e.g. L =
8,10, 12, 14 (see how far you can go), confirm that E(7") scales like e“L and determine
C by averaging at least 200 realizations of T". Then rescale your data T; for each L by
T; /E(T') and plot the *empirical tail’ of the distribution of the rescaled data (use log-scale
on the y-axis).

The empirical tail of data 7' = (1, ...,Thy) is the statistic tail,(T) = +; Zf\il 175
This decays from 1 to 0 as a (random) function of time ¢.

BINNING DESTROYS INFORMATION — AVOID HISTOGRAMS!

(c)* Repeat the analysis of (a) on the fully connected graph A, and compare your estimate of
A with the mean-field prediction from Q2.2.

(d)* For A = 0and ng(x) = 1forall z € A, derive a formula for the distribution of the lifetime
T of the infection. (Hint: google ’extreme value statistics’ and ’Gumbel distribution’.)



