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Abstract. The analysis of plasma turbulence has traditionally been based on limited
set of techniques: spectral analysis, correlation analysis, etc. This text gives a short
overview of what can be done with more ”advanced” techniques, i.e. techniques that
exploit nonlinear properties of the data.

1 Linear vs nonlinear world

Although linear descriptions traditionally constitutes a rule of conduct in the
analysis of space plasma data, there is clear evidence that nonlinear descriptions
may often provide considerable added value. The problem of characterizing non-
linear processes from experimental or simulation data has in the last decade
received considerable attention. This field of study is often referred to as ”non-
linear time series analysis” because the sequences of observations are generally
time series.

Linear descriptions can all be cast within the single convenient framework
of Fourier analysis, which includes quantities such as power spectra and auto-
correlation functions. There is no such single framework, however, for making
nonlinear descriptions. A key problem in nonlinear world therefore is the choice
of the right technique, or equivalently, the right invariant. Physical guidance is
a must here. For simulation data, the underlying model can sometimes provide
such guidance, but we shall not make this assumption here.

The number of time series analysis techniques is huge and increases by the
day, see for example [1,35,57]. Only a small subset of these techniques, however,
is actually relevant for space plasma applications. By relevant we mean that:

• a clear physical interpretation can be given to the output of the technique;
• the assumptions underlying the technique are compatible with the properties

of the data.
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Some applications to space plasmas can be found in [24,27,22,69,70]. Most ap-
plications deal with experimental data, although they can be readily exported
to simulation data. Significant advantages of the latter are generally a smaller
noise level, a more flexible size of the dataset and the possibility to access quan-
tities that cannot be properly measured experimentally. If simulation data have
received comparatively less attention so far, it is not by lack of relevance, but
often because we simply don’t know yet how to properly handle large ensembles
of multivariate data !

There exist essentially three major families of techniques, all of which have a
long history in the literature on statistics or dynamical processes. They are re-
spectively: higher order spectra (section 2), higher order statistics (section 3),
and phase-space methods. The latter are relevant for the characterization of
low-dimensional deterministic (chaotic) systems. They will not be considered,
however, because this would really require another full article. Our selection is
therefore somewhat arbitrary, even more so since there are many connections
between all the techniques.

The domain of application of each family can be characterized by comparing
the degrees of stochasticity and nonlinearity of the process of interest, see Fig. 1.
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Fig. 1. Sketch of the variety of systems spanned by the properties “nonlinearity” and
“stochasticity”. Areas where knowledge for the analysis of time series is best available
are mostly located near the borders, leaving a ”no man’s land” in between. Besides the
two main families that are described in this text, there exist many other techniques
based for example on linear oscillations (a), nonlinear Fourier transforms for solitary
waves (b), hidden Markov models (c), and stochastic linear models (d). Sketch made
after a figure from [57].

Note that the applicability of each technique is generally restricted to a neigh-
bourhood around some hypothesis. The hypotheses we have chosen are the degree
of nonlinearity (how nonlinear is the process ?) and the degree of stochasticity
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(how much is the dynamics ruled by external noise terms ?). One could add to
this the extension (is the process temporal or spatio-temporal ?), the number of
degrees of freedom, etc.

Higher order spectra can be seen as a generalization of Fourier analysis to
include information about phase coherence. This approach is particularly
relevant for wave phenomena with a weak departure from nonlinearity. Typ-
ical applications are: nonlinear wave interactions, wave-particle interactions,
weak turbulence, etc.

Higher order statistics although closely related to higher order spectra, are
more generally applied to stochastic processes, regardless of the degree of
nonlinearity. Higher order statistics are needed when the probability density
departs from a Gaussian distribution. Typical applications are fully devel-
oped turbulence, fluctuations in spatio-temporal systems etc.

Phase space techniques is the name given to techniques that are generally
applied to chaotic systems, i.e. to systems whose evolution in time can be
modelled by a low-dimensional deterministic model. Such systems are not
generic in space plasmas but the concepts that have been developed in this
framework are powerful and deserve attention. Good candidates for this are
particle and wavefield simulations, but successful applications to experimen-
tal data have also been reported.

2 Higher-order spectra and spectral energy transfers

One of the most obvious approaches for making the transition from a linear to
a nonlinear description, consists in starting from a linear description of the sys-
tem of interest, and subsequently introducing a weak nonlinearity. How far this
perturbative approach can be extended to strongly nonlinear systems depends
on the type of problem one is addressing.

Since one starts with a linear description, it is appropriate to describe the
system in terms of its eigenmodes, namely Fourier modes. The basic assumption
that underlies standard Fourier analysis is that any stationary fluctuating phys-
ical quantity can be regarded as the superposition of statistically independent
Fourier modes. This means that all the relevant information is contained in the
amplitude of these modes only, that is, the power spectral density (or alterna-
tively, the autocorrelation function). If, however, there exists some parametrical
or nonlinear physical process, then the phases of the Fourier modes are not inde-
pendent anymore, and information is also conveyed by the phases. Higher order
spectra1 provide a means for characterizing such phase coherence [45,49,39].

2.1 Why higher order spectra ?

Let us start with an example that is based on magnetic field data as gathered
by the AMPTE UKS spacecraft just upstream the Earth’s quasiparallel bow

1 higher order spectra are also called polyspectra or multispectra
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shock. The dataset and its nonlinear properties are discussed in more detail in
[20]. In this dataset, the turbulent wavefield is characterized by the occasional
occurrence of large-amplitude structures that are preceded at their upstream
edge by whistler wavetrains, see Fig. 2. This raises two questions: 1) is there a
causal relationship between the whistler waves and the large structures ? 2) If
such a coupling exists, are whistlers just instabilities that are triggered by the
large structures or do they actually grow out of them ? Higher order spectra will
answer the first question, whereas spectral energy transfers will be needed for
the second.
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Fig. 2. Excerpt of the AMPTE magnetic field data: modulus of the magnetic field
(top) and component along direction of maximum variance (bottom).

.

Higher order spectra are usually defined in the field of signal processing,
using cumulants [11]. The articles by Powers and his coworkers [36,63] are good
introductions, written in the framework of laboratory plasma wave experiments.
Let us start with a nonlinear system, whose dynamics is a function of time t and
space x, and is described by the generic model

∂u(x, t)

∂x
= f(u(x, t)) , (1)

where f(.) is a continuous nonlinear and time-independent function, and u(x, t)
the physical quantity of interest2. We shall henceforth assume that u(t) is station-
ary in time and has zero mean. By analogy with Taylor series let us decompose
f into a series of linear, quadratic, cubic, and higher order functions

f(u) = f1(u) + f2(u) + f3(u) + · · · (2)

2 the spatial derivative is used here for notational convenience; one could switch time
and space.



Techniques for turbulence analysis 5

so that fk(λu) = λkf(u). In a weakly nonlinear system, f1(u) should dominate
over all the other terms. Wiener has shown that with mild assumptions, eq. 2
can be written as a Volterra series.

∂u(x, t)

∂x
=

∫

g(τ1) u(x, t − τ1) dτ1 (3)

+

∫∫

g(τ1, τ2) u(x, t − τ1) u(x, t − τ2) dτ1 dτ2

+

∫∫∫

g(τ1, τ2, τ3) u(x, t − τ1) u(x, t − τ2) u(x, t − τ3) dτ1 dτ2 dτ3

+ · · ·

As we shall see later, each term can be ascribed to a different physical process.
Let us now take the discrete Fourier transform in time of this series (with the
notation up = u(x,ωp)) :

∂up

∂x
= Γpup +

∑

k,l

Γkl ukul δk+l,p +
∑

k,l,m

Γklm ukulum δk+l+m,p + · · · (4)

Note how the nonlinearity couples each Fourier mode uk to all other Fourier
modes. This coupling can only occur in a specific way: for quadratic nonlinearities
(the Γkl kernels), the resonance condition for interacting Fourier modes reads

ωk + ωl = ωp , (5)

whereas for cubic nonlinearities we must have3

ωk + ωl + ωm = ωp . (6)

A major asset of this description is the existence of analytical expressions and
consequently the possibility to interpret the Volterra kernels Γ in terms of physi-
cal processes. Much work has been done in the framework of Hamiltonian systems
[72] and several applications to weak plasma turbulence have been reported in
[34,46]. With some additional assumptions, even the description of strong plasma
turbulence can be considered, see [32].

Volterra series may in principle contain an infinite number of terms, but in
many applications (and by definition in all weakly nonlinear systems) only low or-
der terms are significant. The quadratic Volterra kernel Γkl describes three-wave
interactions because three different Fourier modes are involved in the resonance
condition (eq. 5). Two examples of such interactions are harmonic generation
(the fundamental gives rise to its first harmonic) and the decay instability (a
Langmuir wave decays into another Langmuir wave and an ion sound wave).
In the same way, the cubic kernel Γklm describes four-wave interactions. The
modulational instability is example of a four-wave interaction, in which a Lang-
muir wave decays into two other Langmuir waves plus a low-frequency ion sound
wave.
3 frequencies can be both positive and negative, so for example ωk +ωl −ωp = 0 could

be rewritten as ωk + ωl = ωp



6 Thierry Dudok de Wit

2.2 Defining higher order spectra

Volterra kernels Γ embody all the information about the nonlinear dynamics of a
process, so they should be the main quantities of interest. We shall nevertheless
prefer to them two other quantities. The first are higher order spectra, which can
be obtained at low cost, using single point measurements. The second are energy
transfer functions, which are more relevant but also more difficult to evaluate.

Let us first multiply eq. 4 by u∗
p and calculate its expectation4. The following

series results

〈
∂up

∂x
u∗

p〉 = Γp〈|up|2〉+
∑

k+l=p

Γkl〈ukulu
∗
k+l〉+

∑

k+l+m=p

Γklm〈ukulumu∗
k+l+m〉+ · · ·

(7)
In a homogeneous plasma the term of the left vanishes, and so we conclude that
the amplitude 〈|up|2〉 is not an invariant quantity anymore but depends on all
the other modes. To characterize such interactions, we must first compute the
coefficients of this equation. The first term on the right is nothing but the power
spectrum

P (ωp) = 〈upu
∗
p〉 . (8)

The quadratic term gives the bispectrum

B(ωk,ωl) = 〈ukulu
∗
k+l〉 , (9)

and the cubic term is what we shall call the trispectrum5

T (ωk,ωl,ωm) = 〈ukulumu∗
k+l+m〉 . (10)

Higher order spectra can therefore be seen as generalizations of the Fourier power
spectrum. The bispectrum measures the amount of phase coherence between
three Fourier modes that obey the frequency summation rule ωk + ωl = ωp. It
vanishes if the phases of the modes are uncorrelated. Trispectra measure the
amount of phase coherence between four modes.

It is often more convenient to use normalized quantities. Such a normal-
ization can be performed in several different ways (see for example [37]). The
usual approach consists in using Schwartz’s inequality to define a normalized
bispectrum, called bicoherence

b2(ωk,ωl) =
|〈ukulu∗

k+l〉|2

〈|ukul|2〉〈|uk+l|2〉
. (11)

and a normalized trispectrum, called tricoherence

t2(ωk,ωl,ωm) =
|〈ukulumu∗

k+l+m〉|2

〈|ukulum|2〉〈|uk+l+m|2〉
. (12)

4 in practice the ensemble averaging can often be replaced by an averaging over time.
5 the true definition of the trispectrum is not a fourth order moment like here, but

a fourth order cumulant T (ωk, ωl, ωm) = 〈ukulumu∗

k+l+m〉 − 〈ukul〉〈umu∗

k+l+m〉 −
〈ukum〉〈ulu

∗

k+l+m〉 − 〈uku∗

k+l+m〉〈ulum〉
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Both quantities are real and bounded by 0 and 1.
The interpretation of the bicoherence is the following: it measures the pro-

portion of the signal energy at any bifrequency (ωk,ωl) that is quadratically
phase coupled to ωk+l. A large bicoherence means that the phase difference
arg uk + arg ul − arguk+l reaches a fixed value, even though each phase, when
taken separately, may vary in a random way. The tricoherence similarly quan-
tifies cubic phase couplings between triplets (ωk,ωl,ωm). Such phase couplings
are a hallmark of nonlinearity, which is the main motivation for using higher
order spectra.

Several applications of bicoherence to space plasmas have been reported,
such as Langmuir wave coalescence in the solar wind [6], parametric instabilities
in the ionosphere [60], the interaction of radio emitters with the ionosphere
[40], nonlinear structures in the magnetosphere [20], simulations of beam-plasma
interactions [61]. Tricoherent analysis has so far only been reported in weak
turbulence simulations [37] and in magnetospheric turbulence [23].

2.3 Some properties of higher order spectra

Higher order spectra are intimately connected to higher order statistics. If a
time series has a Gaussian probability density, then all higher order spectra are
automatically equal to zero. Conversely, a process that has nonlinear wave in-
teractions must necessarily give rise to a non-Gaussian probability density. The
choice of the technique essentially depends on the type of coupling: if a few
Fourier modes are coupled, then higher order spectra are appropriate since the
deviation from Gaussianity may be weak. Conversely, if the coupling involves
many different modes (e.g. in fully developed turbulence) then higher order
spectra will be small whereas the probability may significantly depart from a
Gaussian.

Higher order spectra have been defined so far by considering a single quantity
u(x, t), but they may be extended to study the phase coupling between different
variables. To distinguish the two situations one should use the prefix auto- for
a single quantity (i.e. the autobicoherence) and cross- for multiple quantities.
Beam-plasma interactions is a typical example in which the cross-bicoherence
is appropriate. According to the Zakharov equations the formation of cavitons
occurs via a coupling between the electron density n and the electric field E,
with n ∼ E2. To characterize this coupling, one must use the cross-bicoherence
BnE(ωk,ωl) = 〈EkEln∗

k+l〉 and not the autobicoherence.
One of the problems encountered with higher order spectra is their repre-

sentation. Because of their multivariate nature, displays in several dimensions
are needed. Fortunately, one can take advantage of symmetry properties and
strongly reduce the non-redundant frequency domain (called principal domain).
The principal domain of the bicoherence is shown in Fig. 3 for a real signal. For
the tricoherence it is a prism in 3D [48].

To illustrate these results with real data we now consider two examples:

Example 1 : We first reconsider the AMPTE magnetic field data. We know
that the turbulent magnetic field contains nonlinear structures that steepen
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Fig. 3. Principal domain of the bicoherence. The Nyquist theorem restricts the display
to the area enclosed by a dashed line. For the autobicoherence, the principal domain
is I, for the cross-bicoherence it is I and II.

and progressively decay into dispersive whistler wave packets. This decay oc-
curs via nonlinear wave interactions, and thus gives rise to phase couplings
that should be detected in the wavefield autobicoherence and autotricoher-
ence.
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Fig. 4. Autobispectrum (left) and autobicoherence (right) of the AMPTE magnetic
field data. The magnetic field component with the largest variance is analyzed and
the display is restricted to the principal domain. For convenience the power spectral
density is shown below each plot. The number of samples is 12000 and the display has
deliberately been cut off at 2Hz (the Nyquist frequency is 8Hz).
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Figure 4 shows the bispectrum and the bicoherence. The former reveals a
featureless but significant level of wave coupling, with most of the energy
concentrated in low frequency modes. The coupling strength, however, can-
not be assessed by lack of normalization. The bicoherence in contrast shows
a significant phase coupling between Fourier modes that satisfy the condi-
tion f1 + f2 = 0.6Hz, with f1 ≤ f2 ≤ 0.6Hz. This phase coupling implies
that the large amplitude magnetic structures are somehow coupled to the
whistler waves. The coupling is significant (b2 ≈ 0.7) but it does not reach
higher levels because the nonlinear structures are embedded in a randomly
fluctuating wavefield.

Example 2 : A different aspect is revealed by water level fluctuations that were
recorded in a laboratory experiment. The swell results in regular and fairly
monochromatic gravity waves on top of which small amplitude capillary
waves are produced by wind. The bicoherence analysis of these water waves
is shown in Fig. 5.
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Fig. 5. Excerpt (left) and autobicoherence (right) of the water level fluctuations. For
convenience the power spectral density is shown below the bicoherence. The number
of samples is 65536 and the display has been cut off at 6Hz.

The salient features of the bicoherence are a marked peak at 1.2+1.2 = 2.4Hz
and a ridge 1.2 + f = 1.2 + f with f > 1.2Hz. The former is the classical
signature of harmonic generation (the fundamental is coupled to the first
harmonic). One can also distinguish peaks for higher harmonics. The ridge
means that the fundamental mode is phase coupled to all modes having
frequencies higher than it, and not just its harmonics. The reason for that
is that the high frequency capillary waves are always located on top of the
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swell (i.e. they are phase coupled to the fundamental) because this is where
they are most efficiently generated by the wind.

These two examples both reveal the existence of significant phase couplings
between specific Fourier modes. We must stress, however, that a phase coupling
does not necessarily imply the existence of nonlinear wave interactions per se.
In the first example, the ridge could be interpreted both as a decay (0.6 →
f1 + f2) or as an inverse decay (f1 + f2 → 0.6) process. At this stage we cannot
tell whether the observed phase coupling is accompanied by an energy transfer
between Fourier modes (i.e. the wavefield is dynamically evolving) or whether it
is just the remnant of some nonlinear effect that took place in the past or maybe
even some nonlinear instrumental effect. This caveat has been highlighted by
Pécseli and Trulsen [53]. Multipoint measurements are needed to unambiguously
assess nonlinear wave interactions. This will be addressed shortly in section 2.6.

2.4 Estimating higher order spectra

Higher order spectra can be estimated either by direct computation of the higher
order moments from Fourier transforms, or by fitting the data with a parametric
model.

The Fourier approach is computationally straightforward: the time series
is divided into M sequences, for each of which the Fourier transform is computed.
An unbiased estimate of the bispectrum is then

B̂(ωk,ωl) =
1

M

M
∑

i=1

u(i)
k u(i)

l u∗ (i)
k+l , (13)

The empirical estimate of the bicoherence becomes

b̂2(ωk,ωl) =

∣

∣

∣
B̂(ωk,ωl)

∣

∣

∣

2

∑M
i=1

∣

∣

∣
u(i)

k u(i)
l

∣

∣

∣

2
∑M

i=1

∣

∣

∣
u(i)

k+l

∣

∣

∣

2 . (14)

Careful validation of higher order quantities is essential as these quantities are
prone to errors. Hinich and Clay [30] have shown that the variance of the bico-
herence is approximately

Var[b̂2] ≈
4b̂2

M

(

1 − b̂2
)

, (15)

and that this quantity has a bias

bias[b̂2] ≈
4
√

3

M
. (16)

It is therefore essential to have long time series (i.e. many intervals M) in order
to properly assess low bicoherence levels. This constraint becomes even more
stringent for tricoherence estimates.
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The need for long time series can be partly alleviated by using alternative
spectral representations. Morlet wavelets, because of their better time-frequency
resolution, can improve the estimates [68,20]. Nevertheless, great care should
be taken in estimating higher order spectra from short or non stationary time
series. It is essential that higher order spectra are averaged over many periods
of the largest period of interest.

The parametric approach consists in fitting the time series with a para-
metric model, like an autoregressive (AR) model [41]. If this model correctly fits
the data, the one can retrieve from it not only the spectrum but also higher
order spectra. For a detailed description, see [50] and [45].

Which method is the best ? The problem of selecting the best approach is
identical to that encountered in the estimation of power spectra [54]. Parametric
methods are appropriate for short time series, or for time series whose spectrum
and higher order spectra are either featureless (i.e. they are smooth functions
of the frequency), or contain a few narrow spectral lines. Fourier methods are
easier to apply and do not require any decision on the type of model that should
be fitted.

2.5 Higher order spectra: more properties

Before considering spectral energy transfers and Volterra kernels, two remarks
are in order. First, the bicoherence is a useful quantity for detecting asymmetries
in a time series. Time-reversal asymmetries (u(t) ↔ u(−t)) generate imaginary
bispectra only, so to detect them one should use a variant of the bicoherence

b2
i (ωk,ωl) =

|*B(ωk,ωl)|2

〈|ukul|2〉〈|uk+l|2〉
. (17)

Up-down asymmetries (u(t) ↔ −u(t)) show up in the imaginary bispectrum
only, so the quantity to be used is

b2
r(ωk,ωl) =

|+B(ωk,ωl)|2

〈|ukul|2〉〈|uk+l|2〉
. (18)

The distinction between symmetries is useful for separating concurrent nonlin-
ear processes: time-reversal asymmetries arise during nonlinear wave steepening,
whereas up-down asymmetries may occur in wavefields with cavitons. These
properties are illustrated in Fig. 6, which shows the ”real” and ”imaginary” bi-
coherences for the example on gravity waves. Water waves are known to have
strong up-down asymmetries, and this indeed shows up in large values of the
”real” bicoherence b2

r. More surprising is the weak value of b2
i , which indicates

that the waves are still far from overturning, despite the wind strength.
A second remark concerns the generalization of higher order spectra from

temporal couplings to spatio-temporal couplings. Space plasmas are truly spatio-
temporal systems, so a nonlinear wave coupling should not only involve resonant
frequencies, but also resonant wavenumbers. Three-wave interactions for example
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Fig. 6. Autobicoherence of the water level fluctuations (as in Fig. 5), using the real
bispectrum (left) and the imaginary one (right).

can only occur between waves that satisfy four conditions
{

ωk + ωl = ωp

kk + kl = kp
. (19)

The first condition can be interpreted as a conservation of energy while the
second is a conservation in momentum. This resonance is illustrated in Fig. 7
for one-dimensional case. For four-wave interactions one should have

ω

k0

(ωn,kn)

(a) (b)

(ωm,km)

(ωp,kp)

Fig. 7. Example of a plasma with two dispersion relations (a) and (b), and a possible
three-wave interaction, described as vectors in (k, ω) space. Only one dimension in
space is considered here.
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{

ωk + ωl + ωm = ωp

kk + kl + km = kp
. (20)

Most of the time, one has access to one variable only, so that hypotheses must be
made on the other. In the case of strong convection, or if the Taylor hypothesis
holds, then ω ∝ |k| and so it is sufficient to consider frequencies only. If, however,
the wavefield is dispersive then one cannot recover all the information from a
single time series only. That is, a resonance between specific frequencies does
not necessarily imply that the associated wavenumbers are also resonant.

2.6 Spectral energy transfers

One of the main shortcomings of higher order spectra is their inability to tell the
origin of the phase coupling. Is it the consequence of an instrumental nonlinearity,
is it the remnant of a nonlinearity that took place some time during the wavefield
evolution, or does it result from an ongoing dynamical process ? To answer this
question, we must go back to the Volterra kernels (eq. 3) and define a new
quantity, which is called spectral energy transfer [64]6.

For a large ensemble of waves with different frequencies, the random phase
approximation implies that

〈u∗
puq〉 = Pp δpq , (21)

where δpq is the Dirac delta function and Pp = P (ωp) is the power spectrum.
Combining this with eq. 4 gives

∂Pp

∂x
= γpPp +

∑

m+n=p

Tm,n +
∑

m+n+k=p

Tm,n,k + · · · (22)

This equation expresses the spatial variation in the spectral energy density at
a given frequency (or wavenumber) as a sum of linear and nonlinear terms.
The first term (γpEp) describes linear processes, the second (Tm,n) quadratic
processes, etc. The latter tells us how much energy is being transferred to (T > 0)
or away (T < 0) from the p’th Fourier mode through nonlinear interactions with
other modes [34].

Spectral energy transfers are probably the most relevant quantities for de-
scribing nonlinear wave interactions, but the difficulty in estimating them from
experimental data has severely restricted their use so far. In contrast to higher
order spectra, they require multipoint measurements and need a large and often
ill-conditioned system of linear equations to be solved. Significant results have
nevertheless been reported with quadratically nonlinear models in laboratory
plasma turbulence [64] and for magnetospheric turbulence [23].

The numerical problems encountered in estimating spectral energy transfers
can be significantly alleviated by estimating the Volterra kernels in the time do-
main, using parametric models, and subsequently computing the energy transfers

6 An older article [62] provides a better introduction to the subject, but the compu-
tational scheme is outdated.
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in Fourier space. The reason for that is that time-domain models are often much
more efficient in capturing nonlinear features in a small number of terms.

The exists many types of nonlinear parametric models. Polynomial models
offer flexibility at a reasonable computational expense. A popular class of flexi-
ble models is called Nonlinear AutoRegressive Moving Average with eXogeneous
input (NARMAX) [52]. Consider two measurements that are made simultane-
ously and at closely spaced locations, in such a way that the time evolution of
y(t) is a consequence of u(t). These are typically the measurements made by two
spacecraft, one of which is upstream of the other: u(t) is then the input signal,
and y(t) the output which embodies the nonlinear response of the plasma. By
modelling the transfer function that relates the two signals, one can recover all
the relevant nonlinear properties of the plasma, as shown by Ritz and Powers
[62].

u(t) y(t)
?

upstream downstream

Fig. 8. The plasma behaves like a black box, which reacts to the input u(t) by giving a
response y(t). The nonlinear properties of the plasma are recovered by modelling this
response.

In practice, both u(t) and y(t) are continuously sampled, so a discrete transfer
function model is needed. With NARMAX models the output yi = y(ti) at a
given time is expressed as a polynomial

yi = P [yi−1, . . . , yi−n, ui, ui−1, . . . , ui−n, εi−1, . . . , εi−n] + εi , (23)

where ui is the input, εi the residual error between yi and the model response,
and P a polynomial. The output of the model thus depends on combinations
involving past outputs, past and present inputs and past residual errors. A suc-
cessful application of NARMAX modelling to magnetospheric turbulence (based
on the AMPTE dataset of this book) was reported in [17]. The capacity of such
models to fit nonlinear systems with a few (often less than a dozen) polynomial
terms is clear asset. Unfortunately some of the mathematical tools associated
with it are not in the public domain.

3 Higher order statistics

Higher order statistics and higher order spectra are intimately related, but they
are generally used in different contexts. When a system is driven away from the
linear-deterministic corner in Fig. 1, then time-domain representations are often
more appropriate than spectral representations.
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Most of the literature on probability theory and statistics deals with ran-
dom variables whose probability density7 function (pdf) is a Gaussian. However,
Gaussian distributions is not all there is to statistics. Very often it is precisely
the deviation from Gaussianity that contains pertinent information about the
underlying physics. The tails of the distribution, which represent large but rare
events, are of particular interest and have received much attention. Many sta-
tistical tools have been developed for this purpose. Most of them appeared in
the context of turbulence [26], but new paradigms such as complexity [5], self-
organization [33] and anomalous transport [10] stimulate today the development
of novel tools.

3.1 Scale invariance

Symmetry is one of the key concepts behind higher order statistical analysis.
Indeed, many physical systems are known to exhibit symmetries. In turbulent
wavefields, for example, quantities like the velocity field often remain unchanged
under the following transformation

v(x, t) −→ λv(λax,λbt) (24)

Because of these symmetries, the system is said to be scale invariant. Roughly
speaking, scale invariance means that within a wide range of (spatial or temporal)
scales, it is not possible to identify a predominant scale. The property of injterest
is the interplay between scales, rather than the role played by characteristic
scales. This property is typical of thermodynamical systems that are at a critical
point. It can be quantified in many different ways.

Spectral signatures Scale invariance can easily be expressed in the Fourier
domain. Equation 24 implies that the Fourier spectra in frequency (and in
wavenumber) of a scale invariant quantity behave like power laws with no char-
acteristic cutoff frequency (or cutoff wavenumber)

P (ω) ∝ ω−β . (25)

It should be stressed that this property is a necessary but not a sufficient con-
dition. The same power law scaling should hold for all higher order spectra and
structure function analysis (see below) will provide a means for getting more
information.

Power laws are never observed exactly in practice. Mesoscales always provide
a low-frequency cutoff (otherwise the variance of the process would diverge)
whereas the high frequency cutoff is generally caused by damping or viscosity.
In between, the spectrum is often corrupted by spectral lines associated with
plasma waves. In spite of this, power laws extending over several decades have

7 From a mathematical point of view, the terms probability density and probability
distribution bear different meanings. Here, as in the physics literature, they are used
interchangeably.
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been observed in the solar wind [28]. Inside the magnetosphere, this range is
generally shorter. For a power law to be meaningfully assessed in experimental
data, it should be observed over at least one decade.

Equation 25 suggests that the scaling exponent or spectral index β can be
directly estimated from the Fourier power spectrum. It has been shown since
[3] that wavelets are better for that purpose because they are inherently self-
similar. The distinction between the two approaches becomes particularly im-
portant when one has to deal with short and noise-corrupted data. Figure 9
shows an example based on a synthetic data set. A time series with N = 512
samples was generated with a spectral index β = 2. The figure compares the
spectrum obtained by standard FFT and by using a discrete wavelet transform
with Daubechies wavelets. Clearly, the latter succeeds much better in capturing
the power law scaling.
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Fig. 9. Power spectral density of a synthetic time series with N = 512 samples and
a spectral index β = 2: a) stands for standard periodogram estimate with a single
Welch window, b) was obtained with 3rd order Daubechies wavelets (the scales a are
converted into frequencies by ω = 1/a), c) gives the exact result. The power spectra
have been shifted vertically for easier comparison.

Scale-invariance and structure functions Since the spectrum is not suf-
ficient for assessing scale invariance, it is necessary to look at higher order
moments. In addition to this, one should also consider spatial gradients and
higher order derivatives in order to distinguish temporal variations from spatial
structures. For a stationary Gaussian process, these derivatives all must have a
Gaussian pdf.

In practice, it is quite difficult to properly separate spatial structures from
temporal variations, even with multipoint measurements. Therefore, instead of
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computing gradients, it is customary to compute spatial increments

δy = y(x + l, t) − y(x, t) . (26)

Furthermore, assumptions are often made to convert spatial structures into tem-
poral dynamics. In the solar wind, for example, the turbulence is nearly frozen
in the wavefield (this is better known as the Taylor hypothesis, see [26]) so that
one can reasonably set τ = l/v and hence for a scalar quantity

δy = y(t + τ) − y(t) . (27)
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Fig. 10. Excerpt of Ulysses magnetic field data (left column) and the associated pdfs
(right column). Each row corresponds to a different value of τ , the first row showing
the original data. The number of samples is 20000 and the Bx component was used.
different values of τ . All the pdfs have been rescaled to have unit standard deviation
and zero mean; a Gaussian distribution with equal mean and standard deviation is
shown for comparison. The sampling period is 1 min. and error bars correspond to ±1
standard deviation.
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Figure 10 shows an excerpt of magnetic field data gathered by Ulysses in 1994
within the solar wind from the south solar pole. The wavefield mainly consists of
Alfvén waves that rotate on a sphere of constant radius, hence the peculiar pdf,
which is much more akin to a uniform than to a Gaussian distribution. The pdfs
of the differenced data on the contrary exhibit strongly enhanced tails. For small
τ , the time series shows large bursts and the pdf is highly non-Gaussian. The
larger τ is, the closer the pdfs are to the original one, because distant fluctuations
are essentially independent. The study of this departure from Gaussianity is a
central research issue in many fields because it is indicative of the microscopic
turbulent processes.

The simplest way of quantifying the various shapes of the pdfs consists in
computing their higher order moments. This is called the structure function
approach

Sp(τ) = 〈|y(t + τ) − y(t)|p〉 . (28)

A large amount of literature is devoted to this technique. For general references,
see [51,26,9]; introductions to plasmas can be found in [8,44,14]. Structure func-
tions can in principle be computed from any physical quantity, but a meaningful
comparison against theory requires the use of natural variables. In space plasmas,
the natural variables for Alfvén waves are the Elsässer variables Z± = V±VA,
where VA is the Alfvén velocity [44].

An interesting result is the existence of a universal scaling law when the
wavefield is scale-invariant

Sp(τ) ∝ τα(p). (29)

The larger order p is, the more emphasis is put on the tails of the distribution and
the more difficult it becomes to measure the scaling exponent α(p). The range
in which this scaling holds is called inertial range. Any deviation of α(p) from
a linear dependence is an indication for irregular redistribution of the energy
in the turbulent cascade. In the classical K41 model by Kolmogorov [26], the
turbulent eddies are supposed to be in a state of local equilibrium: each eddy
decays into smaller ones, which again give rise to smaller eddies, and so on.
For this model, one obtains α = p/3. Many theoretical models for turbulent
cascades have been developed since in order to match experimental results [51,9].
The model developed by Castaing and coworkers is today widely used both in
neutral fluids and in plasmas [14].

As an example, consider a turbulent cascade in which the eddies are not
space filling but occupy a domain whose physical dimension is D ≤ 3. One
should then have α(p) = 3 − D + p(D − 2)/3. This property is illustrated in
Fig. 11 for three cases: a) the K41 model in which each eddy is space-filling
(D=3), b) the monofractal case in which each eddy occupies a fixed fraction of
space (D is fixed), and c) the multifractal case in which the occupancy of space
varies locally (D varies). A sparse filling of space can results from a stretching
of eddies into filamentary vortices. Numerical simulations indeed support such
a picture [8].

Burlaga [12] first pointed out the striking similarity between solar wind tur-
bulence and hydrodynamic turbulence, a result confirmed since by many authors
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Fig. 11. Illustration of the turbulent cascade in 2D, in which each turbulent eddy (gray
area) decays into four smaller eddies. Cases a) to c) respectively correspond to the the
Kolmogorov K41 model with space-filling eddies, the monofractal cascade model, and
the multifractal cascade model.

[43,13,31]. Structure function analysis has also been applied to other quantities,
such as geomagnetic indices [67]. All these studies suggest that space plasmas are
scale-invariant but that this scaling varies locally, hence the name multifractal.
The macroscopic consequence of this local property is irregular behaviour with
sudden bursts of activity called intermittency.

The structure function associated with the Ulysses data is shown in Figure
12, for orders between p = 1 and p = 6. It can be argued that an inertial
range is apparent for τ = 3 − 30 min. In this range, the scaling exponent is a
convex function of p, which supports the multifractal character of the turbulent
wavefield. The figure also shows another quantity

Ap(τ) =
Sp(τ)

S2(τ)p/2
. (30)

For a Gaussian distribution, Ap(τ) should not depend on the scale τ . This quan-
tity confirms the existence of wide distributions for small τ and on the contrary
rather narrow distributions for large τ .

Structure functions: pitfalls Structure functions suffer from a number of
problems. First, theoretical models are not as easy to develop for magnetofluids
as for neutral fluids. Some obstacles to a straightforward interpretation are sym-
metry breaking due to the magnetic field, the need to have Elsässer variables,
and the questionable validity of the Taylor hypothesis in space plasmas.

Furthermore, structure functions, like all higher order quantities, become
very vulnerable to outliers and lack of statistics as the order p increases. This
problem has often been overlooked in the literature. It turns out that moments
beyond p = 4 or p = 5 often cannot be meaningfully assessed, even with large
data sets [21,31]. Therefore, great care should be taken in interpreting results.
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Fig. 12. Structure function analysis of Ulysses magnetic field data: the structure func-
tion Sp(τ ) (top left), the normalized structure function Ap(τ ) (top right), and the
scaling exponent α(p) estimated between τ = 3 and τ = 30 (bottom left). The data
set is the same as in Fig. 10

.

Scale invariance: beyond structure functions Structure functions have
enjoyed great popularity so far, but there are many alternatives to the charac-
terization of scale invariance. It has been shown [47] for example that structure
function estimates based on wavelets perform better. The reason is to be found
in the self-similar nature of wavelets.

Scale invariance can be probed by many other quantities, which are con-
ceptually related the topology of phase space, information measures etc. Since
the domain of application largely exceeds plasma physics and nonlinear time
series analysis, any classification tends to be arbitrary. We just mention here
multifractal analysis, whose purpose is to measure the singularity spectrum (or
multifractal spectrum). The latter is indicative of the dimension of the region
over which a spectral index β of a given value is observed. Singularity spectra
are in turn connected to generalized dimensions [5]. Figure 13 shows an example
of singularity spectrum that was computed by Consolini [18] from the auroral
electrojet (AE) geomagnetic index. For a monofractal process, only one value of
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β should occur, whereas we observe a broad distribution of values that indicative
of a multifractal process.

Fig. 13. Singularity spectrum from auroral electrojet data. Dots are experimental data
points and the line comes from a model that is based on a two-scale Cantor set. Figure
adapted from [18].

The robust estimation of singularity spectra is a delicate task and validation
is not straightforward. The estimation of singularity spectra can be done in
various ways, e.g. [16]. These techniques are outperformed today by a wavelet
method called wave transform modulus maxima [4].

Finally, let us mention the theory of large deviations [66] as an alternative
approach to the modelling of pdfs with long tails. Its relevance for many geo-
physical phenomena (such as earthquakes) may well extend to space plasmas.

3.2 Long-range dependence and self-organized criticality

Long-range dependence is just another manifestation of scale invariance. But,
since it is often studied in connection with Self-Organized Criticality (SOC), it
deserves a section on its own.

The SOC paradigm has recently enjoyed great popularity as a possible ex-
planation for a wide range of phenomena that are observed in complex systems.
SOC occurs in spatially-extended metastable systems, in which small perturba-
tions can trigger fluctuations or avalanches of any size. The main signatures of
SOC are scale invariance and long-range correlations, and a fractal topology (i.e.
a self-similar spatial structure). For a general reference on SOC, see [33] and for a
discussion on the quantification of long-range dependence see [7]. Whether SOC
is really applicable to space plasma phenomena is still a matter of controversy;
meanwhile, some fingerprints of SOC have been identified in magnetospheric
dynamics [71,19].
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Spectral signatures Processes with long-range dependence are sometimes
termed 1/f processes because their power spectra generally exhibit a power
law scaling P (ω) ∝ ω−β with a spectral index β that is close to 1. Therefore,
a necessary (but not a sufficient) condition for having long-range dependence is
to observe spectra that follow a power law down to the smallest frequencies (or
wavenumbers). A cutoff will always eventually appear due to the finite size of
the system.

As discussed before in Sec. 3.1, the estimation of the spectral index β should
be done with great care. In particular, estimators based on wavelets [3] should
systematically be preferred.

Figure 14 shows an application to the AE geomagnetic index, a quantity that
is often used because of its close connection with the dynamics of substorms. One
year of one-minute resolution data were analyzed. The Fourier spectrum reveals
a broken power law, with approximately a ω−2 scaling at high frequencies and
a ω−1 scaling below. The wavelet-based spectrum gives much better evidence
for this broken power law, and in addition reveals the cutoff frequencies more
evidently. The spectrum eventually saturates around a period of a few tens of
days, which is likely to be associated with the solar rotation period. From the
wavelet spectrum, we estimate the following spectral indices: β = 0.96 ± 0.18
for periods from about 4 hours up to 4 days, and β = 1.87 ± 0.03 for periods
between 1 minute and approximately 4 hours. An accurate assessment of these
spectral indices is important for determining the underlying physical models.
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Fig. 14. Power spectrum (left) and autocorrelation function (right) of one year of AE
data from 1986. The sampling period is 1 minute. The power spectrum was estimated
using a periodogram with 5 windows, and the wavelet spectrum (dots) with 4th order
Daubechies wavelets. The wavelet scales are connected to frequencies by ω = 1/a. The
two spectra have been shifted vertically to ease comparison.

Autocorrelation Many simple physical models (i.e. Markov models, autore-
gressive models) give rise to exponentially decaying autocorrelation functions.
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Such a functional dependence means that the process has a characteristic time
scale (or spatial scale). For scale invariant processes, the autocorrelation function
should instead decay algebraically

C(τ) ∝ τ−γ , (31)

where the exponent is connected to the spectral index by γ = 1 − β. Strictly
speaking, a process is called long-range correlated when 0 < γ < 1.

Unfortunately, autocorrelation functions provide a poor estimate of the in-
dices β and γ [7]. This is illustrated in Fig. 14: note how difficult it is to recognize
a power law scaling in the autocorrelation function; an exponential gives almost
as good a fit.

Waiting time statistics Another candidate for an unambiguous indication of
long-range dependence and in particular SOC, is the waiting-time statistics. The
idea is to consider the interval between bursts rather than the burst size. Many
simple models yield distributions of intervals that follow a Poisson distribution
with exponential tails, whereas scale invariant systems should give a power law.
See [25] for an application to the AE index. These methods are receiving today
much attention in the context of solar physics, see [2].

The problem here is merely a question of properly estimating the pdf and
finding a sufficiently long range over which a power law can be meaningfully
assessed. For the estimation of pdfs see [65].

0 0.5 1 1.5 2
0

500

1000

time [days]

AE

Fig. 15. Excerpt of the AE index data. Waiting times are based on the intervals be-
tween each successive crossing of the AE = 200 line.

An example is shown in Fig. 16, again based on one year of AE index data.
An excerpt of the time series is shown in Fig. 15. We computed the duration
of the intervals between successive values where the index cross the AE = 200
amplitude line. Changing this level does not significantly affect the results as
long as it stays in the bulk of the distribution. The pdf of the time intervals
clearly shows a power law scaling that extends over almost two decades (left
plot), and which can definitely not be fitted with an exponential (right plot).
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For small intervals, the results are indicative of the magnetospheric dynamics,
whereas long intervals may be affected by external driving terms such as the
solar wind, hence the deviation from the power law scaling.
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Fig. 16. Waiting time statistics for the AE index in 1986. The pdfs of the time intervals
between successive crossings of the AE = 200 amplitude are shown. Left plot is with
log-log axes and plot with lin-log axes.

Other measures One can think of many other possible measures for long-range
dependence; the main problem is to keep physical insight. The Hurst exponent is
a quantity that has been popular lately in laboratory plasma experiments, but
which should be used with caution. The method itself is called Hurst rescaled
range analysis; it was originally proposed by Hurst, who used it to detect per-
sisting trends in time series (see for example [42]). A recent application of the
Hurst exponent to tokamak plasma turbulence was used to claim the existence
of long-range dependence and SOC [15]. Similar conclusions were drawn from
the analysis of AE data [56]. The problem with this quantity is its ambiguous
interpretation [7].

3.3 Lévy walks and anomalous transport

Recently, a great deal of attention has been paid to anomalous (i.e. non-diffusive)
transport in fluids. For low frequency magnetic turbulence and a strong back-
ground magnetic field, the motion of charged particles is approximately along the
magnetic field lines. When the fluctuation level increases and/or the anisotropy
of the magnetic field changes, the braided topology of the magnetic field may
generate new types of transport regimes that are not necessarily diffusive any-
more. This again results in scale-invariance and non-Gaussian properties.

Anomalous transport can be appropriately described in the framework of
Lévy distributions [10,58]. Consider the probability distribution of the distance
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and the duration of a particle trajectory between two successive bounces. Anoma-
lous transport is intimately associated with distributions that asymptotically
decay as power laws. This means that the particle has a significant probability
to move long distances. Furthermore, some of the moments of the distribution
(such as the mean distance, the variance, etc.) may actually diverge. Studies of
Lagrangian transport of tracer particles in fluid experiments [59] and in plasma
turbulence simulations [55] have revealed the mechanisms by which Lévy walks
occur. The resulting anomalous transport can have an noticeable impact on
macroscopic plasma properties, and may explain percolation from the solar wind
into the magnetosheath.

Fig. 17. Trajectory in 2D space of a particle with Brownian motion (left) and Lévy
random walk (right).

Figure 17 compares the trajectories in 2D space of a particle with standard
random walk motion (i.e. Brownian motion) and a particle that makes Lévy
random walks. The first has a diffusive motion whereas the second will give
super-diffusion. The characterization of such transport regimes is appropriately
done by using a Lagrangian approach with test particles. Let 〈∆x2〉τ be the
mean square distance traveled by a particle during a time interval τ . Then

〈∆x2〉τ = 2Dτα ,

where D is the diffusion coefficient and µ the diffusion exponent. Brownian
motion with standard diffusion corresponds to the case µ = 1, µ < 1 is called
subdiffusion, µ > 1 superdiffusion, and µ = 2 corresponds to ballistic motion8.

As an example we consider test particle simulations based on a 2-D model
[38]. The scaling of the mean squared displacement with the observation time is
shown in Fig. 18. A power law is indeed apparent over several decades. Below the
ion gyrofrequency, the scaling exponent is α = 2, in agreement with the ballistic
nature of the ion gyration. Above the gyrofrequency, however, the exponent α
stays close to 1.8, thereby suggesting that the motion is neither diffusive, nor
ballistic. The deviation at largest time intervals is a finite sample size effect.

8 Note that for processes with Gaussian statistics, the value of µ is connected to the
spectral index β.
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Fig. 18. Scaling of the mean square displacement along the magnetic field vs travel
time τ . The slopes of the straight lines are µ = 1.8 (full line) and µ = 2.0 (dashed line).

4 Outlook

The development of techniques for characterizing nonlinear processes is a chal-
lenging and rapidly expanding area. However, as the techniques tend to become
more and more sophisticated, there appears the risk of losing physical insight. It
is indeed tempting to gather many techniques in a toolbox, and then start doing
data mining.

In the next decades, significant outbreaks are expected (or at least hoped
for) in the following areas:

• The analysis of spatio-temporal processes, which include data from multi-
point measurements, 1D, 2D and 3D models. Our capacity of analyzing data
dramatically drops as soon as a spatial dimension comes in, and most of the
results obtained so far are still based on time-domain techniques.

• As we increasingly have to deal with large and multivariate data sets with
a lot of redundant information, there is also a growing need for doing pre-
processing. This involves ”reducing” the number of significant variables to
make them more tractable. It also means locating interesting features in the
data. Many techniques have been developed for that purpose, using either
classical methods (e.g. principal component analysis) or more novel concepts
such as artificial intelligence.

• Models have a significant advantage over experiments: they can produce
long records of data with a very low noise level. Many nonlinear models in
addition show signatures of low-dimensional determinism, and therefore lend
themselves for a characterization of chaotic behaviour. Tools that have been
developed for that purpose (e.g. [57]) can nowadays provide deep insight into
the analytical properties of such models.
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3. P. Abry, P. Gonçalvès, and P. Flandrin: Wavelets, spectrum estimation, 1/f pro-
cesses, in Wavelets and Statistics, edited by A. Antoniadis and G. Oppenheim,
Lecture Notes in Statistics, Vol. 103 (Springer, Berlin, 1995), pp. 15-30.

4. E. Bacry, J.F. Muzy, and A. Arneodo: Singularity spectrum of fractal signals from
wavelet analysis: exact results, J. Stat. Phys. 70, 635-674 (1993).

5. R. Badii and A. Politi: Complexity (Cambridge Univ. Press, Cambridge, 1997).
6. S. D. Bale, D. Burgess, P. J. Kellogg, K. Goetz, R. L. Howard, and S. J. Mon-

son:Evidence of three-wave interactions in the upstream solar wind, Geoph. Res.
Lett., 23, 109-112 (1996).

7. J. Beran: Statistics for long-memory processes, (Chapman & Hall, London, 1994).
8. D. Biskamp: Nonlinear magnetohydrodynamics, (Cambridge Univ. Press, Cam-

bridge, 1993).
9. T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani: Dynamical systems approach

to turbulence, (Cambridge Univ. Press, Cambridge, 1998).
10. J.-P. Bouchaud and A. Georges: Anomalous diffusion in disordered media: statis-

tical mechanisms, models, and physical applications, Phys. Reports 195, 127-293
(1990).

11. D. R. Brillinger: Time series, (Holt, New York, 1975).
12. L. F. Burlaga: Multifractal structure of the interplanetary magnetic field, Geoph.

Res. Lett. 18, 69-72 (1991).
13. V. Carbone: Scaling exponents of the velocity structure functions in the interplan-

etary medium, Ann. Geoph, 12, 585-590 (1994).
14. V. Carbone, P. Giuliani, L. Sorriso-Valvo, P. Veltri, R. Bruno, E. Martines, and

V. Antoni: Intermittency in plasma turbulence, Planet. Space Sci., in the press.
15. B. A. Carreras, B. P. van Milligen, M. A. Pedrosa, et al.: Experimental evidence of

long-range correlation and self-similarity in plasma fluctuations, Phys. Plasmas 6,
1885-1892 (1999).

16. A. Chhabra and R. V. Jensen: Direct determination of the f(α) singularity spec-
trum, Phys. Rev. Lett. 62, 1327-1330 (1989).

17. D. Coca, M. A. Balikhin, S. A. Billings, H. St. C. K. Alleyne, M. W. Dunlop,
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temporal analysis for resolving plasma turbulence, document WPP-047 (ESA, Paris,
1993).

25. M. P. Freeman, N. W. Watkins, and D. J. Riley: Evidence for a solar wind origin
of the power law burst lifetime distribution of the AE indices, Geoph. Res. Lett. 27,
1087-1090 (2000).

26. U. Frisch: Turbulence (Cambrisge Univ. Press, Cambridge, 1995).
27. K.-H. Glassmeier, U. Motschmann, and R. Schmidt: CLUSTER workshops on data

analysis tools, physical measurements and mission-oriented theory, document SP-
371 (ESA, Paris, 1995).

28. M. L. Goldstein and D. A. Roberts: Magnetoshydrodynamic turbulence in the solar
wind, Phys. Plasmas 6, 4154-4160 (1999).

29. P. Grassberger and I. Procaccia: Characterization of strange attractors, Phys. Rev.
Lett. 50, 1265 (1983).

30. M. J. Hinich and C. S. Clay: The application of the discrete Fourier transform in
the estimation of power spectra, coherence and bispectra of geophysical data, Rev.
Geoph. 6, 347-363 (1968).

31. T. S. Horbury and A. Balogh: Structure function measurements of the intermittent
MHD turbulent cascade, Nonl. Proc. Geoph. 4, 185-199 (1997).

32. W. Horton and A. Hasegawa: Quasi-two-dimensional dynamics of plasmas and
fluids, Chaos 4, 227-251 (1994).

33. H. J. Jensen: Self-organized criticality (Cambridge University Press, Cambridge,
1998).

34. B. B. Kadomtsev: Plasma turbulence (Academic Press, New York, 1965).
35. H. Kantz and T. Schreiber: Nonlinear time series analysis (Cambridge University

Press, Cambridge, 1997).
36. Y. C. Kim and E. J. Powers: Digital bispectral analysis and its applications to

nonlinear wave interactions, IEEE Trans. Plasma Sci. PS-7, 120-131 (1979).
37. V. Kravtchenko-Berejnoi, F. Lefeuvre, V. V. Krasnosel’skikh, and D. Lagoutte:

On the use of tricoherent analysis to detect non-linear wave interactions, Signal
Processing 42, 291-309 (1995).

38. Y. Kuramitsu and T. Hada: Acceleration of charged particles by large amplitude
MHD waves: effect of wave spatial correlation, Geophys. Res. Lett. 27, 629-632
(2000).

39. J.-L. Lacoume, P.-O. Amblard, and P. Comon: Statistiques d’ordre supérieur pour
le traitement du signal (Masson, Paris, 1997).



Techniques for turbulence analysis 29

40. D. Lagoutte, D., F. Lefeuvre, and J. Hanasz: Application of bicoherence analysis
in study of wave interactions in space plasmas, J. Geoph. Res. 94, 435-442 (1989).

41. L. Ljung: System identification: theory for the user (Prentice-Hall, Englewood
Cliffs, NJ, 1999).

42. B. Mandelbrot: Fractals and scaling in finance (Springer Verlag, Berlin, 1997).
43. E. Marsch and C.-Y. Tu: Non-Gaussian probability distributions of solar wind fluc-

tuations, Ann. Geoph. 12, 1127-1138 (1994).
44. E. Marsch: Analysis of MHD turbulence: spectra of ideal invariants, structure func-

tions and intermittency scalings, in [27] pp. 107-118.
45. J. M. Mendel: Tutorial on Higher Order Statistics (Spectra) in signal processing

and system theory: theoretical results and some applications, Proc. IEEE 79(3),
278-305 (1991).

46. S. L. Musher, A. M. Rubenchik, and V. E. Zakharov: Weak Langmuir turbulence,
Phys. Rep. 252, 177-274 (1995).

47. J.-F. Muzy, E. Bacry, and A. Arneodo: Multifractal formalism for fractal sig-
nals: the structure-function approach versus the wavelet-transform modulus-maxima
method, Phys. Rev. E 47, 875-884 (1993).

48. S. W. Nam and E. J. Powers: Applications of higher order spectral analysis to
cubically nonlinear system identification, IEEE Trans. Acoust. Speech Signal Proc.
ASSP-42, 1746-1765 (1994).

49. C. L. Nikias and A. P. Petropulu: Higher-order spectra analysis (Prentice Hall,
New Jersey, 1993).

50. C. L. Nikias and M. E. Raghuveer: Bispectrum estimation: a digital signal process-
ing framework, Proc. IEEE 75, 869-891 (1987).

51. G. Paladin and A. Vulpiani: Anomalous scaling laws in multifractal objects, Phys.
Reports 4, 147-225 (1987).

52. R. K. Pearson: Discrete-time dynamic models (Oxford Univ. Press, Oxford, 1999).
53. H. L. Pécseli and J. Trulsen: On the interpretation of experimental methods for

investigating nonlinear wave phenomena, Plasma Phys. Controlled Fusion 25, 1701-
1715 (1993).

54. D. B. Percival and A. T. Walden: Spectral Analysis for Physical Applications:
Multitaper and Conventional Univariate Tehcniques (Cambridge University Press,
Cambridge, 1993).

55. P. Pommois, G. Zimbardo, and P. Veltri: Magnetic field line transport in three
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