
Scaling, structure functions and all 
that…

S. C. Chapman

Notes for C0907 

•SCALING: Some generic concepts: universality, turbulence, fractals 
and multifractals, stochastic models
•RESCALING PDFS AND STRUCTURE FUNCTIONS
•FINITE LENGTH TIMESERIES, UNCERTAINTIES, EXTREMES-’real 
data’ examples 
•‘BURST’ MEASURES- waiting times, avalanche distributions



Scaling

Some ideas and examples



Scaling and universality-Branches 
on a self-similar tree
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Each branch grows 3 new branches, 1/5 as long as itself..



Segregation/coarsening-
 

a 
selfsimilar

 
dynamics

Courtesy P. Sethna

Rules: each square changes to be like the majority of its neighbours
Coarsening, segregation, selfsimilarity






Solar corona over the solar cycle
SOHO-EIT image of the corona 
at solar minimum and solar maximum
-

 
Magnetic field structure

SOHO-
 

LASCO image 
of the outer corona 
near solar maximum

The solar wind is accelerated at the corona-
 

open question….





‘Fractal –like’
 

patches of magnetic 
polarity on the quiet sun

Patches of opposing polarity –
Zeeman

 
effect photosphere, quiet sun, 

(Stenflo, Nature 2004, See eg Janssen et al A&A 2003, 
Bueno et al Nature 2004+..) - spatial



Power law statistics of flares

Peak flare count rate Lu&Hamilton ApJ 1991
TRACE nanoflare

 
events Parnell&Judd ApJ 2000

-temporal



Solar wind at 1AU power spectra-
 suggests inertial range of (anisotropic MHD) turbulence. 

Multifractal
 

scaling in velocity and magnetic field 
components.. AND something else in B magnitude..

Goldstein and Roberts, POP 1999, See also Tu

 

and Marsch, SSR, 1995



Shown: log-log plots of PSD of 3 day intervals averaged over 1 year
ACE solar max (2000); solar min (2007)
Plotted: |B|, B2 and normalized S=-[B(v.B)-vB2]
Fast v>500kms-1and slow v<450kms-1

Scaling in 
Poynting flux Sx -
dominated by 
coronal signature?



Turbulence

a la Komogorov, intermittency



Turbulence

Dynamics are complex
Statistics are simple
Assume:
Isotropic
Stationary
Homogeneous





Power spectrum, transition from 
3D-2D flow



Intermittent turbulence-topology
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r

velocity difference across an eddy ( ) ( )

eddy time ( ) and energy transfer rate 

have  as the eddy t

Intermittency- 
as a deviation from a space filling cascade (Kolmogorov turbulence)
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Scaling and similarity

Buckingham Π theorem 
(‘dimensional analysis’) of 
systems that show scaling



Similarity in action…



Similarity in action…

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003)



Universality-
 

1 d.o.f.

2

2

2
2

2

2

Pendulum

, sin ,

; sin

( ) 1 cos( ) ~ ...
2

same behaviour at 
 local minimum in ( )

(insensetive to details)

t t

t t

dF mg F mg a l
dt

d g VF ma
dt l

V

any V

θθ

θ θ ω
θ

θθ θ

θ

= = =

∂
= = − = −

∂

= − +

( )V θ



Universality-  many d.o.f.

Keep coarsegraining-
rescaled system ‘looks the same’

 
(selfsimilar), insensitive to details



Similarity and universality
Different systems, same physical model
The same function (suitably normalized) can describe 
them
This function is universal (the details do not matter)
The values of the normalizing parameters are not 
universal
How can we find the physical model (solution)?
Particularly useful in nonlinear systems which are ‘hard’
to solve – i.e. turbulence!
‘Classical’ inertial range turbulence- self similarity, 
intermittency…
Leads to order/control parameters



Competition between order and 
disorder

[ ]
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Rules: random fluctuation plus 'following the neighbours'
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bird model



Low noise-
 

flocking

High noise-
 

random walks

Phase transition-
 

cf
 

linear models for ferromagnets
 

(EW, linear Ising) 
(birds=short range interacting spins + motion)
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System described by ( ... ) where  are the relevant macroscopic variables

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass,

Buckingham  theorem 
p p

M p

F Q Q Q

F Q

R

π

π

1..

 length, time etc.)
there are  distinct dimensionless groups.
Then ( )  is the general solution for this universality class.
To proceed further we need to make some intelligent guesses for (

M

M P R
F C

F
π

π

= −
=

1.. )

See e.g. 
also 

M

Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] 
Longair, Theoretical concepts in physics, Chap 8, CUP [2003]
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1.. 1..

System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass, 

Example: simple (nonlinear) pendulum
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1.. 1..

System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  p

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'
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 (incompressible so energy/mass):

) there are  dimensionless groups

variable dimension description

( ) energy/u

M P R

E k L T −

= −

[ ] [ ]
[ ]

2 3
0

1

3 5

1 2
0

1 1

nit wave no.
         

rate of energy input

wavenumber
3,Step 2: form dimensionless groups: 

Step 3: make some simplifying assumption

2,  so 1
( )

( )  where  is a non u

:

niver

L T

k L
P R M

E k k

F C C

ε

π
ε

π π

−

−

= = =

=

= =
52

3 3
0sal constant, the  ) ~n (: E k kε −



1

1.

System described by ( ... ) where 

Buchingham  theorem (similarity an
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alysis)
universal scaling, anom
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Turbulence and ‘degrees of freedom’

System is driven on one lengthscale (L) and dissipates on another (η) –forward cascade 
Inverse cascade- same thing, just the other way around
System has many degrees of freedom i.e. structures on many lengthscales (eddies here)
System is scaling- structures, processes can be rescaled to ‘look the same on all scales’
These structures transmit some dynamical quantity from one lengthscale to another

that is, over all the d.o.f.
There is conservation of flux of the dynamical quantity- here energy transfer rate
Steady state (not equilibrium) means energy injection rate balances energy 

dissipation rate on the average
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1

Generalize the idea of a Reynolds Number
... a control parameter for the onset of 'disorder'
          
The above is true for other systems 

   (turbulence, burstiness
with:

4, 2 ( , ),  so 2
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Avalanching systems and scaling 
behaviour

Avalanche models: add grains slowly, 
redistribute only if local gradients exceeds a 
critical value

Suggested as a model for bursty transport 
and energy release in plasmas- solar 
corona, magnetotail, edge turbulence in 
tokamaks (L-H), accretion disks

Avalanching systems
•

 

Threshold for avalanching
•

 

Avalanches are much faster than feeding 
rate

•

 

Avalanches on all sizes, no characteristic 
size

•

 

Feeding rate=outflow rate on average only
•

 

System moves through many metastable

 
states-

 

rather than toward an equilibrium
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Step 1:

Step 

 average driving rate per node

system average dissipation/loss
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Avalanche model (Self Organized Criticality and all that...)
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How is SOC different to turbulence? consider...

Intermediate driving (or what happens as we change ~

Suggest two conditions for avalanching transport:
 - takes many timesteps  to make a c

)
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Two runs of the BTW (Bak
 

et al, PRL, [1987]) sandpile
 

box is 
100×100

 
and h=4

 
(•)

 
and 16

 
(X).

Left: raw results; Right: the h=16
 

run is rescaled S→S/16.
h=16 run has same scaling, smaller dynamic range than h=4



Two runs of the BTW (Bak
 

et al, PRL, [1987]) sandpile
Box 100×100, h=4

 
(•); box 400×400

 
and h=16

 
(X).

Left: raw results; Right: the h=16
 

run is rescaled S→S/16.
h=16, 400×400

 
run has same scaling, dynamic range as h=4, 100×100



Quantifying scaling I

Structure functions (c.f. wavelets)
Uncertainties, finite size effects
Link to SDE models (self- affine 

processes)



A regular fractal

Koch snowflake
line length (4 / 3)nl ∼



A random fractal

16 particles-
 

Brownian 
random walk
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Quantifying scaling

r
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structures on many length/timescales. 

look at (time-space) differences:
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1 2

Consider a timeseries ( ) sampled with precision . We construct a  timeseries 
( , ) ( , ) ( ) ( ) so 

( ) ( ) ( , ) and ( , ) is a random variable
then

( ) ( , ) ( , ) ...

x t differenced
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consider CLT case.. 
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Self –affine (‘fractal’) scaling in timeseries

Example-Brownian walk
Fluctuations:

Probability of wandering 
different distances in a 
given time (Gaussian)

( , ) ( ) ( )x t x t x tδ τ τ= + −



Rescale
The height of the peaks is 
power law-

 
a single factor 

rescales them

The same factor 
rescales all the curves-

 α=1/2
Self-similarity



Example-  financial markets

•
 

Mantegna
 

and 
Stanley-

 
Nature ’95

•
 

S+P500 index
•

 
‘heavy tailed’

 distributions



example-  ρ,B2 in the solar wind

slow sw
 

shown, ρ, B2

selfsimilar
 

scaling up to τ~few hrs
WIND 46/98s 
Key Parameters ’95-’98
Approx 10^6 samples
Verified with ACE 
Hnat, SCC et al GRL,2002, POP 2004 

αρ ρτ −→



Example-
 

strong multifractal
 solar wind v,B 

moments 
( )

( ) quadratic in 

m m mS x
m m

ζδ τ
ζ

=< >∼



Diffusion-  random walk
Brownian random walk

 

 is stochastic iid

dx
dt

η

η

= 2

diffusion equation
( , ) ( , )
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P y t D P y t
t

P y t

∂
= ∇

∂
⇒

Renormalization-scaling system looks the same under
1' ,  '  and = ..........which implies ( ', ') ( , )
2

( , ) is Gaussian, the fixed point under RG

t yt y P y t P y t

P y t

α
α α τ

τ τ
= = =

⇒

Note: ( ) is distance
 travelled in interval 

a differenced variable

y t
t τ=

−



Fokker-
 

Planck models
 (see also fractional kinetics and Lévy
 

flights)
Langevin equation

( ) ( )

 stochastic iid 

dx x x
dt

β γ η

η

= +

Fokker- Planck equation
( , ) ( ( ) ( , ) ( ) ( , ))

                      can solve for ( , )
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financial markets and SDE models

•
 

Mantegna
 

and 
Stanley-

 
Nature ’95

•
 

S+P500 index
•

 
‘heavy tailed’

 distributions



The efficient market

dS dX dt
S

σ μ= +

Efficient- arbitrageurs constantly trade to exploit differences in price
As a consequence any price differences are very short lived
The market is a ‘fair game’

Implies
Fluctuations are uncorrelated
Fluctuations aggregate many (N) trades, thus an equilibrium, large N

model implies Gaussian statistics (CLT)
Change in price S, dS in t-t+dt governed by:



Black-Scholes  and all that..

2

Anticipate a Diffusion equation for  -since 

provided we have the self- similar scaling for
 the stochastic variable 
I 
we can write an equation for price evolution
II ( , )
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< >
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( , )
can then write a Taylor expansion for any ( ) using I.
This leads to the B-S SDE for the price of options...
Riskless portfolio ( ) ,  ( ) is an option on stock 
key phenomenology is th

dX B S t dt
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f S S f S Sπ β

+

= +
scat a of ling



Nonlinear F-P model for self similar 
fluctuations-

 
asymptotic result

 (alternative-
 

fractional kinetics)

[ ]

  
If the PDF of fluctuations ( ) ( ) on timescale  is :

( , ) ( )
 is then a solution of a  eq
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Langevin e

er- Planck coefficients
see Hnat, SCC et al. Phys.

quation
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= +

. E (2003), Chapman et al, NPG (2005)



Fokker Planck fit to PDFs

Procedure:
1)

 
Measure exponent

2)
 

Solve FP for PDF functional form
3)

 
Check this fits the observed PDF



Quantifying scaling II

Uncertainties, extreme events, finite size 
effects

Will discuss structure functions but remarks 
relate to other measures of scaling



Quantifying scaling II

Calculating exponents- the 
problems



p

( )

structure functioDefine  (generalized variogram)  for differenced timeseries:

( , ) ( ) ( )
( ) | ( , ) |  if scaling

We would like to ca

n

Structure functions-estimating the ( ) from data

p p
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Conditioning- an estimate is:
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) is quadratic in p (multifractal)- weaker estimate



Theory-data comparisons-
 

examples

2 and 3D MHD simulations
Muller & Biskamp PRL 2000

Fluid experiments,
Anselmet

 
et al, PSS, 2001

KO41

How large can we take p? See eg
 

Dudok De Wit, PRE, 2004



Finite sample effect-
 

Brownian walk and p-
 

model
stationary jumps
Brownian walk

Stationary jumps 
P-model

Growing σ
Brownian walk

Shown-
 

ζ(2) 
from consecutive
intervals, N=105, 106



Non-
 

stationary 
iid

 
steps

Time stationary 
iid

 
steps

Finite sample effect-
 

error on exponent ζ(2) as a function of sample size N

Kiyani, SCC et al, PRE, 2009. See also Dudok De Wit, PRE, 2004

3

5

error on (2) ~
5% error:
Brownian: ~ 10
Levy, p-model ~ 10

N

N
N

γζ −



Structure functions-
 

sensitive to undersampling
 

of largest events 
(example -

 
ρ

 
in slow sw)

( )( , ) ( ) ( ) test for scaling - ( ) | ( , ) |  m m
my t x t x t S y t ζτ τ τ τ τ= + − =< >∝

remove y >10σ(τ)

2 sources  of uncertainty in exponent 
1)

 
Fitting error of lines (error bar estimates)

2)
 

Outliers-
 

Shown: removed < 1% of the data 
ACE  98-01 (4years)-106

 

samples. 
Threshold 450 km/sec.

fractal or multifractal? 2

( ) ~
( ) ~ ...

fractal (self- affine) 
multifractal

p p
p p p

ζ α

ζ α β− +

cf Fogedby et al PRE ‘anomalous diffusion in a box’



Quantifying scaling II

Things we can calculate (to some 
precision with finite datasets)-

Some tricks



Trick

Pose the question such that it is 
(relatively) easy to answer- low 

order moments, values far apart…



Exponents are hard to measure-
 

ask questions 
that don’t need precise measurements!

if the flow is incompressible-  must be a passive scalar-
question- does  have the sa

0

. .

( ) 0

with 0 incompressi

me exponents as 

ble w

B

o

?

fl

DQ Q v Q
Dt t

e g

v v
t t

v
ρ

ρ ρρ ρ

ρ

∂
= + ∇ =
∂

∂ ∂
+ ∇ = = + ∇

∂ ∂
∇ =

i

i i

i

Example:
Bershadskii

 
and Sreenivasan

 
PRL ’04 argued that in MHD turbulence |B| 

is passive scalar..
Appeal to universality in scaling exponents (same physics, same scaling)



Passive scalars comparison
 does not need to be so precise..

1 year ACE data (1998)
Compare ρ

 
with passive scalars:

Conditioned |B| (same dataset), + others
Argued that |B| is passive scalar..
Bershadskii

 
and Sreenivasan

 
PRL ‘04

ρ
 

is not passively advected
with the flow?
Hnat, SCC et al PRL ‘05

Temperature (wind tunnel)
Temperature (DNS)

Temperature (wind tunnel)
Temperature (DNS)



2

rvelocity difference ( ) ( ), energy tran

Kolmogorov:

sfer rate ~

 si

intermittency free parameters in cascades- determination of anomalous scaling exponents
example: Kolmogorov vz MHD scaling

r
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what i
 

Kolmogorov Obukhov (1941) hydrodynamic: 
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kov Kraichnan (1964) weak isotropic MHD ,
Goldreich Sridhar (1994-5) strong MHD 
Boldyrev (2005) strong, background field anisotropic MH
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vδ ⊥

vδ

ACE 64s av. 1998-2001 Chapman et al GRL (2007)

( )

( )
,

2

Exponents ( ) for < ~  for 

ˆ ˆ.  and its remainder .           (3 ) 1 determines phenomen  

ˆ( ) ... ( '), ,here ' 2  and (
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B
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Solar wind example: Velocity fluctuations parallel and perpendicular to 
the local B field direction



Trick

Extended Self Similarity (ESS)



3 4

( )
( )( )

ˆ =<  and its remainder versus ,

ESS tests 

Generalized or extended self simlarity- ESS plot

 i.e. ( )

gives exponents when e.g. (3) 1 or (4) 1

s:
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p
pq

p q p
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ζ

ζζ
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=
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Quiet, fast solar wind-ULLYSES polar 
passes-

 
evolving MHD turbulence

Nicol, SCC et al, Ap
 

J., (2008)

(3)
3

IR turbulence- expect
~

i.e. straight line on log-log plot
not quite seen here!

S ζτ



South pass 1994, North pass 1995, solar min ( )~ ( )

invert to obtain ( )
 ( ) seen

p
pS g

g
same g

ξτ

τ
τ

Generalized similarity (scaling)-
 

turbulence at the outer scale



Trick-

Use the fact that self- affine 
process only requires one 

exponent to rescale the PDF..



1

2
2

( ) ~ , ,1 2 power law tails, self similar

for a finite length flight ( ) ~
so 2 is Gaussian distributed, Brownian walk

CP x x
x

x x t

μ

μ

μ

μ

+ → ±∞ < <

− < >
=

( )( )Stru | ( , ) |

1expect ( ) ~

cture functio  

,

ns: p p
pS x t

p p

ζτ τ τ

ζ α α μ

=< >∝

=
sxPDF re xscaling , sP Pα ατ τ −→ →

Chapman et al, NPG, 2005,Kiyani, SCC  et al PRE (2006) 

A more precise test for 
fractality- 

the effect of extremes: 
example-Lèvy flight



Levy flight --
 

Fractal P-model --
 

Multifractal

Kiyani, SCC et al, PRL (2007)

Distinguishing self- affinity (fractality) and multifractality



2000 -
 

Solar max 
fractal

1996 -
 

Solar min
multifractal

Example: solar wind solar cycle variation 
WIND -- |B|2 

Example: solar wind solar cycle variation 
WIND -- |B|2

Fractal signature ‘embedded’
in (multifractal) solar wind 
inertial range turbulence
-coincident with complex 
coronal magnetic topology 

Kiyani, SCC  et al, PRL (2007),
Hnat, SCC  et al, GRL, (2007)



ULYSSES-
 

north polar pass at solar minimum

ULYSSES 60s averages
July-Aug 1995, ~8.5x104

 

points, 
selected as a quiet interval
-Multifractal
-Fractality

 
coincides with topologically 

complex coronal fields?



Left: B²
 

fluctuation PDF solar max and solar min
 Right: solar max, FP and Lévy

 
fit

WIND 1996 min (◊), 2000 max (◦), ACE 2000 max (□)
Hnat, SCC et al, GRL, (2007)



Statistics of ‘bursts’

Avalanche distributions, waiting 
times



Avalanching systems and scaling 
behaviour

Avalanche models: add grains slowly, 
redistribute only if local gradients exceeds a 
critical value

Suggested as a model for bursty transport 
and energy release in plasmas- solar 
corona, magnetotail, edge turbulence in 
tokamaks (L-H), accretion disks

Avalanching systems
•

 

Threshold for avalanching
•

 

Avalanches are much faster than feeding 
rate

•

 

Avalanches on all sizes, no characteristic 
size

•

 

Feeding rate=outflow rate on average only
•

 

System moves through many metastable

 
states-

 

rather than toward an equilibrium



Measures of ‘burstiness’

Statistics of:
•

 
Waiting time between events

•
 

Energy dissipated
•

 
Peak size

•
 

Duration 
Questions:
•

 
Scaling? PDF, CDF, rank order plots etc

•
 

Finite size scaling?



Statistics of avalanches (rice)

Shown: Statistics of energy 
dissipated per avalanche

Power law- no characteristic 
event size: scaling

‘finite size scaling’-
Normalize to the size of the box
Frette

 
et al, Nature (1996)

Dynamical quantity- rice
Flux is conserved
d.o.f. are the possible 

avalanche (sizes/topplings)



The dynamic aurora-
 

a window on an avalanching 
system?

Shown, POLAR UVI image 
of the earths’

 
aurora

Has been proposed as a 
candidate avalanching 
system 

SCC et al GRL 1998

BUT there is also magnetotail 
turbulence..



•
 

1 month of POLAR UVI 
data=200,000 ‘blobs’

•
 

Quiet and active times
•

 
Robust power law(?) 

•
 

+substorms

Lui et al GRL, 2000, see also Lui NPG 2002

Counting auroral
 

snapshot ‘blobs’



In the Laboratory
Anomalous plasma transport-

 
an avalanche process?

L, H mode (confinement states)-
 

a transition?



Bursty
 

plasma ‘turbulent’
 

transport-
 magnetically confined plasmas

Movies of edge turbulence on NSTX in 2004.
S.J. Zweben

 
et al, (2004) ,R.J. Maqueda, (2003)

Avalanche model with L-H transition-
 

SCC et al PRL (2001)
See SCC et al Phys Plasmas (2009) for a comprehensive list of refs…




Blob statistics-
 Edwards Wilkinson-

 
dynamics

A linear
 

model
Shown: 100²

 
grid D=0.3

Solves:

2

0

where  is iid 'white' 
random source of grains

'height' 

blue patches are 

h D h
t

h h h

h h

η

η

∂
= ∇ +

∂

= − < >

> Chapman et al PPCF 2004




Edwards Wilkinson-  statistics
Statistics of instantaneous patch 
size are power law 

Linear model-
 

driver (random 
rain of particles) has inherent 
fractal scaling (Brownian 
surface) +selfsimilar

 
diffusion 

which preserves scaling

•No robustness-
 

scaling 
exponent depends

 
on drive.

•No transport of patches
Chapman et al PPCF 2004



Power laws and blobs?
•

 
Linear systems e.g. EW model give ‘blobs’

 
with 

power law statistics 
•

 
Missing element is ‘bursty’

 
(intermittent) 

transport via avalanches. Requires threshold 
(nonlinear diffusion)-

 
breaks symmetry

•
 

It matters what the exponent is 

2

0

2

( )  

( ) ( ) - avalanche models

( ) ( )  KPZ - transforms to Burgers eqn.

h D h h
t

D h h h

D h h

η∂
= ∇ +

∂
∝Η ∇ −

∝ ∇



Information Entropy and 
Correlation

Mutual Information- principles and 
practice



Information and Mutual 
Information

•
 

A given signal can be thought of as a sequence 
of symbols that form an alphabet.

•
 

Signal has alphabet

•
 

Each symbol in the alphabet has a probability of 
occurrence

X={x1 ,x2. . . xi}

( ) xi
i

n
P x =

N



Information entropy



Information and entropy
•

 
A signal (X) carries a certain amount of 
information expressed as an entropy H(X) in the 
order of its symbols {xi

 

}

•
 

Log2
 

=> binary units     

•
 

We assume the relation 

( ) ( ) ( )( )2logi i
i

H X = P x P x−∑

0× log2 0= 0



•
 

Entropy can also be defined for joint probability 
distributions

•
 

Mutual Information compares the information 
content of two signals

Mutual Information

( ) ( ) ( )( )i j 2 i j
ij

H X,Y = P x , y log P x , y−∑

( ) ( ) ( ) ( ) ( )/i j 2 i j i j
ij

I X;Y = P x , y log P x , y P x P y⎡ ⎤⎣ ⎦∑
( ) ( ) ( ) ( )I X;Y = H X + H Y H X,Y−



Timeseries



Mutual Information
a) P(WIND |B|, ACE |B|)

b) Raw data WIND |B| vs
 ACE |B|

c) P(WIND |B|)

d) P(ACE |B|)

MI = 1.09 bits
Ratio of MI to H = 0.39

a) b)

c) d)



Simple systems with phase 
transitions

•
 

Initial interest in MI and phase transitions 
given by Matsuda et al treatment of the 
Ising

 
model

•
 

Study showed that MI peaks at the phase 
transition and is robust to coarse graining



The Ising Model
•

 
Matsuda et al:



The Vicsek  Model
Dynamical rules for each particle:

Order parameter and susceptibility:



The Vicsek Model



The Vicsek  Model
•

 
Mutual information is calculated between position and 
angle of motion for a snapshot.

•
 

MI for each dimension is the averaged to give total.
•

 
This is done for 50 realisations of the model.



The Vicsek Model

X X

X

θ θ

θ



The Vicsek Model

Wicks, SCC et al PRE (2007)



‘real world’-  follow only a few particles
•

 

10 particles chosen at 
random.

•

 

Time series of 5000 
steps used.

•

 

MI calculated between 
each particle's X 
position and X velocity 
for 500 step sections

•

 

Compared to 
susceptibility for same 
sections.

(assumption: Vicsek

 model is ergodic)



Follow only a few particles-  linear measure
•

 
Average cross 
correlation 
between the 
same 10 
particles.

•
 

No obvious help 
in determining 
critical noise



End

See the C0907 web site for more 
reading…
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