## CO906 worksheet 1

## Colm Connaughton

Due: 31-01-11

#### 1 Individual work

#### 1.1 Getting started with the CSC computing environment

This task is just to make sure that everyone can run the example codes and plot the results.

- Download and unpack the tarball worksheet1-Q1.1.tgz from the class website.
- Compile the code and link to the gsl library using the Makefile provided.
- Run the code on the CoW by appropriately modifying the PBS script provided.
- The code produces a file containing plots of the functions erf(t), t erf(t) and  $t^2 erf(t)$ .

The sample code, while performing a trivial task, illustrates a large number of concepts and techniques which will be useful generally:

- Linking functions (in this case, erf) from an external library (in this case, GSL).
- How to split a large code into several files.
- Using make to automate complicated compilation and linking tasks.
- How to submit jobs to the CoW using PBS.
- Reading command line arguments into a code
- Dynamic memory allocation using calloc();
- How to read parameters from an external file.
- How to get a program to time itself.
- Producing output at fixed time intervals even as the time increment varies.

## **Questions**

- (a) Plot the functions erf(t), t erf(t) and  $t^2 erf(t)$  generated by the code using the graphics application of your choice.
- (b) Modify the code to plot any other special (ie not elementary) function of your choice.
- (c) Measure the runtime, R, of the code for dt taking the values  $1 \times 10^{-5}$ ,  $1 \times 10^{-6}$ ,  $1 \times 10^{-7}$ ,  $1 \times 10^{-8}$ . How would you expect R to depend on dt? Plot your measurements in such a way as to make this clear (you should be able to obtain a straight line).

CO906 Worksheet 1

## 1.2 Solving a system of linear equations using the GSL library

Download the sample code worksheet1-Q1.2.tgz from the class website. It demonstrates how to use GSL to solve the  $5\times 5$  linear system

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} A \\ 0 \\ 0 \\ 0 \\ B \end{pmatrix}$$
 (1)

## **Questions**

- (a) Modify the sample code (or write your own code) to solve the corresponding  $N \times N$  problem for  $N = 10^3$ ,  $N = 10^4$  and  $N = 10^5$ .
- (b) For each value of N, plot  $x_n$  as a function of n. From these graphs, can you guess the solution of the linear system for general N (ie write a formula expressing  $x_n$  as a function of A, B, N and n)?
- (c) How is this linear system related to the boundary value problem.

$$\frac{d^2u}{dx^2} = 0 ag{2}$$

on the interval  $[x_L, x_R]$  with the boundary conditions  $u(x_L) = A$ ,  $u(x_R) = B$ ?

## 1.3 Taylor's Theorem

This is just to get some familiarity with Taylor's Theorem.

#### **Questions**

- (a) Write down Taylor's Theorem with the Lagrange form of the error.
- (b) Write down the Taylor expansions in powers of h of the following functions up to and including terms of order  $h^2$ :
  - $\sin(t+h)$
  - $\sin(\frac{1}{2}(t+h)^2)$
  - $\sin\left(\frac{1}{2}t^2 + \lambda h\right)$  where  $\lambda \in \mathbb{R}$
- (c) For the exponential function  $v(t) = e^{\lambda t}$ , find explicitly the value of  $\xi$  in the remainder term of the first order Taylor expansion. Under what conditions can the remainder term be large?

CO906 Worksheet 1

# 2 Group work

#### 2.1 Numerical Error Analysis

Download and unpack the tarball worksheet1-Q2.1.tgz from the class website. The code uses the simple Euler method to solve the equation used as an example in the notes:

$$\frac{d^2v}{dt^2} + 2t\frac{dv}{dt} - \alpha v = 0, (3)$$

for the particular case of  $\alpha=0$ , v(0)=0,  $\frac{dv}{dt}(0)=\frac{2}{\sqrt{\pi}}$ , Eq. (3) has a simple exact solution:

$$v(t) = \text{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-s^2} ds,$$
 (4)

#### Questions

(a) Write Eq. (3) as a 3-dimensional first order system:

$$\frac{d\mathbf{v}}{dt} = \mathbf{G}(\mathbf{v}),\tag{5}$$

where  $\mathbf{v}(t) = (v^{(1)}(t), v^{(2)}(t), v^{(3)}(t)).$ 

- (b) Write down the exact solution,  $\mathbf{v}_{\text{exact}}(t)$ , of this first order system corresponding to the exact solution, Eq. (4), when  $\alpha=0$  (ie write down explicit formulae for the components of the vector  $\mathbf{v}(t)$  as functions of time).
- (c) From numerical explorations, or otherwise, describe how the solution changes when  $\alpha \neq 0$ . Plot some graphs.
- (d) Returning to the case  $\alpha=0$ . Let us denote the numerical solution produced by the code as  $\mathbf{v}_{\mathrm{numerical}}(t)$ . One reasonable measure of the global error in the numerical solution over the interval [0,T] is

$$E(T) = \int_0^T |\mathbf{v}_{\text{numerical}}(\tau) - \mathbf{v}_{\text{exact}}(\tau)| \ d\tau.$$
 (6)

Can you think of any others? We can approximate E(T) by the Riemann sum

$$E(T) = \sum_{i} |\mathbf{v}_{\text{numerical}}(t_i) - \mathbf{v}_{\text{exact}}(t_i)| h.$$
 (7)

Show *empirically* (ie from numerical measurements) that E(T) is proportional to h as  $h \to 0$ .

(e) Modify the code to use the Improved Euler method and show empirically that the global error is then proportional to  $h^2$  as  $h \to 0$ .

CO906 Worksheet 1

## 2.2 Runge-Kutta Methods

Consider the following initial value problem on the interval [0,1]:

$$\frac{d^2v}{dt^2} - (1 + \alpha v^2) v = 0$$

$$v(0) = 0$$

$$\frac{dv}{dt}(0) = 1.$$
(8)

The solution in the linear case,  $\alpha = 0$ , is

$$v(t) = \sinh(t). \tag{9}$$

### **Questions**

- 1. Write down your favourite 3rd order Runge-Kutta algorithm. What is the global error?
- 2. Implement it and use it to solve the initial value problem (8) with  $\alpha = 0$ . Show empirically that the global error behaves as you expect as  $h \to 0$ .
- 3. Solve the nonlinear initial value problem (8) for several values of  $\alpha$  in the range  $0 < \alpha \le 10$ . Plot your results. Do you think they make sense?
- 4. An analytic solution is much harder to write down when  $\alpha > 0$ . Estimate the error using the two-step method and show empirically that the global error behaves as you expect in the nonlinear case as  $h \to 0$ .
- 5. Consider the nonlinear problem with  $\alpha = 10$ . Can you solve the initial value problem over the interval 0 < t < 2?

#### 2.3 Boundary Value Problems

Consider the boundary value problem related to Eq. (8):

$$\frac{d^2v}{dt^2} - (1 + \alpha v^2) v = 0$$

$$v(0) = 0$$

$$v(1) = 1.$$
(10)

The solution in the linear case,  $\alpha = 0$ , is

$$v(t) = \frac{2e \sinh(t)}{e^2 - 1}.$$
 (11)

#### **Questions**

- 1. Using a centred finite difference representation for the derivative, discretise the problem on a set of N equally spaced points. Show that the discrete problem is equivalent to a set of N linear equations. What is the accuracy of your approximation?
- 2. Use your linear solver from Question 1.2 to solve this set of linear equations numerically with  $N=10^2$ ,  $N=10^3$ ,  $N=10^4$  and  $N=10^5$ . Do the resulting solutions look like the true solution, Eq. (11)? Measure the error and comment on how it varies as N is increased.
- 3. Explain why this approach will not work for the nonlinear problem,  $\alpha > 0$ .
- 4. Use your Runge-Kutta algorithm from Question 2.2 to solve the nonlinear problem with  $\alpha=10$  using the shooting method (shoot in the range  $0.25<\frac{dv}{dt}(0)<1.25$ ). Plot your solution and compare it to the solution of the corresponding linear problem.