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Quantifying uncertainty and correlation in complex systems

Hand-out 1
Characteristic function, Gaussians, LLN, CLT

Let X be a real-valued random variable with PDF fx. The characteristic function (CF) ¢x (¢)
is defined as the Fourier transform of the PDF, i.e.

ox(t) = E(eitx) = /00 e fx(z)dr forallt € R.

As the name suggests, ¢x uniquely determines (characterizes) the distribution of X and the usual
inversion formula for Fourier transforms holds,

1 .
Ix(z) / e "px(t)dt forallz € R.

:% .

By normalization we have ¢x (0) = 1, and moments can be recovered via

k . ; N — k
Grox(D) = (P E(XF™) = E(XY) = () frox(t) |- M
Also, if we add independent random variables X and Y, their characteristic functions multiply,
dxqy(t) = E(eit(X+Y>) = ¢x(t) oy (t). (2)

Furthermore, for a sequence X1, Xo, ... of real-valued random variables we have
X, — X indistribution, i.e.  fx, (z) = fx(x)Vz e R & ¢x,(f) = ox(t) Vt € R .(3)

A real-valued random variable X ~ N(u,o?) has normal or Gaussian distribution with mean
1 € R and variance o > 0 if its PDF is of the form

)= e (U0

2mo? 202

Properties.

e The characteristic function of X ~ N(u, 0?) is given by

1 > —p)? 1
ox(t) = W/ exp ( - (xQUQM) + itx) dr = exp (z’ut - 502t2> )

To see this (try it!), you have to complete the squares in the exponent to get

1 1
503 (@ = (it0® + )" = S0 + ity
and then use that the integral over x after re-centering is still normalized.

e This implies that linear combinations of independent Gaussians X1, X9 are Gaussian, i.e.

X; ~ N(,ui,of), a,beR = aX;+0bXy~ N(a,ul + b,ug,azaf + b2a§) .
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For discrete random variables X taking values in Z with PMF p;, = P(X = k) we have

ox(t) =E(e"X) =) eFp, forallt €R.
k€EZ

So py, is the inverse Fourier series of the function ¢ x (), the simplest example is
X ~ Be(p) = ox(t)=pe+1—-p.

Note that this is a 27-periodic function in ¢, since only two coefficients are non-zero. We will come
back to that later for time-series analysis.

Let X, X5, ... be a sequence of iidrv’s with mean x and variance o?andset S, = X1 +...+ X,.
The following two important limit theorems are a direct consequence of the above.

Weak law of large numbers (LLN)
Sp/n — w in distribution as n — oo .

There exists also a strong form of the LLN with almost sure convergence which is harder to prove.

Central limit theorem (CLT)
Sp — un

ov/n
The LLN and CLT imply that for n — oo, S, ~ un+oy/né with &~ N(0,1).

— N(0,1) indistribution as n — oo .

Proof. With ¢(t) = E (&%) we have from (2)
On(t) 1= E(c"5/") = (¢(t/n))" .

(1) implies the following Taylor expansion of ¢ around 0:
ot ot 5, 9
o(t/n) = Ltip— — ?ﬁ‘f‘O(t /n7),
of which we only have to use the first order to see that
t n .
on(t) = (1 +ip— + o(t/n)) — e asn — oo
n

By (3) and uniqueness of characteristic functions this implies the LLN.
n

X; — . - S —
To show the CLT, set Y; = — B and write S, = E Y, = i
g
i—1

g

Then, since E(Y;) = 0, the corresponding Taylor expansion_(now to second order) leads to

& +2
On(t) = E(e”S”/\/ﬁ) = (1 ™ + o(t2/n))n e asn o 00,
n
which implies the CLT. O

Related concepts.

e Moment generating function (MGF) Mx(t) = E(e!¥)
Does not necessarily converge, and is in general not invertible (see also inversion of Laplace
transformation).

e Probability generating function (PGF) for discrete random variables X taking values in
{0,1,...} with PMF p, = P(X = k):

Gx(s) = E(SX) = Zpksk
k=0



