C0O906 worksheet 2

Colm Connaughton

Due: 12:00 21-02-11

1 Group work

1.1 Solving the diffusion equation using the FTCS scheme

The objective of this exercise is to implement the FTCS scheme to solve the one dimensional
diffusion equation:
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with different boundary conditions and to study the stability properties of the algorithm.

Questions

(a) Show that
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is a solution of Eq. (1). How would you interpret this solution? What role is played by
each of the parameters p, tp and D?

(b) Write the FTCS equations for this equation discretised on N spatial points, zg, z1,...2n-1
with g = —L and zy_; = L, with periodic boundary conditions.

(c) Write a code which implements the FTCS scheme to solve the diffusion equation with
the initial condition given by Eq. (2). Choose your parameters such that the boundaries
of the domain are initially “far away” from the important part of the solution. Quantify
what you mean by “far away”. Choose the timestep, h, such that
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Plot, on the same axes, five snapshots of the solution taken at times chosen appropri-
ately to give a good illustration of the time evolution.

(d) The solution at early times should be close to the exact solution, Eq. (2). Compare the
numerical and analytical solutions qualitatively by plotting them together for several
different times. Explain why the numerical solution deviates from Eq. (2) at later times.

(e) Show empirically that the FTCS algorithm is only conditionally stable and produce nu-
merical evidence to support the stability criterion derived in the lectures.

(f) Verify empirically that the total mass is conserved by measuring
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and plotting it as a function of time.
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(g) Modify your code to implement the Dirichlet and Neumann boundary conditions

v(=L,t) = wv(L,t)=0 (4)
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Compare the early and late time behaviours for each of these boundary conditions to
the periodic case with the same initial condition. Can you give a physical interpretation
of the different boundary conditions in terms of what happens to material diffusing to
the boundaries?

1.2 The Black-Scholes formula

In this exerise we will apply what you have learned about the diffusion equation to solve
the Black-Scholes equation and obtain the Black-Scholes formula numerically using the
Crank-Nicholson method.

Consider a trader operating in an envoronment where the bank interest rate is » and
price fluctuations are described by a geometric brownian motion with volatility cp. Suppose
at some time 7" — ¢, s/he is offered the option to buy an asset currently valued at S at some
fixed time 7T in the future for a fixed price, K. Clearly this option is worth something since
the trader stands to gain if the price at time 7" exceeds K but stands to lose nothing since
s/he is not obliged to buy if the price at time 7' is lower than K. But how much is this
option worth? The answer is provided by the Black-Scholes equation:
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where C(S,t) is the value of the option at time ¢ < 7. This equation must be supplemented
with the “final” condition:

C(S,T) = max{S — K, 0} (7)

and the boundary conditions:
c0,t) = 0 (8)
c(s,t) — S asS — . 9)

Questions
(@) Make an attempt to briefly motivate the boundary and final conditions mentioned above.
(b) Show that the following change of variables:
S
= log— 1
x og % (10)
o= T_—t (11)

converts Eq. (6) into a diffusion equation with advection and source terms:

in which Eq. (7) is converted into an initial condition.
(c) Introduce a new function v(z, 7) defined by
C(x,7) = 7 y(z, 7). (13)



CO906 Worksheet 1

2 T T T T T
t=0.0 — 4
t=0.2 A
t=0.4
t=0.6 -
| 1=0.8
15 t=1.0
g 1
O
05
0 _,..,--."-"-'.;"'
0 0.5

Figure 1: Numerical solution of the Black-Scholes equation.

Show that it is possible to find values of ¢ and b such that v(z, 7) satisfies the standard
diffusion equation
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with the initial condition
v(z,0) = Vy(x) = K max {e(lfa)w — ef‘m,()} . (15)

(d) Modify your code from Q.1.1 to use the Crank-Nicholson method to solve Eq.(1) on
the spatial interval [L;, LoJwith Dirichlet boundary conditions and Gaussian initial data,
Eq. (2).

(e) Demonstrate empirically that the Crank-Nicholson method remains stable even when
5> 3.

(f) Choose L1 = -3, Lo =2,7r=0.109 =12, K =1.25and T = 1.0. Use your code to solve the
option pricing problem, Eq. (14), with the initial data given by Eq. (15) and the Dirichlet
boundary conditions:

U(Ll,t) = %(Ll) (16)
U(Lg,t) = ‘/O(LQ) (17]
(this is only an approximation of the true boundary conditions so you should expect
to get erroneous behaviour when the solution starts to feel the boundaries). When the

solution is converted back into the original variables you should get something like
Fig. 1.

(g) Does the solution make sense? Explore what happens as the volality is varied.
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1.3 Relaxation methods for elliptic equations

Consider Poisson’s equation:
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on the square (z,y) € [-1,1] x [-1, 1]. Take the function p to be
p(x,y) = —9sin(3z) — 4(x? + y?) sin(2zy). (19)
The solution is
sin(3x) + sin(2zy) (20)

Questions
(@) Verify the solution, Eq. (20).

(b) Use the solution to construct the appropriate Dirichlet boundary conditions and im-
plement the Jacobi method for Eq. (18) on a 100 x 100 grid using a relaxation step of
0.2 (Az)2.

(c) Plot the residual (error) as a function of the number of iterations. Characterise its rate
of decrease. Does it converge to zero? Explain.



