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Quantifying uncertainty and correlation in complex systems

Hand-out 1
Characteristic function, Gaussians, LLN, CLT

Let X be a real-valued random variable with PDF fX . The characteristic function (CF) φX(t)
is defined as the Fourier transform of the PDF, i.e.

φX(t) = E
(
eitX

)
=

∫ ∞
−∞

eitxfX(x) dx for all t ∈ R .

As the name suggests, φX uniquely determines (characterizes) the distribution of X and the usual
inversion formula for Fourier transforms holds,

fX(x) =
1

2π

∫ ∞
−∞

e−itxφX(t) dt for all x ∈ R .

By normalization we have φX(0) = 1, and moments can be recovered via

∂k

∂tk
φX(t) = (i)kE(XkeitX) ⇒ E(Xk) = (i)−k ∂

k

∂tk
φX(t)

∣∣
t=0

. (1)

Also, if we add independent random variables X and Y , their characteristic functions multiply,

φX+Y (t) = E
(
eit(X+Y )

)
= φX(t)φY (t) . (2)

Furthermore, for a sequence X1, X2, . . . of real-valued random variables we have

Xn → X in distribution, i.e. fXn(x)→ fX(x) ∀x ∈ R ⇔ φXn(t)→ φX(t) ∀t ∈ R .(3)

A real-valued random variable X ∼ N(µ, σ2) has normal or Gaussian distribution with mean
µ ∈ R and variance σ2 ≥ 0 if its PDF is of the form

fX(x) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

Properties.

• The characteristic function of X ∼ N(µ, σ2) is given by

φX(t) =
1√
2πσ2

∫ ∞
−∞

exp
(
− (x− µ)2

2σ2
+ itx

)
dx = exp

(
iµt− 1

2
σ2t2

)
.

To see this (try it!), you have to complete the squares in the exponent to get

− 1

2σ2
(
x− (itσ2 + µ)

)2 − 1

2
t2σ2 + itµ ,

and then use that the integral over x after re-centering is still normalized.

• This implies that linear combinations of independent Gaussians X1, X2 are Gaussian, i.e.

Xi ∼ N(µi, σ
2
i ), a, b ∈ R ⇒ aX1 + bX2 ∼ N

(
aµ1 + bµ2, a

2σ21 + b2σ22
)
.
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For discrete random variables X taking values in Z with PMF pk = P(X = k) we have

φX(t) = E
(
eitX

)
=
∑
k∈Z

eitkpk for all t ∈ R .

So pk is the inverse Fourier series of the function φX(t), the simplest example is

X ∼ Be(p) ⇒ φX(t) = peit + 1− p .
Note that this is a 2π-periodic function in t, since only two coefficients are non-zero. We will come
back to that later for time-series analysis.

Let X1, X2, . . . be a sequence of iidrv’s with mean µ and variance σ2 and set Sn = X1 + . . .+Xn.
The following two important limit theorems are a direct consequence of the above.

Weak law of large numbers (LLN)

Sn/n→ µ in distribution as n→∞ .

There exists also a strong form of the LLN with almost sure convergence which is harder to prove.

Central limit theorem (CLT)
Sn − µn
σ
√
n
→ N(0, 1) in distribution as n→∞ .

The LLN and CLT imply that for n→∞, Sn ' µn+ σ
√
n ξ with ξ ∼ N(0, 1) .

Proof. With φ(t) = E
(
eitXi

)
we have from (2)

φn(t) := E
(
eitSn/n

)
=
(
φ(t/n)

)n
.

(1) implies the following Taylor expansion of φ around 0:

φ(t/n) = 1 + iµ
t

n
− σ2

2

t2

n2
+ o(t2/n2) ,

of which we only have to use the first order to see that

φn(t) =
(
1 + iµ

t

n
+ o(t/n)

)n
→ eitµ as n→∞ .

By (3) and uniqueness of characteristic functions this implies the LLN.

To show the CLT, set Yi =
Xi − µ
σ

and write S̃n =
n∑
i=1

Yi =
Sn − µn

σ
.

Then, since E(Yi) = 0, the corresponding Taylor expansion (now to second order) leads to

φn(t) := E
(
eitS̃n/

√
n
)
=
(
1− t2

2n
+ o(t2/n)

)n
→ e−t

2/2 as n→∞ ,

which implies the CLT. 2

Related concepts.

• Moment generating function (MGF) MX(t) = E
(
etX

)
Does not necessarily converge, and is in general not invertible (see also inversion of Laplace
transformation).

• Probability generating function (PGF) for discrete random variables X taking values in
{0, 1, . . .} with PMF pk = P(X = k):

GX(s) = E
(
sX
)
=

∞∑
k=0

pks
k


