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Introduction

In this module we will cover the basics to study models of complex systems with stochastic time
evolution. There are two different origins of stochasticity:

e Classical mechanics: stochasticity due to lack of information

In principle all components involved in the system are believed to follow a deterministic
system of equations of motion. But in practice all microscopic details are not accessible
and the unknown influences on the dynamics are approximated as effective random noise
with a certain postulated distribution. The actual origin of the noise may be related to
chaotic motion, i.e. deterministic time evolution with random initial data such as a dice or
pendulum, or neglected interactions in a large system such as gases or fluids leading to a
stochastic time evolution.

e Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a sys-
tem is therefore given by a complex probability density function (wave function), rather than
a single element in the set of all possible configurations.

Examples. (gas, branching process)

In this course we only cover classical stochastic systems. After a general introduction to
stochastic processes we will study some examples of particle systems with thermal interactions.
The first and most classical example of this phenomenon is Brownian motion (see Gardiner, Sec-
tion 1.2). In 1827 Robert Brown observed the irregular motion of small pollen grains suspended
in water. A first satisfactory theoretical description of this phenomenon was given by Einstein in
1905. A mathematically idealized version of this is called the Wiener process and can be described
by the theory of stochastic calculus which was developed in the 1950s by It6. Due to the continu-
ous state space of the system this theory is rather involved, and will be discussed towards the end
of the module. Simpler to analyse are models with a discrete state space such as birth-death pro-
cesses, which appear for example in predator-prey models in biology (see Gardiner, Section 1.3).
In the first part of the course we concentrate on Markov chains (following [GS] Chapter 6), which
are certain stochastic processes with discrete state space. We conclude the introductory section by
two general definitions.



Definition 0.1 A stochastic process X = (X; : t € T) is a family of random variables X; : Q@ —
S with state space S and time index set T C R.

A stochastic process X : T x €2 — S is a function of two variables, time ¢ and w € ). For
fixed w, the function ¢ — X (w) is called a sample path. The probability space {2 is arbitrary, but
has to be big enough to encode all possible time evolutions. A canonical choice is the set of all
possible sample paths 2 = {f : T — S}, or often one requires some regularity of the functions
f, such as continuity.

Definition 0.2 A stochastic process is a Markov process ifforallt; < to < ... <t, € T,n € N,
forall sq,...,8,-1 € S and all (measurable) A C S,

P(Xt, € An| Xy, =s1,..., Xp,, = sn-1) =P(Xy, € Ap| X, = sn-1) - (0.1)
A Markov process is called homogeneous if for all (measurable) A, B C Sandt >t €T

P(X; € A| Xy € B) =P(X,_y € A| X € B). 0.2)
A homogeneous Markov process is called a Markov chain, if S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate on
the choices T = N, Z for discrete time and T = [0, c0), R for continuous time processes. Typical
choices for state spaces are S = Z (e.g. random walk, birth-death processes), N (e.g. counting
processes), R? (e.g. Brownian motion).

Examples. (RW, Brownian motion, deck of cards)




1 Markov chains

1.1 General properties
Definition 1.1 For a Markov chain we define the transition probabilities

pij(t) =P(Xy = j|Xo=1) €[0,1] foralli,j €S, (1.1)
and the transition 'matrices’ (which might be infinite)

P(t) := (pi(t) = i,5 € S) € [0,1]15I51, (12)

A homogeneous Markov chain starting at time ¢ = 0 is uniquely determined by an initial
distribution 7r(0) with 7;(0) = P(Xo = i), ¢ € S and the transition probabilities, because every
joint probability can be written as

]P)(th S Al)' "7th € An) =

= Z Tio (0)Pigir (11)Piyin (t2 — 1) =+ Pipy_yin (tn — tn—1) (1.3)
10ES,11EAL,..,in€EAR

forall0 <t <...<t, € Tand Ay,...,A, CS. In particular, the distribution at time ¢ is
mi(t) =P(Xy =j) =Y m(0)p(t), so m(t)=m(0)P(t). (1.4)
€S
Example. (RW)

Proposition 1.1 P(0) = Id and the family (P(t) : t > 0) satisfies the Chapman-Kolmogorov
equations,

P(t+t)=Pt)P({) forallt,t',t+t cT. (1.5)
Proof. p;;j(0) = §;; by definition, and for all ¢,¢/, ¢ +¢ € T
ng(t + t/) = ]:P)(Xt+t/ = ]|X0 = Z) —

= P(Xppr = j|Xo =0, Xe = k) P(Xy = k[ Xo =) = Y _p(t) pi; (t') , (1.6)
keS kesS

using the total probability sum rule, the Markov property and homogeneity. O



For discrete time with T = N this leads to

|P(n+1)=P(1)P(n) = P(n) P(1) = P(n)=P"| (1.7)

where we denote P = P(1). Therefore a discrite time Markov chain is uniquely determined by
the initial distribution 7r(0) and the transition matrix P, and in particular

m(n) = w(0) P" .| (1.8)

For a finite state chain with |.S| < oo we then have
Tr(’l’L) = A1V1)\71L+... +A|S|V\S\>‘FS| s (1.9)

where the \; € C are the eigenvalues with left eigenvectors vy for P. The coefficients A, € C
are determined by the initial condition 7 (0).

Example. (RW with various BCs)

For continuous time with T = [0, oo) we require some regularity of the function ¢ — P(t) at
t = 0. We only study processes where it is continuous and differentiable, i.e.
P(t)—1d

lim P(t) = P(0) =1d and G :=lim

exists , (1.10)
N0 t\0

sothat P(t) = Id+tG+o(t) forsmall t. Together with the Chapman-Kolmogorov equations
this implies that

P(t+ At)— P(t) _ P(At)—Id P(At) — Id

= = _ 1.11
- 0P = Py (11D
and thus taking At N\, 0, P(¢) is differentiable for all ¢ > 0 and fulfills
d
%P(t) =GP({t)=P(t)G = P(t)=exp(tQG). (1.12)




These are called backward and forward equation, respectively. Subject to the boundary conditions
P(0) = Id, they often have a unique solution given by the matrix exponential

oo Lk 2
P(t):exp(tG):Z%Gk:Id—i—tG—i—%GQ—i—.... (1.13)
k=0

For example this is the case if |S| < oo, and subject to certain technical conditions also for inifite
state space S. Therefore a continuous-time Markov chain is uniquely determined by the initial
distribution and the matrix G which is called the generator of the process.

The distribution at time ¢ is then given by

w(t) =m(0) exp(tG) . (1.14)
Again, for a finite state chain we then have
(t) = AjvieMt 4+ 4+ A|S|V‘S‘€)\|S‘t , (1.15)

where the A\ € C are now the eigenvalues of G with left eigenvectors vy, and the coefficients
Ay, € C are determined by the initial condition 7r(0).

What is the meaning of the entries of G and how do the sample paths of X look?

Entries of G. Assume that X; = 4. For small times A¢ we have from (1.13)
pij(At) = gijAt +o(At) foralli#j€S. (1.16)

So during a time interval (¢,¢ 4+ At) the chain jumps from state i to j with probability g;; At, and
gij = 0 can be interpreted as a jump rate. On the diagonal we have

pi(At) = 14 g;; At + o(At) foralli € S, (1.17)

which gives the probability that nothing happens in the time interval (¢, ¢t + At). By normalization
we have

1= py(At)=1+At> g5 = > g;=0 forallies. (1.18)
jeS JjeS jes

Therefore the diagonal entries of G are

gi=—Y g <0 forallT €5, (1.19)
JF#i
and |g;;| > 0 can be interpreted as the total rate to leave state i.
Sample paths. Assume that Xy = ¢ and define the holding time
Wi=inf{t >0 : Xy #i}, (1.20

i.e. the (random) time until a jump occurs. This is actually independent of ¢ by homogeneity. If ¢
is absorbing, g;; = 0 forall j € S and W; = oo.

Proposition 1.2 The random variable W; is exponentially distributed with parameter |g;;| and if
|gii| > 0, the probability that the chain jumps to j # i after time Wj is gi; /| 9sil-



Proof. W; has ’loss of memory’ property, i.e. for all s,u > 0

P(W; > s+ulW; > s) =P(W; >s+ulX; =1) =P(W; > u), (1.21)
where we have used the Markov property and homogeneity. Therefore

P(W; > s+u) =P(W; > u)P(W; > s) . (1.22)

Analogous to the Chapman-Kolmogorov equations (1.5) this can be used to derive a differential
equation for F'(s) = P(W; > s) which has an exponential solution

F(s) =P(W; > s) =e* where \=F'(0). (1.23)
Together with (1.17) we get

F'(0) = lim PWi > At) -1 _ lim pii(At) + o(At) — 1
A0 At AN At

=0 <0, (1.24)

and therefore P(W; > s) = e~ 1%il* and  W; ~ Exp(|gs|).
Now the probability that the chain jumps to j, conditioned on the event that it actually jumps
somewhere in the time interval (¢, ¢ + At], is given by

P(Xiyae = j|X¢ = 1) -
P(Wi < AX, =4)

P(Xt-i-At = j‘Xt = Z,WZ < At) =

pij (At) 9ij
~ — as At 0. (1.25)
1 —pi(At)  —gi >
So conditioned on jumping at time ¢ we get the required result. ]

Picture of sample path.




n—1
The chain jumps at the jump time J, = Z Wy, tostate Y, =X, .

k=0
Y = (Y, : n € N) is called the jump chain, and it is a discrete time Markov chain with transition

Matrix PY given by

Y 0 P 1= j . Y .
= ., Y ifgy; >0, and p;.=6;; ifg; =0. 1.26
Py { gij/|gii‘ LI 9ii Pij ij Gii ( )
So a continuous-time Markov chain can also be characterized by its jump chain Y and a sequence
of independent exponentially distributed holding times (Wy, : n € N).

Examples. (Poisson, CTRW)

Using the forward equation (1.12) we can also get an evolution equation for the distribution,

d d

@ﬁ(t) =7(0) $P(t) =7(0)P(t)G==(t)G . (1.27)
This is called the Master equation and using (1.19) the coordinate form is given by
d
aﬂ'i(t) = Z (Wj(t) 9ji *ﬂ'i(t) gij> . (128)
J#

For the Poisson process there exists also another characterization.

Proposition 1.3 X = (X, : t > 0) is a Poisson process with rate X if and only if it has stationary,
independent increments, i.e.

Xy — Xy is distributed like X; — X and independent of (Xs:s <t'), (1.29)

k
and for each t, X; has Poisson distribution with parameter \t, i.e. P(X; =k) = ()\lj!) e M,




Proof. (differentiate 7y, (t))

1.2 Stationary distributions and reversibility

Definition 1.2 A probability distribution 7* is called stationary if w* P(t) = =* for all t > 0.

This will play an important role in the long-time behaviour of Markov chains, since ’often’
7(t) — 7*. How and when this is true will be seen later.

Proposition 1.4 7 is stationary if and only if

7P = 7w for adiscrete-time chain with transition matrix P

™G = 0 for a continuous-time chain with generator GG . (1.30)

Proof. Assume finite state space S. For discrete time this follows directly from P(n) = P". For
continuous time we have

G =(0,...,0) = wG*=(0,...,0) forallk>1

= gﬂ'*Gk:(O,...,O) forallt >0
k=1""
* k _ __x . 0 __
= T ZHG =" forallt > 0since G° = Id
k=0
= 7wP(t)=n" forallt>0. (1.31)
The backward direction follows directly from differentiating 7w* P(¢) = 7* at t = 0. O

Theorem 1.5 (Existence)
A Markov chain with finite state space S has at least one stationary distribution.

Proof. Based on linear algebra (an extended version of the Perron-Frobenius Theorem):

Since P and G have row sum 1 and 0, respectively, we have P1 = 1 and G1 = 0, where 1 is the
column vector with all entries 1. So 1 and 0 are eigenvalues of P and G, respectively, and thus
there exist also corresponding left eigenvectors. These can be shown to have non-negative entries
and can be normalized to be a stationary distribution.

Definition 1.3 State i € S communicates with state j € S if p;;(t) > 0 for some t € T, and we
write ¢ — j. States ¢ and j are connected if i — j and j — ¢, and we write ¢ <> 7.

The Markov chain is called irreducible if i <> j forall 7,5 € S.

A state i is called absorbing, if i / j for all j # 4.

10



Remark. The state space of a Markov chain can be decomposed into communicating classes S,
which are disjoint subsets of connected states such that S = UgSk. The chain is irreducible if
there is only one such class 57 = S.

Theorem 1.6 (Uniqueness)
An irreducible Markov chain has at most one stationary distribution.

Proof. Again based on linear algebra and Perron-Frobenius (see e.g. [GS], Section 6.4). The
irreducible structure of the transition matrix P (discrete time) and the generator G (continuous
time) can be shown to imply that the eigenvector to eigenvalue 1 and 0, respectively, are unique
up to normalization.

Therefore, | a finite state, irreducible Markov chain has a unique stationary distribution.

For inifinite state space S the chain can ’disappear at infinity’ and there is no stationary distribution
(see handout).

Examples. (RW with absorbing BC, on Z)

Definition 1.4 A Markov chain (X; : ¢t € T) is called reverisble w.r.t. 7 (or 7 is called reverisble
for (X :t € T))if

Fipij(t) = ijji(t) forallt € T and ¢ 75] €S. (1.32)

Proposition 1.7 If 7 is reversible then it is also stationary.

Proof. For all j € S we have (wP(t))j = Z mipij(t) = Z mipi(t) =7 . O
€S €S

Proposition 1.8 7 is reversible for the Markov chain (X; : t € T) if and only if it fulfilles the
detailed balance conditions

(discrete time) TiDij = TjDji

(continuous time) migi; = 7jgji foralli,j € S . (1.33)

11



Proof. analogous to the proof of Prop. 1.4.

If 7r is reversible, the right-hand side of the master equation (1.28) vanishes term-wise.

Proposition 1.9 Let (Xt A H%) be a finite state irreducible Markov chain with transition
matrix PX (discrete time) or generator GX (continuous time). Assume further that the chain is
stationary (i.e. Xy ~ ©* for all t) which makes it possible to define it also for negative times. Then
the reversed chain Y = (Yt ‘te ﬁ) with Yy = X _y is a stationary Markov chain with

*
transition matrix p% = —i p])-g (discrete time)
T
(2
*
r=Lg¥ ' ] i,jes 1.34
generator 9ij = — 9ji (continuous time) foralli,j € S . (1.34)

7
Proof. Using stationarity and the Markov property of X we get for discrete time
P(Yoi1 = tns1| Yo =in,..., Yo =1ig) =
P(Yk:ik,0§k§n+1) P(XN_k:ik,0§k§n+1)

P(Yy=i,0<k<n)  PXy_j=i,0<k<n)
_ T o1 Piniain *** Pivi _ T 1 Piniin (1.35)
T} Dinin_1 " Pirio m; '
as required. Continuous time works analogously. |

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this only
holds for stationary chains. Obviously, 7* is then also the stationary distribution for the reversed
chain Y.

Prop. 1.9 together with (1.33) implies that a reversible Markov chain and its time-reversal
are indistinguishable, i.e. (Yt NS ﬁ) ~ (Xt NS ﬁ) since they have the same transition
probabilities

7T*

E3
Y ox T X X
bi; = ;ipji = ;@sz = Dij - (1.36)
1 1

An analogous relation holds for rates in continuous time. The detailed balance relations (1.33)
can be a useful tool to find stationary distributions. For certain Markov chains ’without loops’, i.e.
with a ’tree-like’ structure of allowed transitions, every stationary distribution is also reversible.

Examples. (RW with PBC)

12



1.3 Ergodicity

Definition 1.5 Consider a Markov chain (X; : ¢ € T). Suppose that Xy = ¢ € S and define the
return time (or recurrence time) T; by

T; := min{n >1: X, =i} (discrete time)
T; = inf{t > J;: Xy =i} (continuous time) . (1.37)

The mean recurrence time of state i € S is then y; = E(T5).

For continuous-time processes the condition of being larger than the first jump time ensures that
T; is non-zero and gives the time of first return to ¢ after an excursion. Note that 7; = oo can
happen with positive probability, e.g. if the chain gets stuck in an absorbing state and does not
return to 4. If T; < oo with probability 1 still u; = oo is possible, i.e. the distribution of 7; does
have a heavy tail with infinite expectation.

Theorem 1.10 For an irreducible Markov chain with finite state space p; € (0,00) forall i € S,
and the unique stationary distribution 7* is given by

1
T, o= — (discrete time)
Hi
E(W; 1
T = (W) = (continuous time) , (1.38)
i 14:1gii

where W; ~ Exp(|gii|) is the holding time of state 1.

Proof. see e.g. [GS] pp 229 - 230.
In particular, this implies that 77 > 0 for all ¢ € S and is determined by the average fraction of
the time the chain spends in state ¢. For discrete-time processes the holding time can be thought

of being 1 (one time step).

Picture of sample path.

Definition 1.6 A discrete time Markov chain is called aperiodic if for all i € S, p;;(n) is eventu-
ally positive, i.e.

there exists IV; € N such that p;;(n) > 0 forall n > N; . (1.39)

13



Remark. Note that for irreducible Markov chains, aperiodicity implies that for all 7, j € .S, p;;(n)
is eventually positive.

Example. (RW)

Note that for continuous time there is no issue of periodicity, since

ifi —j then p;(t) >0 forallt>0. (1.40)
This is because ¢ — j is equivalent to

GiirGivio = - Gin_1j > 0 forsomeiq,...i,—1 € S,neN, (1.41)
which implies that  p;;(t) > pis;, (t/n) - - pi,_,;(t/n) > 0.

Theorem 1.11 An irreducible (aperiodic) Markov chain with finite state space is ergodic, i.e. it
has a unique stationary distribution 7* and

pij(t) =P(Xy =j|Xo=1i) =7 ast— oo, foralli,jes. (1.42)

Proof. For discrete time this follows from the Perron-Frobenius Theorem:

If P is the transition matrix of a finite state, aperiodic, irreducible Markov chain then
(i) M1 = 1 is a single eigenvalue of P

(ii) and the remaining (complex) eigenvalues X, . . . , \|s| satisfy I\ < 1.

Note that (i) includes uniqueness of the stationary distribution claimed in Theorem 1.6.
Suppose further that all the eigenvalues are distinct, then P can be diagonalized, i.e.

A ... 0
BPB'=A=| : - (1.43)

where the rows of B are the left and the columns of B! are the right eigenvectors of P, normal-
ized such that B B~! = Id. Thus

XL 0 1...0
P*=(B7'AB)"=B""'| ¢+ .. ¢ |B=B'|[: . :|B (1.44)
0 ... Y, 0...0

14



as n — oo, since A = 1 and |A\;| < 1 for all i > 1. Since the first column of B~! is 1 (right
eigenvector to A\; = 1), the right-hand side is equal to the matrix
10...0 T T
Do - | B= : which implies the statement. (1.45)
10...0 771‘...7T|*S|

The proof can be extended to more general cases and works similar for continuous time by using
the corresponding jump chain. O

Remark. Theorem 1.11 implies that for every initial distribution 7(0),
w(t) =m(0)P(t) > 7" ast— oco. (1.46)

In general, the distribution at time ¢ is the solution to a linear first order equation. Therefore it is
given by a linear combination of left eigenvectors v; of the transition matrix P (discrete time) or
the generator GG (continuous time) of the form (1.9) and (1.15). The largest eigenvalue is A\; = 1
for discrete and A\; = 0 for continuous time, with left eigenvector vy = 7* and coefficient A1 = 1.

Example. (RW on finite interval)

Theorem 1.12 (Ergodic Theorem)
Let X = (Xy,t € T) be an ergodic Markov chain with unique stationary distribution 7*. Then
for every observable f : S — R

t N
1/Of(Xs)ds or ir;%f(Xn) — E(f) ast,N = . (1.47)

Proof. see e.g. [GS], chapter 9.5

So stationary expectations can be approximated by time averages over long periods. This is
the basis for Markov chain Monte Carlo (MCMC) which is used to sample from the stationary
distribution of a chain. In particular, using indicator functions f(X;) = Jx, ; the right-hand side
of (1.47) is equal to ;. To improve the speed of convergence in practice, the chain is run for a
while before starting to sample (equilibration).

15



Further remarks on periodicity
The period d(i) of a state i € S is defined as

d(i) :== ged{t > 1 : p;(t) > 0}, (1.48)

the greatest common divisor of the epochs at which return is possible.

For an irreducible Markov chain all states have the same period (for a proof see p.224 in [GS]). If
the chain is aperiodic we have d(i) = 1 for all ¢ € S. Note, however, that the requirement d = 1
is weaker than Def. 1.6 and is often used as an alternative definition of aperiodicity.

Ergodicity follows again from a more general version of the Perron-Frobenius Theorem:

If P is the transition matrix of a finite state irreducible Markov chain with period d then

(i) the d complex roots of unity are eigenvalues of P,

0 1 d—1

M=w =1, =w",...,.\g=w where w = >4 (1.49)

(ii) and the remaining eigenvalues \gy1, . . ., Njg| satisfy |\;| < 1.

1.4 Countably infinite state spaces

For infinite state space .S, the Markov chain can ’get lost at infinity’, and therefore not have a
stationary probability distribution.

Let X¢ = ¢ and T; be the time of first return to state ¢ as defined in Def. 1.5 for continuous and
discrete time.

Definition 1.7 A state ¢ € S is called

transient, if P(T; =o00) >0,
null recurrent, it P(T; <oo)=1 and E(T;) = o0,
positiv recurrent, if P(T; <oo)=1 and E(T;) <oo. (1.50)

Theorem 1.13 Let X be an irreducible Markov chain. Then all states are either transient, null

recurrent or positive recurrent. X has a unique stationary distribution if and only if it is positive
recurrent. In this case X is also ergodic (subject to aperiodicity in case of discrete time).

Proof. see Section 6.2 in [GS]

Examples. (BD process)

16



So the positive recurrent Markov chains behave like chains with finite state space concerning their
stationary distributions and long time behaviour. Transient continuous time chains can get lost at
infinity even in finite time. This phenomenon is called explosion. Define the explosion time

o0
Joo 1= lim J, =Y Wy, € (0,00], where Y; =X, isthejumpchain.  (1.51)

n—o0 -
=1

This is a random variable that usually takes the value co, and we say that the chain is non-explosive
if P(Js = 00) = 1. For example this is the case if |.S| < oo or sup;cg |gii| < oo.

Example. (birth chain)

17



Theorem 1.14 Polya’s Theorem.
The simple random walk (in discrete or continuous time) on S = Z% is null recurrent ford=1,2
and transient for d > 3.

Proof. The simplest proof follows an interesting connection between Markov chains and electrical
network theory. Consider a continuous time SRW on Z? with rate ¢ across each bond (discrete
time works analogously). The resistence of a bond is then given by » = 1/q, and Kirchhoff’s laws
apply, i.e. the total resistence r is given by

r =r7r+nr for resistences in series (sums of waiting times) (1.52)

1/r = 1/r1+1/re for resistences in parallel (sums of rates) . (1.53)

Denote by R(n) the total resistence between the origin and the set {z € Z¢ : ||z||; = n}, and
by R = lim,,_,o, R(N) the resistence to infinity. It can be shown that the SRW is transient if and
only if R < 0o, and a rough estimates gives

R(n) ~ (nd~1 1)~ = p2-d (1.54)

n

counting n%~! parallel paths of length n to reach distance n from the origin. This implies R = oo
ford =1and R = 0 for d > 3, for d = 2 a more careful analysis reveals logarithmic corrections
that lead also to R = oo.

For more details and infinite expected return times see e.g. [G]. a
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2 Stochastic particle systems

2.1 Basic examples

Stochastic particle systems, or often also called interacting particle systems (IPS), are Markov
chains where the state space has a particular structure. Let A = {1,..., L} be a finite set of L
points, which we call lattice. The state space is given by the set of all configurations

n=(n(x):xe€A)eS={0,1} (often also written as {0,1}")) , 2.1

where n(x) = 1 is interpreted as the presence of a particle or an infection at site . The dynamics
of the IPS we consider is given by local continuous-time transitions of the following two kinds:

n—n*  withrate ¢(n,n"),
n—n*  withrate ¢(n,n") =

for all z,y € A, where we use the shorthand notation

n(z) , z#z,y
() —{ M) EET g v = ) e 03
1—nx) , z==x n(z) 2=y

so that ™ corresponds to creation/annihilation of a particle at site x and ™Y to motion of a particle
between x and y. In the following g, , > 0 will be transition rates of a continuous time random
walk on A, and (A, @) can be interpreted as a graph with adjacency matrix Q = (g5 : z,y € A).
To avoid degeneracies we will always assume that

the walk on A with rates g, , is irreducible , 2.4)

so that particles/infections can reach all parts of the lattice.

Definition 2.1 Let ¢, , € {0, A} for all z,y € A with infection rate A > 0, and write x ~ y if
qz,y = . The contact process (CP) is an IPS with rates

c(n,n”) =n(x) + A1 —n(z)) > n(y) forallz € A. (2.5)
Yy~

Sites with n(z) = 1 are interpreted as being infected and recover independently at rate 1, and
healthy sites with n(xz) = 0 get infected by each of their neighbours independently at rate \. A
short way of writing this is

140 and oM. (2.6)

Properties.

e The CP has one absorbing state, n = 0 = (0,...,0) (all healthy), and is not irreducible.
For finite A, 0 can be reached from all 7 € S and therefore 7m* = Jj is the unique stationary
distribution and

t—o0

m(t) — 0o forall A > 0 and all initial conditions 7(0) . (2.7)

Therefore, the CP on finite lattices is ergodic and the infection eventually dies out.
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e Forinfinite A (e.g. A = Z%), it can be shown that there exists another stationary distribution
7" with p = E« (n(:c)) > (0 where the infection persists, provided that the infection rate A
is greater than a critical value A\. € (0, 00). The loss of ergodicity in infinite system limits
is also called ergodicity breaking. Depending on the lattice structure there can be further
different cases, for details see e.g. [G].

e Let T be the time of extinction of the epidemic on a finite lattice of size L. It can be shown
that, starting from a positive density of infected sites, as L — 0o

E(T) xlogL , forA <\,
E(T) x L* , forA= ). withsomea«a >0,
E(T) eCL , for A > )\, withsome C > 0. (2.8)

Furthermore, for A > A, one has convergence of 7//E(7') — Exp(1) to an exponential
random variable in the limit L — oco. This phenomenon is known as metastability, i.e.
the process converges to a metastable distribution and is apparently in equilibrium before
it reaches the absorbing state 0 by fluctuations on a much longer timescale. In general, the
transitions between metastable states are Markovian in the limit of large systems, enabling
an effective description on a highly reduced state space.

Graphical construction.
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Definition 2.2 The (linear) voter model (VM) is an IPS with rates

cnn") = dya (n(fv) (1=mn(y) + (1 - n(ﬂf))n(y)) forallz € A (2.9)

Y~z

n(z) = 0, 1 are interpreted as two opinions, and x adopts the opinion of y independently at rate
(z,y» in short

1,0, £4 0,0, and 0,1, 2% 1,1,. (2.10)
Properties.

e The linear VM is symmetric under relabelling opinions 0 <> 1 and is dual to a system of
coalescing random walkers, which can be seen from the graphical construction in reversed
time (see below).

e The VM is not ergodic and has two absorbing states 7 = 0, 1 (all of the same opinion). It is
therefore also not ergodic (even on finite lattices), and

t—o0

w(t) — adp+ (1 — )y where « € [0,1] depends on the initial conditiog®s11)

Eventually only one opinion will survive, and the r.h.s. denotes all stationary distributions
of the finite process.

e For inifinite A there may be other stationary distributions 7* on {0, 1}** with p = Er«(n(z)) €
(0, 1) where both opinions persist.

e There are many generalizations of the linear VM, including non-linear majority rules or
models with more than two opinions such as the Axelrod model.

Graphical construction.
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Definition 2.3 The exclusion process (EP) is an IPS with rates
c(n,n™) = qzyn(x) (1 — n(y)) forall z,y € A . (2.12)
So particles (7(z) = 1) jump to empty sites (7(y) = 0) independently with rate g, ,, in short
1,0, £4 0,1, . (2.13)

For A C Z% and Gzy = q > 0 only if x ~ y (spatially homogeneous nearest neighbour jumps)
the EP is called simple (SEP). If in addition ¢, , = gy, for all x,y € A it is called symmetric
(SSEP), otherwise asymmetric (ASEP). If d = 1 and g, ,, = q0,41,y it is called fotally asymmetric
(TASEP).

Properties.

e The EP conserves the number of particles and is therefore not irreducible on the state space
S = {0,1}". On the subspaces

SN:{n;Zn(x):N} for N=0,...,L (2.14)
TEA

the EP is irreducible and ergodic with a unique stationary distribution 7r*L7 N-
For the SEP it can be shown that 7r*L’ N=1/ ( ﬁ,) is uniform on all possible configurations.

e Of particular importance for systems with a conserved quantity is the corresponding station-

ary current
Jay = EWEJ\, (6(777 77”)) = dqzy ]ETFEJV (77(33)(1 - 77(3/))) . (2.15)
For the SEP we have
N N -1
ey =g —~(1— 7) 1- 2.1
Jry qL( 1) *rd=p) (2.16)

in the thermodynamic limit L, N — oo, such that N/L — p € [0, 1].
In general, in this limit stationary probabilities and correlation functions factorize, i.e.

* N N —n

— p" forallfixedne N. (2.17)

So 77}y converges locally to the product measure v, on {0, 1}Zd under which the 7(x) are
iid Be(p) random variables.

e The ASEP is one of the most studied so-called driven diffusive systems in non-equilibrium
statistical mechanics and has various connections to many other models, such as surface
growth, directed percolation or random polymer models.
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Graphical construction.

General properties of the time evolution of IPS.

Let us focus on IPS with flip dynamics such as CP and VM, transport systems like the EP can be
treated analogously. Due to the local dynamics, the master equation of an IPS with state space
S = {0,1}* can be written as

d

%ﬂ'n(t) = Z (ﬂnx (t) c(n®,m) — my(t) c(n, 77””)) foralln € S. (2.18)

zEA

This is the coordinate form of the general vector equation %w(t) = 7(t)G, and the r.h.s. provides
a compact notation for the generator GG with intuitive gain and loss terms. Due to the fact that only
one site can flip at a time, most of the entries of GG are 0.

To get an equation for the time evolution of an observable f : S — R, we note that

En(f) =Y m(t) f(n) = =(t) o f (2.19)

nes
can be written as a scalar product. Using the master equation we get

4
dt
When acting on the observable f (column vector) rather than the distribution 7r(¢) (row vector)

one often also writes £ for the generator of the process as an operator on observables. The action
on f leads to another function £ f (column vector) and takes a particularly simple form:

(LHm) =Y cln) () = Fn)) @21)

TEA

Er(f) = (7(t)G) o f = 7(t) o (G f) = Er(1) (G f) - (2.20)

which can be interpreted as a discrete derivative of the function f under the dynamics of the pro-
cess. There is a fully developed mathematical theory of generators and corresponding semigroups
for stochastic particle systems, see [G] and references therein for details.
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Example. (opinions in the linear VM)

For a general continuous-time Markov chain on a state space .S with jump rates g;; as introduced
in Section 1, the generator is given by

LrG) = gi(fG) - fG4), i€Ss, (2.22)
jes
for all functions f : S — R. Like the master equation, this also has an intuitive interpretation as

a ’discrete derivative’ describing the change of f under all possible jumps out of state ¢ weighted
by the jump rates.

Further (non-examinable) remarks:

For infinite lattices such as A = Z the state space S = {0, 1}" is not countable and therefore
the process (1, : t > 0) is not a Markov chain and the master equation becomes meaningless.
Still, the dynamics can be defined via the generator £ and equation (2.20) for a suitably large set
of observables f : S — R (usually continuous functions). The generator (2.21) is a well defined
convergent sum for /local functions f that depend on 7 only through a finite set of coordinates in
A, such as f(n) = n(z). In the ||.||s-norm, any continuous function can be written as a limit of
such functions.

Very important in this context is the fact that S is a compact set, since it is the countable product of
compact sets {0, 1} (Tychonoff’s theorem). This also implies that the set of probability measures
M;(S) on S is compact, and therefore 7r(¢) has a subsequential limit as ¢ — oo. It is easy to
see that any such limit has to be a stationary distribution, which implies existence of the latter for
general IPS with compact state space. Such processes are also called Feller processes.
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2.2 The Ising model and Markov chain Monte Carlo

The Ising model is a very basic model for magnetic behaviour from Statistical Mechanics. The
state space is given by S = {—1,1}" and configurations are denoted by o = (0, : © € A),
consisting of spin variables 0, = 41 interacting on a lattice (or graph) A. The interaction is
defined by an energy function (or Hamiltonian) H : S — R, and the equilibrium distribution of
the spins is given by
(o) = %e_BH (@) where Z = %e—ﬁh’ (o) (2.23)
g

is the normalizing constant called partition function. 8 > 0 is interpreted of the inverse tempera-
ture in the system, and for

8 — o0 very low temperature = 7 concentrates on lowest energy configurations ,

8—0 very high temperature =- 7 becomes uniform (energy irrelevant) .

The Hamiltonian for the Ising model is given by

H(o) ==Y Juyo(z)o(y) (2.24)

RIS

where the coupling constants J,, determine the interaction of the spins on the graph A. The
classical situation is to consider a regular lattice A C 7% with nearest neighbour interaction

_J1l, e~y
oy = { 0 , otherwise (2.25)

Since J,,, > 0 neighbouring spins favour to lign up and tend towards a ferromagnetic behaviour.

Limit (accumulation) points of the sequence 7m(c) = ma(c) (2.23) as A * Z¢ are called
Gibbs measures. They are probability distributions on {—1, 1}Zd, and by general compactness
arguments there exists at least one such measure for all 5 > 0. The Ising model exhibits a spin-flip
symmetry, i.e. since H (o) = H(—o) flipped spin configurations have the same probability. For
all 8 > 0 the model has two ground states o(x) = +1 for all z € A which have lowest energy
(highest probability). The set of Gibbs measures has to exhibit the same symmetry, and does this
in two different ways:

In dimensions d > 2 there exists a critical Temperature T, = 1/ 3. such that
o for § < f3. (high temperature) there exists only one Gibbs measure 7 with E;(o(z)) = 0;

e for 3 > [3. (small temperature) there exist two Gibbs measures 7+ and 7~, such that
E,+(o(x)) = £ms # 0. The system is said to exhibit spontaneous symmetry breaking
with spontaneous magnetization m* # 0. In general, non-uniqueness of the Gibbs measure
is called a phase transition.

Picture.
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The physical validity of Gibbs measures can be postulated from general principles of equipar-
tition of energy in equilibrium systems without referring to any dynamics. The goal is now to
compute expected values w.r.t. (2.23) for finite large lattices, which is not a simple task since the
o(x) are correlated due to the interaction in the Hamiltonian, and the the size of the state space
|S| = 2 is huge even for moderate lattice sizes L = 100. The trick is to invent an artificial
Markov chain (o, : t > 0) (often also done in discrete time) with stationary distribution 7, and
use the Ergodic Theorem to sample from 7. This method is called Markov chain Monte Carlo,
and the conditions on (o : t > 0) usually imposed are the following:

e it should be ergodic, i.e. irreducible on .S (which is large, but finite)

e it should be reversible w.r.t. , i.e. the rates ¢(o, o’) fulfill the detailed balance relations
c(o,0")e PO = (o’ 0)e PR forallo, o’ € S . (2.26)

In fact, stationarity would be enough, but reversibility is easier to implement via detailed
balance.

To ensure both conditions, one usually restricts to local (spin flip) dyanmics analogous to
stochastic particle systems, where only single spins are flipped o — o® with rates ¢(o, o). The
most basic choices are

¢ the heat bath algorithm, with

BH (o)

C(o’, Ux) = eBH(0) 1 BH(0™) € (0, 1) ) (2.27)

where the system is sampled at rate 1 and proposed flips are accepted with probability
c¢(o,0"). This can be motivated on physical grounds (coupling to a heat bath), but has the
disadvantage that the sampling rate is higher than necessary and acceptance probabilities
are typically < 1.

o the Metropolis algorithm, with

—B(H(c%)—H(0)) if H(o®) > H

. e , if H(c") > H(o)
pu— 1 2.2
c(o,0") { 1 ,if H(0®) < H(o) € (0,1], (2.28)
i.e. the system is sampled at rate 1 and whenever a proposed flip does not increase the
energy it is accepted with probability 1, otherwise with probability < 1. Therefore, imple-
mentations of this algorithm are in general faster than the heat bath algorithm.

There are more involved non-local dynamics where whole clusters of spins are flipped such as
the Swendsen-Wang algorithm,which are much faster than either of the above when the system is
close to a phase transition.

Due to the phase transition and spontaneous symmetry breaking for 8 > 3. the MCMC dynamics
will exhibit ergodicity breaking in the limit L — oo and converge to a mixture of the two Gibbs
measures which depends on the boundary conditions imposed or the initial condition.
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3 Processes with continuous state space

3.1 General properties and Brownian motion

This chapter is about processes with continuous state space S = R or R? and continuous time
T = [0, 00). This is mathematically more complicated than Markov chains, and we will discuss
some of the technical issues below. On the other hand, the sample paths are now real valued
functions, our state space has an analytic structure and we will be able to use concepts from usual
calculus.

For example we will often integrate over sets A € R of possible values with respect to the
distribution function F'(z) = P(X < x) of a random variable X, e.g.

IP’(XGA)—/

dF(x) = / f(x)dx where f = F’ is the pdf (if it exists) . 3.1
A A

Technical side remark: This cannot be done for all sets A C R but only for A € A, where
A C P(R) is a so-called o-algebra. This is a set of measurable sets where the measure dF'(x) or

Lebesgue measure dzx can be consistently defined on.

Example. (’Delta-function’)

Characterization of processes on R.
As for Markov chains, the distributional properties of a general stochastic process are deter-
mined by fixing all finite-dimensional distributions (fdds)

P(Xy, <z1,...,Xy, <) forallty <...<tp, 21,...,2, € Randn e N. (3.2)

We focus here on the state space S = R where the fdds are given by joint distribution functions F'
as above, in principle this can be extended to more general state spaces.

In contrast to Markov chains, for continuous state space the fdds do not determine the process
uniquely. Two processes with the same fdds are called versions of each other, and their sample
paths can have very different properties. This fact cannot be ignored, since it is very important
when studying properties such as first-passage times (first random time to enter a given set). One
is usually interested in the most regular version of the process (in order to avoid complications)
and there are basically two classes of processes that are usually considered.
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o Diffusion processes have continuous sample paths, i.e. almost surely the function ¢ — X4 is
continuous or P({w : ¢ — X;(w) is continuous}) = 1.
The most basic example is Brownian motion introduced below.

e More generally, if one wants to allow for discontinuities in the sample paths (such as Lévy
processes or as a special case also continuous time Markov chains), one restricts to the
following class of paths:

Definition 3.1 A real-valued, continuous-time process X is called cadlag if almost surely, its
sample paths are right continuous (continue a droite) and have left limits (limite a gauche), i.e.

lim X, = X; and lim X, exists, forallt e [0,00) . (3.3)
s\t st

Example. (Lévy/Poisson process)

Description of the dynamics.
The transition probabilities of a Markov chain can also be generalized.

Definition 3.2 Let X be a stochastic process on R. The conditional distribution function
F(t,z|s,y) = P(X; < z|Xs =), (3.4
is called the transition kernel of X. If it has a density we call this the transition density,
OF
f(t,.ZE‘S,y) = %(t,idS,y) . (35)

Note that for a homogeneous process, the kernel is actually only a function of £ — s and it suffices to
study f(¢,x|0,y). In analogy to Markov chains we then have the Chapman-Kolmogorov equation

ft+s,2]0,y) = / f(t,2|0,y) f(s,2|0,2)dz forallz,y € R, t,s >0. (3.6)
R

Again, this implies that the process can be generated by a single operator, the generator £ which
we will derive below for several processes.

Proposition 3.1 The fdds of a Markov process are uniquely determined by the transition kernels
and the initial distribution (density) f(0, ). In particular, the distribution at time t is given by

f(t,x) = /R £(t.210,) £(0, ) dy . 3.7
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Proof. Sample calculation for 0 < ¢; < t5 with densities using the Markov property,

T2 1 [ee]
P(X,, < 21, X1y < 2) = / / / F0,2) £(t1,910,2) f(t, 2|t1, y) d dy d= .

Example.

Definition 3.3 A real-valued stochastic process B = (B : t > 0) is called standard Brownian
motion (BM) or Wiener process if

o BQ =0
e it has stationary, independent increments, i.e. for all s, > 0

Bsy — B is distributed like B, — By and independent of (B, : u < s) ;

e forallt > 0, B(t) ~ N(0,t) is Gaussian;
e almost surely, sample paths ¢ — B(t) are continuous.

Theorem 3.2 (Wiener, 1923)

Brownian motion exists, i.e. there exists a (unique) probability measure VV on the space of con-
tinuous paths C ([O, 00), R) (called the Wiener measure), such that the process with sample paths
distributed according to VW has the properties of Brownian motion as defined above.

Proof. see e.g. [MP], Section 1.1

Remarks.

e If B is a standard BM then (0B; + ;¢ > 0) is a BM starting in x € R with diffusion
coefficient o > 0.

e Since increments are stationary, B, — B ~ B;_s ~ N(0,t—s) forall t > s > 0, and since
they are also independent, B;|p,—, ~ N(y,t — s), so the transition kernel for BM is

_ 1 (z —y)?
f(t zls,y) = m exp ( - m) . (3.8)
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e f(t,z|0,y) is also known as the heat kernel, since it is the fundamental solution of the heat
equation (or diffusion equation)

0 19° L .
af(t,a:) = Q@f(t’x) with initial condition  f(0,2) = 0, (z) . (3.9)

The heat equation is therefore the analogue of the forward or master equation for Markov
chains in the case of Brownian motion.

Proposition 3.3 Let B be a standard BM. For all t,, ..., t,, n € N
(Btys.-.,Bi,) ~N(0,X) with o0;; =min{t;,t;}, (3.10)

i.e. the fdds for BM are multivariate Gaussian with zero mean and covariance matrix ¥ = (04j); ;.
Conversely, if X is a Gaussian process with continuous paths, mean 0 and covariance function
o(s,t) = min{s,t}, then X is a standard BM.

Definition 3.4 A process X with Gaussian fdds is called Gaussian processes, and it is character-
ized by the mean m(t) = E(X}) and covariance function o(s,t) = cov(Xs, X3).

In general, multivariate Gaussians are uniquely defined by their mean and covariance, see Hand-
out 3 for more details.

Proof. For standard BM B; ~ N (0, ¢) and it suffices to show that cov(Bs, B;) = min{s, t}. Take
s < t, then

E(BsB;) = E(B? + By(B; — B,)) = E(B?) +0, (3.11)

since B has independent increments and E(Bs) = 0. Thus cov(Bs, B;) = var(Bs) = s. On
the other hand, for a Gaussian process X with covariances o(s,t) = min{s, ¢} we have for ¢t > s
andall u < s

E((X; — X)X,) = E(X; X,) —E(X,X,) =u—-u=0, (3.12)

so the increments X; — X are uncorrelated with (X, : u < s). So the joint distribution of X; — X
and X, is multivariate Gaussian with vanishing covariances, so they are in fact independent.
(Note that in general uncorrelated rvs could still be dependent, only for Gaussian rvs these con-
cepts are equivalent, since they are fully characterized by their means and covariances.)

Finally, X; — X is Gaussian with mean 0 and variance (for s < t)

var(Xy — X) = var(Xy) + var(X;) — 2cov(Xy, Xg) =t +s—2s=t—s, (3.13)

so the increments are also stationary. |
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3.2 Brownian motion and random walk

From (3.9) we can identify the Laplacian as the generator of a standard BM (B, : t > 0). Let
g € C%(R) be an observable, such as g(x) = . Then the expected value at time ¢ is given by

B(9(B) = [ gla) f(t.2)da, (3.14)

R
where f(t,z) is the Gaussian pdf of B; solving (3.9) with f(0,z) = do(z). Using this we get

d of(t,x 1 0? , L
GElo8)) = [ o) 20D a0 [ o) T 4o -
_ 1 [ &Pg(=)

2 R 8562

This follows from twice ingetrating by parts, using that for k£ = 0, 1, 2 products of derivatives

ft,x)de = %E(g”(Bt)) =E((Lg)(B)) - (3.15)

O Fg(x)OF f(t,x) — 0 as|z| — oo fast enough, (3.16)

so that we can ignore boundary terms. This is true for all observables g that have finite expectation
E(g(B)) since the f(t,z) have of course Gaussian tail in « for fixed ¢. Therefore standard BM
can be characterized as a process on R with generator
10?2 . 1,

=5p0 e (Lg)(x) = 59 () forallz e R, (3.17)
and By = 0. Note that as for IPS, the generator is an operator with a certain domain of definition,
which for the Laplacian are the twice differentiable functions C?(RR). Knowing the time evolution
of those, one can define it for more general observables g : R — R through approximation.

L

Definition 3.5 A jump process (X; : t > 0) with jump rate (density) g(z,y) is a real-valued
process defined by the generator

[e.@]
(o)) = [ ate.n)(av) - o(@) dy
—0oQ
forall g : R — R such that [, [g(z)|dz < oo. The total jump rate has to be uniformly bounded,
ie.
oo
/ g(z,y)dy < C < oo forall zeR, (3.18)
—0o0

for the dynamnics to be well defined.

The jump process jumps from z to the interval [y, y + dy) with rate ¢(z, y) dy > 0. The evolution
equation corresponding to the master equation (sometimes called Kolmogorov-Feller equation) is

5 1) = [ (atwe) ) o) f0,2)) . (.19)
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A special case is the compound Poisson process where ¢(x,y) is only a function of y — x, and
we write ¢(y — ) = Ap(y — ). Here A > 0 is the rate of a Poisson process (N (t) : t > 0) setting
the time scale, p : R — [0, 1] is the distribution of i.i.d. increments Y7, Y, ... € R and the process
can be written as the sum

®)
Xt) =) Y. (3.20)
=1

Note that continuous-time Markov chains are included in this class as a limiting (degenerate) case,
e.g. for the usual Poisson process we have ¢(z,y) = Ad1(y — x) and all increments are Y; = +1.

Proposition 3.4 Scaling to BM
Let (Xy : t > 0) be a jump process with translation invariant rates q(y — x) which have

mean zero, i.e. / qly—x)(y —xz)dy = / q(2)zdz =0,
R R

finite variance, i.e. o? = / q(2) 2% dz < oo . (3.21)
R

Then the rescaled process (X; : t € [0,T]) with X{ = eX; Je2 converges in distribution as € — 0
to a BM (B : t € [0, T)) with generator L = £5>82, for all T > 0.

Proof. Since the process X is speeded up by a factor 1/€2, its generator is given by

(£9)@) = 5 [ ale)(glo+ ) - g(a) = =
R
1 2

=5 /R a(z)(e29'(@) + 322 6" (@) + O() ) dz > T (@), (3:22)

where we used (3.21). This holds for all g € C*(R) with [, |g(z)| dz < cc.
An additional argument is required to show that limiting sample paths are a.s. continuous (tight-
ness on pathspace), which requires restriction to finite time intervals [0, T]. O

If the mean p := [, 2 q(2) dz # 0, the same holds for

Xi = eXye2 — pt/e  with o? = /(z — u)?q(z)dz . (3.23)
R

Example. Let (X; : ¢ > 0) be a continuous-time symmetric random walk on Z with generator

-. -' -. '. .. ‘. 1
1 1
G Loyl _1 1 21 =34, (3.24)
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which is proportional to the discrete Laplacian A. Then it is not surprising that the limit is given
by BM with generator %%

However, BM is the unversal scaling limit for a huge class of processes with finite variance of
jumps, and plays a similar role as the Gaussian distribution in the central limit theorem (CLT).
Only if the jumps have heavy tails with 02> = oo or the process is non-Markovian with non-
exponential waiting time distributions ( (N(t) : ¢t > 0) is a so-called renewal process) then
different scaling limits are possible which are discussed in a later section. There is a famous

convergence result analogous to the above also for discrete-time random walks.

Theorem 3.5 Donsker’s invariance principle
Let (X,, : n € N) be a sequence of iid random variables with E(X,,) = 0 and var(X,) = 1 and
consider the random walk

(Sp:n€N) with S, =Y X;. (3.25)
k=0

Then the rescaled, continuous-time extention

1
—5
o

converges in distribution as n — oo to a standard BM (By : t € [0, 1)).

(S :te0,1]) with S = (3.26)

Proof. As before, convergence to continuous paths can be shown and requires restriction to times
in [0, 1] or any other finite time interval (for details see e.g. [MP], Section 5.3.3).

We will identify BM in the limit as a Gaussian process with covariances cov(Bs, By) = min{s, t}.
First we can write

|nt|
Sf—\/mtJ\/iZXk%\fN(O 1) asn— oo (3.27)

by the usual CLT. Therefore, B; := lim,, o S§* ~ N(0,¢) for all ¢ € [0, 1]. Now we compute the
covariances for 0 < s <t < 1:

Ins|  ns) Lt
Bspsy) = hm 1B( S x (X 3 x))-
k=0 1=0 I=|ns|+1
~ lim ( EXX)+E(S X X ):s, (3.28)
nmeen k,l:o\__‘;—l’ k=0 kl:LnsJ+1 l

=O0k,1

where the second expectation vanishes since all increments X, are independent with mean 0. O.

Obviously, the above focus on standardized increments X}, is no restriction, if they have mean u
and variance o2 the statement holds with

[ nt]

1 =R Xy —
S WZ LA (3.29)
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In summary, processes with mean zero and finite variance increments universally scale to
Brownian motion under the diffusive scaling

Atoce, 1/n, Az oce 1/nfl orsimply |Az o (At)H with H =1/2|. (3.30)

Regularity properties of BM sample paths.
For the increments of Brownian motion we have

Biin — B, =VhN(0,1) ~ N(0,h) =0 ash—0. (3.31)
This is consistent with Brownian sample paths being continuous (and more precisely, Holder con-
tinuous with index H = 1/2). But they are nowhere differentiable, since
Biin — By _ o
h Vh
Note that Brownian motion is invariant under diffusive rescaling and therefore self-similar with
Hurst exponent H = 1/2, i.e.

¢ hasnolimitash — 0. (3.32)

(By :t>0)~X(B;:t>0) forallA>0, with H =1/2. (3.33)
To formally differentiate Browian motion, define for each fixed h > 0
By, — B
= % ~ N(0,1/h) forallt >0, (3.34)

which is a stationary Gaussian process with mean 0. The covariances are, e.g. for s < ¢

1
E(¢hel) = ﬁE (Bs+hBt+h + BsBy — BsByyp, — Bs+hBt> =

—is—l—h—i—s—s— s+h ,t>s+h B 0 ,t>s+h
T R2 t ,t<s+h Tl t<s+h
The same can be done for s > ¢ and leads to the following picture and definition.

Definition 3.6 The non-existing limit process (£; : t > 0) with & = limy,_, & is called white
noise, and can be interpreted as a stationary Gaussian process with mean 0 and covariance ’func-
tion” cov(&s&) = 0(t — s).
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3.3 Diffusion processes and Fokker-Planck equations

Definition 3.7 A Markov process X is called a diffusion process, if it has a.s. continuous sample
paths and as h ™\, 0

E(Xpon — X | Xe =2) = a(t,z)h+o(h) ,
E((Xipn — Xo)? | Xe =) = b(t,z) h+o(h), (3.35)

for some functions a(t, z) € R (drift coefficient) and b(t, x) > 0 (diffusion coefficient).
The distributional properties are uniquely characterized by the drift and the diffusion coefficient.

Theorem 3.6 Let X be a diffusion process with drift a(t, x) and diffusion coefficient b(t, x). Then
the transition density f = f(t,xz|s,y) exists and satisfies the (forward) Fokker-Planck equation

d o 0
L= D alt ) £) g g (0002) £) (330)

forall0 < s <t x,y € R. In particular, this equation holds also for the density

ft.a) = [ £(t.010.9) 10.5)dy (3.37)
with general initial conditions f(0,y).
Proof. by Taylor expansion for observables (see hand-out 6 if you are interested).

Examples. (BM with drift, OU process)

Stationary pdfs f*(x) of a time-homogeneous diffusion process with constant drift a(z) and
diffusion b(x) are given by stationary solutions to (3.36), i.e.

0 . 19? ;
0= —%(a(x) f (x)) + 5@(6)(@ f (m)) . (3.38)
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Integrating (3.38) and denoting the derivative by ' we get under mild regularity assumptions on
a(z) and b(x) (see also later remarks)

0=~ [ Gwro)ars [ 00 rw) -

—0oQ —0o0
1
= —a(x) f*(z) + i(b(x) f*(x))/ (4-const.) (3.39)
Under the assumption that f*(x) vanishes sufficiently fast as z — —oo we can ignore the bound-
ary terms and the above constant vanishes. If we consider processes on other state spaces, such as
S = [0, 1] with boundary conditions, this has to be taken into account in the derivation. The above

is a first order linear differential equation and differentiating with the product rule we get

_ 2a(x) — b (x)

[ () 10 [ (). (3.40)
So the solution is
f(z) = f*(0) exp </Om W dy) (3.41)

where f*(0) is fixed by normalization [, f*(z) da = 1.

Examples. (BM with drift, OU process)

For solutions of Fokker-Planck equations in various cases (including time-dependent ones) see
[Ga], Chapter 5.
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Time evolution of observables.
Let (X; : t > 0) be a diffusion process on S = R, the Fokker-Planck equation is often written in
the short form % f=L"f, withthe (adjoint) generator

* 9 1 0?
(L f)(t, ) = —%(a(t, z) f) + iw(b(t,x) f) - (3.42)
Let g : S — R be an observable, such as g(z) = x. Then the expected value
B(9(X0) = | g(e) f(t.2) da (343)

obeys the following evolution equation (using the notation (3.42)),

SE(s(x) = [ o) LD tr = [ ) (£ it s -

= [ (Ca)ta) 5t do = E((£0)(X0) (3.44)

This follows from integration by parts, since
O (au(t,2) £(t, %)) da = 0 (t,2) f(t, 2)d 3.45
[ a0 (st st x0)do = = [ (G000t a) £t ) (.45)

where we again assume that f(¢,z) — 0 as |z| — oo sufficiently fast, so that we can ignore the
boundary terms. For the diffusion part this can be done twice and leads to the generator

2

o 1 0

Examples.
The time evolution of the mean m; = E(X;) is given by choosing g(x) = x and computing
Lz = a(t, z), which gives
d
B = E(a(t, X)) - (3.47)
This is not very surprising when looking at the definition 3.7 of diffusion processes. For the second
moment with g(z) = 22 we get Lo? = 2za(t,x) + b(t, r) and thus
d
aE(Xf) =2E(X; a(t, X;)) + E(b(t, Xy)) (3.48)
so the drift also influences the time evolution of higher moments.

(OU process)
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3.4 Beyond diffusion

Lévy processes

Definition 3.8 A Lévy process (X : t > 0) is a cadlag Markov process with stationary, indepen-
dent increments.

Since each increment X_ X, = Zzzl (X ot — X M) can be written as an arbitrary sum of
i.i.d. increments, their distribution has to be inﬁnitel):l divisible, i.e. a stable distribution such as
Gaussian or Poisson.
By the Lévy-Khintchine representation, a Lévy process can be characterized by a drift a € R, a
diffusion coefficient b > 0 and a measure v on R which describes the jumps of the process. The
generator is given by

X 2 X X
€om) =a5 24 250D 1 [ (ot +2) - o) - 251000 349

v(dz) is the expected number of jumps of X (¢) per unit time of size [z, z+dz) and it has to satisfy

/ v(dz) < oo and / 22 v(dz) < o0, (3.50)
|z|>1 0<|z|<1

i.e. there is a finite number of jumps of size > 1, and a possibly infinite number of small jumps
but with finite variance.

The simplest examples are Brownian motion with a = 0, b < 0, ¥ = 0 and Gaussian increments
which is purely diffusive, and the Poisson process with a = b = 0, v(dz) = Ad1(z) dz, which is a
jump process (see above) with Poisson increments X; — X ~ Poi(\t).

If v(dz) = é{% with C' > 0and 0 < a < 2, large jumps with infinite mean (0 < o < 1)
or infinite variance (1 < a < 2) lead to superdiffusive behaviour. If in addition ¢ = b = 0 the
process is called a-stable symmetric Lévy process or Lévy flight. The evolution for the density
can then be written as space-fractional diffusion equation

of(t,x) 0% f(t,x)

_p, 1) 51
ot Dl 3-51)

with an anomalous diffusion coefficient D, = 2Ca~'T'(1 — «) cos(ra/2) .

The (symmetric) Riesz fractional derivative of order « is defined by its Fourier transform
o0 f
Ozl

Flamh k) = ke F (o)t k) (3.52)
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It also has an integral representation analogous to (3.49), for details see [MFH], Section 3.3. This
process is self-similar with Hurst exponent H = 1/, i.e.

(X :t>0) ~AV%(X;:¢>0) forallA>0. (3.53)

This implies in particular that X; ~ ¢t*/*X; and therefore E(X?) o 2/, , and since o < 2 the
a-stable symmetric Lévy process is superdiffusive. Recall that Brownian motion is self similar
with H = 1/2.

Fractional Brownian motion

Definition 3.9 A fractional Brownian motion (fBM) (B : t > 0) with Hurst index H € (0, 1) is
a mean zero Gaussian process with continuous paths and covariances

1
E(B/ BT = 5(WH + s — |t —s[*), t,s>0. (3.54)
The process has stationary increments, i.e. forallt > s > 0
B — BI ~ BE ~ N(0,(t - s5)*7), (3.55)

but in general they are not independent, and the process is even non-Markovian!

Only for H = 1/2 it reduces to standard BM with covariances E(Btl 2 gl 2) = min{¢, s}.
fBM is self similar with Hurst exponent H, i.e.
(B3 :t>0) ~ X (Bff :t>0) forallA>0, (3.56)

and for H > 1/2 it is super-diffusive resulting from positively correlated increments, whereas for
H < 1/2 it is sub-diffusive with negatively correlated increments.
Analogously to standard BM we can again define the discrete noise process

BH o BH
¢ (h) = % ~ N(0,h?H=2) forallt >0, (3.57)
which is a stationary Gausian process with mean 0. For the covariances we get now as h — 0
1
B¢ (Wef' () = —E(Bi, Bl + BIB!' - BUBlL, - B, BT ) =
1
= (It =s+hP [t —s— P =2t — 52 =
2H(2H — 1)

= T ’t — 5’2H72(h2 + O(h3)> N 2H(2H o 1)“ o S’2(H71) )

Definition 3.10 The non-existing limit process (/7 : ¢ > 0) with & = limy, o &/ () is called
fractional Gaussian noise, and can be interpreted as a stationary Gaussian process with mean 0
and covariance function’ cov(£s&;) = 2H(2H — 1)|t — s|>(=1)_ which exhibits a long-range
power law decay.
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4 Some stochastic calculus

4.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equations. Let X be a diffusion
process in R with drift a(¢, z) and diffusion coefficient b(¢, z) = o2(t, z) given by

E(Xpon — X | Xe =2) = a(t,z)h+o(h) ,
E((Xepn — X0)? | Xe =) = o*(t,z) h+o(h) . (4.1)

2

In general for a random variable Y with mean p and variance 0 we can write

Yy _
Y =p+0& where &= L has mean O and unit variance . 4.2)
g

Also the increments of the process X at time ¢ are random variables with mean and variance
depending on X; and given by

E(Xiyn — Xt | Xi) = a(t, X¢) h+o(h)
var(Xopyn — Xo | X)) = o?(t, Xy) h— a(t, Xi)* h* + o(h) = o*(t, X;) h+ o(h) . (4.3)
Therefore with & 1, = (Xt+h — Xt —a(t, Xy )/\/m we get
Xipn — Xe = a(t, Xe) h+ o (t, Xo) VA& 1y + o(h) - (4.4)
Then
E(Vhé&in) =0 and var(Vhérin) =h, (4.5)

which looks like the increment of a Brownian motion. Indeed, if the process X has independent
increments also the &; ;, are independent and

Ett+h = Z e h(k—1)/n,t+hk/n (4.6)
k=1

can be written as a sum of arbitrarily many independent random variables with mean 0 and variance
1/n. Therefore Vh &t t+h ~ N(0, h) are Gaussian and can thus be interpreted as increments of a
Brownian motion. Now we can write

Xevn — Xe=a(t,Xy) h+ o(t, X¢)(Bgyn — By) + o(h) foraBM B. 4.7

Sending h — 0 we get a differential equation for each path of X, i.e. for fixed w € ). But since
paths of a BM are not differentiable the differential equation is often written as

dXt = (I(t, Xt) dt + O'(t, Xt) dBt . (48)

Definition 4.1 (4.8) is called a stochastic differential equation (SDE) with drift a(t, x) and diffu-
sion o(t, ). Alternatively, in the physics literature you often find

ax,

el a(t, Xt) +o(t, X¢) me (4.9)

and call this a Langevin equation, where 1, = dBy/dt is white noise.
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White noise 7, = dBy/dt can be understood as a normalized random force term on X uncor-
related in time. As we have seen before, it is formally given by a Gaussian process with mean 0
and covariance function cov(t, s) = do(t — s), which makes sense if integrated over time.

As for ordinary differential equations, it is often better to look at the integrated version of
(4.8), since it requires less regularity assumptions.

Definition 4.2 A continuous process X = (X, : t > 0) is a (weak) solution of the SDE (4.8) with
initial distribution y if (there exists a probability space (€2, P) such that)

t t
Xy :X0+/ a(s,Xs)ds—i—/ o(s,Xs)dBs (4.10)
0 0
where (B : t > 0) is a BM and X ~ u. Furthermore, we impose the regularity condition
t
/ (o(s,Xs)* + \b(s,Xs)\)2 <oo P—as. forallt>0, (4.11)
0

for the stochastic integrals to be well defined (see later). The solution is called unique (in law), if
for any two solutions X and X’ with the same initial distribution y we have

(Xp:t>0)~(X;:t>0). (4.12)

So in order to solve SDEs we have to make sense of the two stochastic integrals in (4.10). There
is also the concept of ’strong’ solutions and uniqueness for SDEs defined on a given probability
space, which we do not discuss here.

Let X = (X;:t>0)and Y = (Y; : t > 0) be two continuous processes.

We partition the time interval [0, ¢] such that
O=to<t1 <...<tp,=t with tp —tp_1 —>O0forallk=1,...,n, asn — co(4.13)

Then we would like to approximate the stochastic integral I = (I; : t > 0) by

n t
I' = ZYtk—l(th - Xy, )= LI = / Y;dXs; asn— o0. 4.14)

k=1 0
This is a (particular) Riemann sum approximation of the integrals in (4.10), the simple choice
X; = t yields the first, and X; = B, the second. The general question we investigate in the
following is, for which processes X and Y the approximations converge and in what sense they
converge. Answers turn out to be quite different for the two integrals. But it turns out that the

choice of the time partition is not crucial, so we can arbitrarily choose ¢;, = tk/n to fix ideas.
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4.2 Stochastic integration and It6 calculus

Proposition 4.1 For the integrator Xy = t and continuous integrand Y the limit in (4.14) exists
pathwise for each w € ) and we can define

n—oo

t 1 n
I(w) :/0 Yy(w)ds := lim I"(w) :nli_{goﬁzytkfl(w). (4.15)
k=1

Proof. Usual convergence for the Riemann sum approximations holds for each fixed w since the
total variation of X; = ¢ is finite, i.e.

n
JE&Z | X, (W) — Xy, (w)| =t < oo forallt>0. (4.16)
k=1
Examples.

Theorem 4.2 1t6 integral
LetY be a continuous process and X = B a standard BM. If

t
IE(/ des> < o0 4.17)
0

for some t > 0, then

t n
It = /0 }/s st = nh—{go Iin = nll{go ; mk*l(Btk — Btk—l) (418)
exists in the L?-sense, i.e. for all s < t, E((I" — I,)%) = 0.

If (4.17) holds for all t > 0, then I = (I : t > 0) is a continuous process with E(I;) = 0 and is
called the (stochastic) Ité integral of Y w.r.t. B.

Proof. see e.g. [MP] Chapter 7

How do we calculate It6 integrals? Let’s start with a simple example.
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We see that for the 1t6 integral with o = 0 we get

t
1
/ B,dB, = 5((Bt2 —B)— (t—to)) . (4.19)
to
Another common choice are centred intermediate points with & = 1/2. Here we get
! L o 2
S — t BsdBg = §(Bt - By, (4.20)
0

and this integral is called the Stratonovich integral. The advantage of this choice is that it obeys
the usual rules of calculus and arises naturally in approximations of Brownian motion by smooth
processes. But now dependence of Y7, and the increment X;, — X, | is more complicated, lead-
ing to several technical difficulties compared to Itd. Therefore the preferred choice is usually the
It6 integral, and from this one can recover the Stratonovich version by a simple transformation.
The unexpected term (¢ — to) in (4.19) has to be there, since the result should have vanishing ex-
pectation. These additional terms can be easily understood by the rules of [#6 calculus, introduced
below.
It is often convenient to use the following intuitive differential notation,

t
I = Ito + Y dXs ~ d[t =Y dXt . (421)
to

For example for the integral (4.19) this gives B, dB; = %(dBt2 —dt), leading to the rule

d(B?) = 2B, dB; + dt|. (4.22)

From the above derivation we see that the origin of this chain rule is

(dB;)* = dt or more generally (0dB;)? = o2dt . (4.23)

For a consistent calculus all terms up to order dt have to be taken into account. For usual calculus
this involves only first order expansions, but in stochastic calculus this means going up to second
order.
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To summarize, a diffusion process (X; : ¢ > 0) with generator

1
Lf(@) = a(t, ) 0uf () + 50°(t,2) O [ () (4.24)
and initial condition X solves the SDE
dX; = a(t, Xt) dt + O‘(t, Xt) dB , 4.25)
and is defined implicitly as a solution to the integral equation
t t
X — Xo= / a(s, Xs)ds —I—/ o(s,Xs)dBs . (4.26)
0 0
Proposition 4.3 Ler (X, : t > 0) be a diffusion process with o(t, ) = 0. Then
Xo=EXop) = X;=E(Xy) forallt>0, (4.27)
i.e. the process is deterministic and solves the ODE % = a(t, Xy) .

Proof. Follows directly from the SDE becoming an ODE and uniqueness of the solution for given
initial conditions. U

4.3 Martingales

The theory of martingales is usually presented more generally involving filtrations, a time-dependent
family of o-algebras that represents the knowledge about the process with increasing time. To
avoid such technicalities in the following we choose a not entirely rigorous presentation, which
captures the basic ideas and is based on an intuitive understanding of conditional expectations
(which in complete generality are in fact rather complicated objects).

Definition 4.3 A stochastic process (X; : t > 0) on R is called a martingale if
E(X/|(Xy:0<u<s)) =X, forallt>s>0, (4.28)
and E(|X¢|) < oo forall ¢ > 0.

In particular, for a martingale (X; : t > 0) we have E(X;) = E(Xy) forall ¢ > 0.
Martingales can be interpreted as the capital when playing a *fair game’, where the future expected
capital is equal to the present amount.

Examples. (BM,RW,jump process, fBM)
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Proposition 4.4 The It integral I, = fg Y dBs of a diffusion process (Y; : t > 0) w.r.t. Brown-
ian motion is a martingale.

Proof.

We know from before that for a stochastic process (X; : ¢ > 0) with generator £

%E(f(xa) =E(Lf(X) (4.29)

and therefore forall t > s > 0
B(F(X0) - F(X.)) = / R(Lf(X,)) du = ( / Li(x ) | (430)

where now we can make sense also of the stochastic integral in the last expression. This motivates
a very general result connecting Markov processes with martingales.

Theorem 4.5 Martingale problem
(X : t > 0) is a Markov process with generator L on R if and only if

= F(X) — f(Xo) / LRX @31

is a martingale for all bounded functions f : R — R in the domain of the generator. (Le.
(X : t > 0) solves the martingale problem with operator L.)

Proof. Let (X; : t > 0) be a MP with generator £. Then for all s < ¢ we can write

M = f(X,) - f(Xo) /Ef )du+f(X;) — / Lf(X (4.32)

Therefore, using (4.30)
¢
E(Mf|(Mf:0<u<s)) = MI+E (f(Xt)—f(Xs)Jr/ Lf(X) du) — M. 433)

Also, for bounded functions it can be shown that ]E(]Mtf |) < oo forallt > 0.
On the other hand, if (4.31) is a martingale, this implies

T ety = TE(7(x0) ~B(LF(X) = (434

dt
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for all f, which uniquely identifies £ as the generator of the process. O

For a diffusion process (X; : ¢ > 0), choosing f(z) = z in Theorem 4.5,
t t
M, = X; — Xo — / a(s, Xs)ds = / o(s,Xs)dBs (4.35)
0 0
is a martingale, and it fulfills the SDE dM; = o(t, X;) dB; which depends on X.
Therefore, (X; : ¢ > 0) itself is a martingale if and only if (¢, z) = 0 and it solves the SDE
dXt = O'(t, Xt) dBt .
Note that the integral representation of the SDE

¢ ¢
X —Xo= / a(s, Xs)ds —I—/ o(s,Xs)dBs (4.36)
0 0

provides a decomposition in a (deterministic) drift part and a (fluctuating) martingale part.

Examples. Let (N; : t > 0) be a Poisson process PP()) with generator £ f(z) = A\(f(z + 1) —
f(z)). Then we have with Theorem 4.5

f(z)=x = N;— At isamartingale. (4.37)
For standard Brownian motion with generator £ = %6% we have with Theorem 4.5
f(x)=2 = B itselfis obviously a martingale
f(x)=2*> = B?—t isamartingale. (4.38)
In fact, the reverse is also true and leads to another characterization of BM.

Theorem 4.6 Lévy’s characterization of Brownian motion
A continuous-time process B is a standard Brownian motion if and only if B and (B} —t : t > 0)
are martingales, and it has continuous sample paths with By = (.

Proof. One direction follows from Theorem 4.5, for the other see e.g. [MP], Chapter 2.

Proposition 4.7 Let (X; : t > 0) be a martingale on R with discrete absorbing set A C R.
Let Ty = infy>0{X; € A} be the hitting time of A and assume that P(Ty < o0) = 1 and
E(T4) < oo. Then for

w(a) := lim P(X; =a) foralla€ A, (4.39)
t—o0
(this is called the harmonic measure) we have E(Xo) =) . apn(a).

Proof. Follows directly from E(X;) = E(Xj) for all ¢ > 0 and absorption in A with prob. 1. O

Remarks.

e There is a more general version of this result called optional stopping/sampling, involv-
ing the concept of stopping times T', which are certain random times such as the time of
absorption in a set A. See [K] for more details.

e The above result also holds for continuous sets A where p has to be replaced by a density.

e For continuous martingales defined on an interval [a, b] with absorbing boundary conditions,
this can be used to completely characterize the harmonic measure, i.e. ap(a) + bu(b) = Xo
and u(a) + p(b) = 1 (see homework).
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4.4 Diffusion processes and It6’s formula

Let X be a solution of the SDE
dXt = (I(t, Xt) dt + O'(t, Xt) dBt . (440)

The following very useful result summarizes our findings in Section 4.2 and gives an explicit
formula for time evolution of an observable g(t, X;), which can also have an explicit time depen-
dence.

Theorem 4.8 It6’s formula
Let X be a solution of (4.40) and g € C*(R x R, R). Then
O'2 (t, Xt)

dg(t, Xi) = Oig(t, Xy) dt + Og(t, Xy) dXy + >

D2g(t, Xy) dt (4.41)

or in the (extended) integrated version
t t
g(t, Xy) = g(O,Xg)—i—/ 0g(s, Xs) ds+/ 0.9(s, Xs) o(s, Xs)dBs
0 0
t
+ / (0ug(s, X0 als, X.) + §029(s. X,) 0(5, X,) ) ds (4.42)
0

Proof. Taylor expansion with terms up to order dt, using (4.23) and the Itd chain rule (4.22).
In incremental form this gives (omitting the arguments of a and o)

1
dg(t, X;) = 0yg(t, Xy) dt + 0,9(t, X;) dX; + 3 D2g(t, Xy) (dX3)? + o(dt) =

2
= Bhg(t, X,) dt + Opg(t, X) (adt + o dBy) + % 829(t, X;) dt + o(dt) . (4.43)

|

Let f(¢,x) be the pdf of the process X that solves the SDE (4.40). Taking the expectation on
both sides, we get from It6’s formula for an observable g(X;) using partial integration

GE6C) = [ 9@) 1ty de = [ (Lo fit.)do =

- /R <g’(m)a(t, T) + %g”(x)a%t,x)) flt,z)dr =
2

0 10
= /Rg(m) < — %(a(t,x) f(t,m)) + 5@(02(75,30) f(t,:v)))d:v , (4.44)

since boundary terms and the expected value of the Itd integral vanishes (it is a martingale). This
holds for arbitrary functions g, and therefore we must have

2

) ) 10 .
af(t,x) = —%(a(t,a}) f(t,x)) + 5@(02(75,30) f, x)) =L f(t,x) . (4.45)

Thus f(¢,z) fulfilles the Fokker-Planck equation with adjoint generator £* introduced in (3.42)
and X is a diffusion process with drift a(¢,x) and diffusion o(¢,z). In Section 4.1 we have
derived the opposite statement, so let us summarize both of them.
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Proposition 4.9 X is a diffusion process as defined in Def. 3.7 if and only if it is a solution of the
SDE (4.40) with o%(t,x) = b(t, ).

Remember that the generator £ of a diffusion process introduced in (3.46) is given by
62

o 1
L=alt,z)5 + 502(75,:1;)@ : (4.46)

and describes the time evolution of expected values of observables (3.44). Using £ we can rewrite
It6’s formula

9(X2) = g(Xo) + /0 (Lg)(s, Xs)ds + /0 o(s, X,) dB, . (4.47)

So we see that the time evolution of g(X;) is given by the generator part plus fluctuations in terms
of an It0 integral, which is a martingale with vanishing expected value.

Scaling. Let X = (X, : t > 0) be a diffusion process with generator Lx given by (4.46).

e The space-rescaled process Y with Y; = AX;, A € R is a diffusion process with generator

4 AQ 02(t7 y/)\)

Ly f(y) = Aa(t,y/N)0, f(y) 5

2f(y) (4.48)
Using 1td’s formula for Y; = g(X;) = AX; we get immediately

dY; = AdX; = Aa(t,Y;/N)dt + Ao(t,Y;/N\)dB; . (4.49)

e For the time-rescaled process Y with Y; = Xy; we have d(A\t) = Adt and dB)y; = V\dB;,
and therefore

dY; = dXy = Ma(At,Y;) dt + VAo (M, ;) dB; . (4.50)

So it is a diffusion process with drift Aa(\t, ) and diffusion v/ Ao (M, y).

e For two diffusion processes X and Y we have for the sum Z; = X; + Y3,
dZy = dX+dY; = (ax(t, Xe)+ay (¢, Y2))dt+ (ox (¢, X¢)+oy (¢, Y3))dB; . (4.51)

This is in general NOT a diffusion process, since drift and diffusion depend on X and Y
individually, and cannot necessarily be written as a function of Z alone.
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4.5 Geometric Brownian motion and the Black-Scholes formula
Definition 4.4 Let (B; : t > 0) be a standard BM. Then the process
(Zy:t>0) with Z, = Zoexp(ut + 0By), Zo>0, (4.52)

is a geometric Brownian motion with drift parameter ;i € R and variance parameter o > 0.

Properties.
e Using It6’s formula with g(¢, z) = exp(ut 4+ ox), and using 0;g = pg, 0,9 = og we get

2
dZ, = dg(t, B;) = (u + %)tht Y 0ZidB; . (4.53)

So Z is a diffusion process with drift <,u + %2) z and diffusivity oz.

o2
e Therefore, E(Z;) = Zoe** )" and Z is a martingale if and only if yn = —o2/2.

o If 4 >0 (u <0), Zy — oo (0) with probability 1, since the drift dominates the BM in the
exponent. Soif u = —02/2, Z; — 0 a.s. but E(Z;) = Z .
Even better, if —02/2 < pu < 0 then Z; — 0 a.s. but E(Z;) — oo diverges exponentially!
This is due to very rare trajectories that contribute a huge amount to the mean.

e The log-returns log th—th ~ ph + o(Byyp — By) are independent of (Z5 : 0 < s < ¢) and
have a Gaussian distribution N (ph, o2h) .
Log-returns of stock/commodity prices are indeed often uncorrelated, but are usually not
Gaussian and have heavy tails. Still geometric BM is often used as a standard model...

Definition 4.5 A geometric random walk is a process (S, : n € N) where
Sn=8,_1R, forn=1,2,... where Rj,Ro,...>0 areiidrv, 4.54)

representing the relative change of .S,, (multiplicative noise).

Note that log(S,/So) = > _p_; log Ry, is a standard RW with iid increments log Rj,. Multiplica-
tion with iid relative returns R is used as a simple model for the formation of stock prices. In
an appropriate scaling limit this leads to geometric Brownian motion independent of the actual
distribution of the Ry,.

Proposition 4.10 Assume that Ry, = 1+4&x//n where the &, are iid with E(&y,) = 0 and E(£2) =
o2, Then asn — oo

Sine) = Zy =Pt forallt €0,T], T >0, (4.55)

converges to a geometric BM with ;1 = 0 and variance parameter o>.

Proof. As n — oo we have log Ry, ~ & /+/n and thus

[nt]
log(s\_ntJ/SO) = ﬁ Z &k — 0By (4.56)
k=1
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converges to BM following Donsker’s invariance principle (Thm 3.5). Then for all ¢ € [0, 7] also
SLntj — Spe? Bt O

The Black-Scholes formula.

A call option with strike prize K and expiration time t provides the right to buy one unit of a
security at time t at prize K. Let (Z; : t > 0) be the price of the security, which is modelled as a
geometric Brownian motion with drift parameter ; and variance parameter o2,

The no arbitrage dogma dictates that e~"Z; is a martingale, where r is the base rate of interest

when putting money on a bank account. Therefore, i = r — 02 /2.

Theorem 4.11 Black-Scholes option pricing formula
The ’fair’ price C, i.e. the price with no arbitrage, of the above call option is given by

C=e¢"E((Z— K)") = Zy®(B) — Ke "®( — V1), 4.57)

where 5 = %\/E (rt + %Qt — log ZE()) and ® is the standard normal distribution function.

Proof. The expected profit under exercising the call option at time ¢ is
E((Z: — K)*) where (Z;— K)* =max{0,(Z — K)}, (4.58)

since for Z; < K the option is just not used. Discounted against the base rate, this should be
the price of one call option. Then use that W = e*”% is a log-normal random variable with
logW ~ N(—0?t/2,0%) and do the computation... O
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