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Introduction

• This morning I will give a pedagogical introduction to a number of different

measures of complexity and (un)predictability.

• This afternoon I will present some results that illustrate some interesting and

fun properties of statistical complexity measures.

• I will also suggest some directions and opinionated guidelines for possible

future work.

• My two lectures today are a very condensed version of a short course that

I’ve developed for the Santa Fe Institute’s Complex Systems Summer School

in China, 2004–2007 and the ISC-PIF Complex Systems Summer School in

Paris, 2007.

• These slides are at hornacek.coa.edu/dave/Paris. Please

consult them for much more detail and many more references.

David P. Feldman http://hornacek.coa.edu/dave
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Outline

1. Why Complexity? Some context, history, and motivation.

2. Information Theoretic Measures of Unpredictability and Complexity

(a) Entropy Rate

(b) Excess Entropy

3. Computational Mechanics and Statistical Complexity

The next slide shows a highly schematic view of the universe of complex systems

or complexity science.

David P. Feldman http://hornacek.coa.edu/dave
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Systems

Complex

Exploitation vs. Exploration

And many more?

Complexity Increases?

Stability through Diversity

Stability Through Hierarchy

Increasing Returns −−> "Power laws"

Themes/General Principles??

Tools/Methods
Nonlinear Dynamics

Machine Learning

Cellular Automata

Symbolic Dynamics

Evolutionary Game Theory

Agent−Based Models

Information Theory

Stochastic Processes

Statistical Mechanics/RG

Topics/Models
Neural Networks (real & fake)

Spin Glasses

Evolution (real & fake)

Immune System

Gene Regulation

Pattern Formation

Soft Condensed Matter

Origins of Life

Origins of Civilization

Origin and Evolution of Language Networks

Foundations
Measures of Complexity

Representation and Detection of Organization

Computability, No Free Lunch Theorems

And many more ...

And many more...

And many, many, more...

Population Dynamics

Based on Fig. 1.1 from Shalizi, ”Methods and Techniques in Complex Systems Science: An

Overview”, pp. 33-114 in Deisboeck and Kresh (eds.), Complex Systems Science in Biomedicine (New

York: Springer-Verlag, 2006); http://arxiv.org/abs/nlin.AO/0307015

David P. Feldman http://hornacek.coa.edu/dave
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Comments on the Complex Systems Quadrangle

• The left and right hand corners of the quadrangle definitely exist.

• It is not clear to what extent the top of the quadrangle exists. Are there

unifying principles? Loose similarities? No relationships at all?

• The bottom of the quadrangle exists, but may or may not be useful depending

on one’s interests.

• I’m not sure how valuable this figure is. Don’t take it too seriously.

• Measures of complexity serve as a tool that can be used to understand model

and real systems.

• I believe that measures of complexity also provide insight into fundamental

questions about relationships between structure and randomness, and

between the observer and the observed.

David P. Feldman http://hornacek.coa.edu/dave
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Complexity: Initial Thoughts

• The complexity of a phenomena is generally understood to be a measure of

how difficult it to describe it.

• But, this clearly depends on the language or representation used for the

description.

• It also depends on what features of the thing you’re trying to describe.

• There are thus many different ways of measuring complexity. I will aim to

discuss a bunch of these in my lectures.

• Some important, recurring questions concerning complexity measures:

1. What does the measure tell us?

2. Why might we want to know it?

3. What representational assumptions are behind it?

David P. Feldman http://hornacek.coa.edu/dave
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Predictability, Unpredictability, and Complexity

• The world is an unpredictable place.

• There is predictability, too.

• But there is more to life than predictability and unpredictability.

• The world is patterned, structured, organized, complex.

• We have an intuitive sense that some things are more complex than others.

• Where does this complexity come from?

• Is this complexity real, or is it an illusion?

• How is complexity related to unpredictability (entropy)?

• What are patterns? How can they be discovered?

David P. Feldman http://hornacek.coa.edu/dave
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Information Theoretic View of Randomness and Structure

• Info theory was developed by Shannon in 1948.

• Information theory lets us ask and answer questions such as:

1. How random is a sequence of measurements?

2. How much memory is needed to store the outcome of measurements?

3. How much information does one measurement tell us about another?

• Information theory provides a natural language for working with probabilities.

• Information theory is not a theory of semantics or meaning.

The Shannon entropy of a random variable X is given by:

H[X ] ≡ −
∑

x∈X

Pr(x) log2(Pr(x)) . (1)

David P. Feldman http://hornacek.coa.edu/dave
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Interpretations of Entropy

• H[X ] is the measure of uncertainty associated with the distribution of X .

• Requiring H to be a continuous function of the distribution, maximized by the

uniform distribution, and independent of the manner in which subsets of

events are grouped, uniquely determines H .

• H[X ] is the expectation value of the surprise, − log2 Pr(x).

• H[X ] ≤ Average number of yes-no questions needed to guess the

outcome of X ≤ H[X ] + 1.

• H[X ] ≤ Average number of bits in optimal binary code for X

≤ H[X ] + 1.

• H[X ] = limN → ∞ 1
N
× average length of optimal binary code of N

copies of X .

David P. Feldman http://hornacek.coa.edu/dave
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Applying Information Theory to Stochastic Processes

• We now consider applying information theory to a long sequence of

measurements.

· · · 00110010010101101001100111010110 · · ·

• In so doing, we will be led to two important quantities

1. Entropy Rate: The irreducible randomness of the system.

2. Excess Entropy: A measure of the complexity of the sequence.

Context: Consider a long sequence of discrete random variables. These

could be:

1. A long time series of measurements

2. A symbolic dynamical system

3. A one-dimensional statistical mechanical system

David P. Feldman http://hornacek.coa.edu/dave
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The Measurement Channel

• Can also picture this long sequence of symbols as resulting from a

generalized measurement process:

Instrument

1

|A|

E
nc

od
er

   

...adbck7d...
Observer

• On the left is “nature”—some system’s state space.

• The act of measurement projects the states down to a lower dimension and

discretizes them.

• The measurements may then be encoded (or corrupted by noise).

• They then reach the observer on the right.

• Figure source: Crutchfield, “Knowledge and Meaning ... Chaos and Complexity.” In Modeling

Complex Systems. L. Lam and H. C. Morris, eds. Springer-Verlag, 1992: 66-10.

David P. Feldman http://hornacek.coa.edu/dave
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Stochastic Process Notation

• Random variables Si, Si = s ∈ A.

• Infinite sequence of random variables:
↔

S = . . . S−1 S0 S1 S2 . . .

• Block of L consecutive variables: SL = S1, . . . , SL.

• Pr(si, si+1, . . . , si+L−1) = Pr(sL)

• Assume translation invariance or stationarity:

Pr( si, si+1, · · · , si+L−1 ) = Pr( s1, s2, · · · , sL ) .

• Left half (“past”):
←
s ≡ · · ·S−3 S−2 S−1

• Right half (“future”):
→
s ≡ S0 S1 S2 · · ·

· · · 11010100101101010101001001010010 · · ·

David P. Feldman http://hornacek.coa.edu/dave
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Entropy Growth

• Entropy of L-block:

H(L) ≡ −
∑

sL∈AL

Pr(sL) log2 Pr(sL) .

• H(L) = average uncertainty about the outcome of L consecutive variables.

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7 8

H
(L

)

L

• H(L) increases monotonically and asymptotes to a line

• We can learn a lot from the shape of H(L).

David P. Feldman http://hornacek.coa.edu/dave
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Entropy Rate

• Let’s first look at the slope of the line:

0 L

H(L)

µ+ h  L
E

E

H(L)

• Slope of H(L): hµ(L) ≡ H(L) − H(L−1)

• Slope of the line to which H(L) asymptotes is known as the entropy rate:

hµ = lim
L→∞

hµ(L).

David P. Feldman http://hornacek.coa.edu/dave
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Entropy Rate, continued

• Slope of the line to which H(L) asymptotes is known as the entropy rate:

hµ = lim
L→∞

hµ(L).

• hµ(L) = H[SL|S1S1 . . . SL−1]

• I.e., hµ(L) is the average uncertainty of the next symbol, given that the

previous L symbols have been observed.

David P. Feldman http://hornacek.coa.edu/dave
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Interpretations of Entropy Rate

• Uncertainty per symbol.

• Irreducible randomness: the randomness that persists even after accounting

for correlations over arbitrarily large blocks of variables.

• The randomness that cannot be “explained away”.

• Entropy rate is also known as the Entropy Density or the Metric Entropy.

• hµ = Lyapunov exponent for many classes of 1D maps.

• The entropy rate may also be written: hµ = limL→∞
H(L)

L
.

• hµ is equivalent to thermodynamic entropy.

• These limits exist for all stationary processes.

David P. Feldman http://hornacek.coa.edu/dave



MIR@W Statistical Complexity. 18 February 2008 17

How does hµ(L) approach hµ?

• For finite L , hµ(L) ≥ hµ. Thus, the system appears more random than it is.

1 L

h (L)µ

hµ

E

H(1)

• We can learn about the complexity of the system by looking at how the

entropy density converges to hµ.

David P. Feldman http://hornacek.coa.edu/dave
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The Excess Entropy

1 L

h (L)µ

hµ

E

H(1)

• The excess entropy captures the nature of the convergence and is defined

as the shaded area above:

E ≡

∞
∑

L=1

[hµ(L) − hµ] .

• E is thus the total amount of randomness that is “explained away” by

considering larger blocks of variables.

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy: Other expressions and interpretations

Mutual information

• One can show that E is equal to the mutual information between the “past”

and the “future”:

E = I(
←

S ;
→

S ) ≡
∑

{
↔

s }

Pr(
↔
s ) log2

[

Pr(
↔
s )

Pr(
←
s )Pr(

→
s )

]

.

• The Mutual Information I[X ; Y ] is defined as the reduction in uncertainty

about one variable given the outcome of the other:

I[X ; Y ] = H[X ] − H[X |Y ] .

• E is thus the amount one half “remembers” about the other, the reduction in

uncertainty about the future given knowledge of the past.

• Equivalently, E is the “cost of amnesia:” how much more random the future

appears if all historical information is suddenly lost.

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy: Other expressions and interpretations

Geometric View

• E is the y-intercept of the straight line to which H(L) asymptotes.

• E = limL→∞ [H(L) − hµL] .

0 L

H(L)

µ+ h  L
E

E

H(L)

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy Summary

• Is a structural property of the system — measures a feature complementary

to entropy.

• Measures memory or spatial structure.

• Lower bound for statistical complexity, minimum amount of information

needed for minimal stochastic model of system

David P. Feldman http://hornacek.coa.edu/dave
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Example I: Fair Coin

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

H
(L

)

L

H(L): Fair Coin

H(L):  Biased Coin, p=.7

• For fair coin, hµ = 1.

• For the biased coin, hµ ≈ 0.8831.

• For both coins, E = 0.

• Note that two systems with different entropy rates have the same excess

entropy.

David P. Feldman http://hornacek.coa.edu/dave
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Example II: Periodic Sequence

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18

H
(L

)

L

H(L)
E + hµL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

 h
µ(

L)

L

hµ(L)

• Sequence: . . . 1010111011101110 . . .

David P. Feldman http://hornacek.coa.edu/dave
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Example II, continued

• Sequence: . . . 1010111011101110 . . .

• hµ = 0; the sequence is perfectly predictable.

• E = log2 16 = 4: four bits of phase information

• For any period-p sequence, hµ = 0 and E = log2 p.

For many more examples, see Crutchfield and Feldman, Chaos, 15: 25-54, 2003.

For more than you probably ever wanted to know about periodic sequences, see Feldman and

Crutchfield, Synchronizing to Periodicity: The Transient Information and Synchronization Time of

Periodic Sequences. Advances in Complex Systems. 7(3-4): 329-355, 2004.

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy: Notes on Terminology

All of the following terms refer to essentially the same quantity.

• Excess Entropy: Crutchfield, Packard, Feldman

• Stored Information: Shaw

• Effective Measure Complexity: Grassberger, Lindgren, Nordahl

• Reduced (R ényi) Information: Szépfalusy, Györgyi, Csordás

• Complexity: Li, Arnold

• Predictive Information: Nemenman, Bialek, Tishby

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy: Selected References and Applications

• Crutchfield and Packard, Intl. J. Theo. Phys, 21:433-466. (1982); Physica D,

7:201-223, 1983. [Dynamical systems]

• Shaw, “The Dripping Faucet ..., ” Aerial Press, 1984. [A dripping faucet]

• Grassberger, Intl. J. Theo. Phys, 25:907-938, 1986. [Cellular automata (CAs),

dynamical systems]

• Szépfalusy and Györgyi, Phys. Rev. A, 33:2852-2855, 1986. [Dynamical systems]

• Lindgren and Nordahl, Complex Systems, 2:409-440. (1988). [CAs, dynamical

systems]

• Csordás and Szépfalusy, Phys. Rev. A, 39:4767-4777. 1989. [Dynamical Systems]

• Li, Complex Systems, 5:381-399, 1991.

• Freund, Ebeling, and Rateitschak, Phys. Rev. E, 54:5561-5566, 1996.

• Feldman and Crutchfield, SFI:98-04-026, 1998. Crutchfield and Feldman, Phys. Rev.

E 55:R1239-42. 1997. [One-dimensional Ising models]

David P. Feldman http://hornacek.coa.edu/dave
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Excess Entropy: Selected References and Applications, con tinued

• Feldman and Crutchfield. Physical Review E, 67:051104. 2003. [Two-dimensional

Ising models]

• Feixas, et al, Eurographics, Computer Graphics Forum, 18(3):95-106, 1999. [Image

processing]

• Ebeling. Physica D, 1090:42-52. 1997. [Dynamical systems, written texts, music]

• Bialek, et al, Neur. Comp., 13:2409-2463. 2001. [Long-range 1D Ising models,

machine learning]

David P. Feldman http://hornacek.coa.edu/dave
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Estimating Probabilities

• E and hµ can be estimated empirically by observing a process.

0
1

1

1
0

...001011101000...

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

P
r(

s 
)3

ObserverSystem

A

B

C

Process

• One simply forms histograms of occurrences of particular sequences and

uses these to estimate Pr(sL), from which E and hµ may be readily

calculated.

However, this will lead to a biased under-estimate for hµ. For more sophisticated

and accurate ways of inferring hµ, see, e.g.,

• Schürmann and Grassberger. Chaos 6:414-427. 1996.

• Nemenman. http://arXiv.org/physics/0207009. 2002.

David P. Feldman http://hornacek.coa.edu/dave
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A look ahead

• Note that the observer sees measurement symbols: 0’s and 1’s.

0
1

1

1
0

...001011101000...

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

P
r(

s 
)3

ObserverSystem

A

B

C

Process

• It doesn’t see inside the “black box” of the system.

• In particular, it doesn’t see the internal, hidden states of the system, A, B,

and C .

• Is there a way an observer can infer these hidden states?

• What is the meaning of state?

David P. Feldman http://hornacek.coa.edu/dave
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An Introduction to Computational Mechanics

1. Computational Mechanics provides another way of measuring an object’s

complexity or regularities.

2. Unlike the excess entropy, computational mechanics makes use of the

models of formal computation to provide a direct, structural accounting of a

system’s intrinsic information processing.

3. Computational Mechanics lets us see how a system stores, transmits, and

manipulates information.

Context:

• As before, we have a long sequence of symbols, s1, s2, s3, · · ·, from a binary

alphabet. Assume a stationary probability distribution over the sequence.

David P. Feldman http://hornacek.coa.edu/dave
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An Initial Example: The Prediction Game

• Your task is to observe a sequence, and then come up with a way of

predicting, as best you can, subsequent values of the sequence.

• The sequence might have non-zero entropy rate, so perfect prediction might

be impossible.

• We will begin by focusing at some length on the following example:

. . . 10111110101110111010111 . . .

David P. Feldman http://hornacek.coa.edu/dave
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Discovery!

. . . 10111110101110111010111 . . .

• After some squinting, you will probably notice that every other symbol is 1.

The other symbols are 0 or 1 with equal probability.

• You discovered a pattern: a regularity.

• Note that this pattern is stochastic.

• Note that you did not recognize the pattern.

• Recognition entails searching for a match to a pre-determined set of patterns

or templates.

• Discovery means finding something new: something not necessarily seen

before.

• How can we represent this regularity mathematically, and can we program a

computer to do pattern discovery?

David P. Feldman http://hornacek.coa.edu/dave
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Initial example, continued

• The machine that can reproduce this sequence is:

BA

1|1

1 | 1/2

0 | 1/2
• From state A, one sees a 1 with probability 1.

• From sate B, one sees a 1 with probability 1/2, and a 0 with probability 1/2.

• This is a stochastic generalization of a finite state machine.

• Note that it is still deterministic in the sense that the output symbol (0 or 1)

determines the next state (A or B).

David P. Feldman http://hornacek.coa.edu/dave
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Initial Example: Why Two States?

• Why are only two states necessary? And what exactly do we mean by “state”?

• There are many particular observed sequences which give one equivalent

information about the future sequences

• For example, if you see 1010, or 1110 or simply 0, in all cases you know with

certainty that a 1 is next.

• The idea is that it only makes sense to distinguish between historical

sequences that give rise to different predictive information.

• There will usually be many sequences that give the same predictive

information. Group these sequences together into a state .

• These states are known as causal states . I will formalize this notion of state

below.

David P. Feldman http://hornacek.coa.edu/dave
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What do you Need to Remember in Order to Predict?

011

0

1

01

11 10

111

010

011

110

101

1111

1010

0101

1110

1101

1011

0111 1111

11111

11110

11101

11011
10111

01111

10101
01111

01110

01011 111111

110111 010111

Do I really have to remember

all this??

My memory isn’t

good enough.

Space of all possible
pasts.
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One Only Needs to Remember the Causal States.

Causal states partition
the space of all past
sequences

A

B

11110110
0

011

010

011101010

0101101111

110111

11011

010111

1110

0111
10101

10

0101

11101

101

1101 10111

01111

01

This is better!

I only need to remember
the causal state, A or B.

0111
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How Might We Find Causal States?

• How much of the left half
←

S is needed to predict the right half
→

S?

• Only need to distinguish between
←

S ’s that give rise to different states of

knowledge about
→

S .

• Two
←

S ’s that give rise to the same state of knowledge are equivalent:

←

S i ∼
←

S j iff Pr(
→

S |
←
s i) = Pr(

→

S |
←
s j) .

• Equivalence classes induced by ∼ are Causal States , minimal sets of

aggregate variables necessary for optimal prediction of
→

S .

• For example, Pr(
→

S |0) = Pr(
→

S |1011). Hence, 0 and 1011 are equivalent

under ∼.

• This means that the probability over the futures
→

S is the same if you’ve seen

0 or 1011.
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ǫ-Machines

• The causal states together with the probability of transitions between causal

states are an ǫ-machine , a minimal model capable of statistically reproducing

the original configuration.

• The ǫ-machine tells us how the system computes .

• The “ǫ” reminds us that the measurement symbols upon which the machine is

formed may be distorted via noise or the discretization process.

BA

1|1

1 | 1/2

0 | 1/2

• Note: In this example hµ = 1.

David P. Feldman http://hornacek.coa.edu/dave
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Distribution over Causal States

• Transitions between causal states are Markovian.

• Thus, the stationary (or asymptotic) distribution p ≡ Pr(σ) over the causal

states is the left eigenvector of the transition matrix T :

pT = p . (2)

• Normalize p so that
∑

α pα = 1.

• For this example,

p =





1
2

1
2



 . (3)

• I.e., the ǫ-machine spends an equal amount of time in states A and B.

David P. Feldman http://hornacek.coa.edu/dave
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Statistical Complexity

• The statistical complexity is defined as the Shannon entropy of the asymptotic

distribution of the causal states:

Cµ ≡ −
∑

α

pα log2 pα . (4)

• To perform optimal prediction of the system one needs only to remember the

causal states.

• The statistical complexity thus measures the minimum amount of memory

needed to perform optimal prediction.

• The statistical complexity is a measure of the pattern or structure or regularity

present in the system.

• For our example, Cµ = 1.
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Some Important Properties of ǫ-machines

• (For proofs, see Shalizi and Crutchfield. J. Statistical Physics. 104:819. 2001.)

• The causal states are a sufficient statistic:

I[
→

S ;
←

S ] = I[
→

S ; σ] . (5)

I.e., all the information about the future is contained in the causal states.

• The causal states are minimal.

• The causal states are unique up to trivial relabeling.

• The causal states form a Markov process.

• The ǫ-machine is a semi-group.
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Statistical Complexity vs. Excess Entropy

• Both the statistical complexity Cµ and the excess entropy E are measures of

complexity or structure or pattern or organization. However, they are not the

same.

• Cµ = the minimal amount of memory needed to optimally predict the

process.

• E = the amount of information the past carries about the future.

Cµ ≥ E . (6)

Memory needed for model ≥ Memory of the process itself . (7)

• E is time reversal invariant; Cµ is not.
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Example I

Fair Coin:

AH1/2 T1/2

· · ·HHTHTHTTTHTHTHTTHTHH · · ·

Entropy rate hµ = 1, Statistical Complexity Cµ = 0.
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Example II

Period 2 Pattern:

↓1

B C

↑1

· · · ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓ · · ·

Entropy rate hµ = 0, Statistical complexity Cµ = 1.
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A non-minimal example

Consider this machine for a period 2 sequence:

A B C D

1 | 1 0 | 1

0 | 1

1 | 1

• States A and C are identical—they represent the same state of information

about the future.

• So A and C should be merged to make one causal state.

• The same holds for B and D.

• The process of forming equivalence classes described on previous slides

ensure that ǫ-machines are minimal.
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Algorithms for Inferring ǫ-machines

There are two basic approaches

1. Merge

• Initially distinguish between different histories. Then merge states that give

rise to the same future distribution. I.e., merge states that are equivalent

under ∼.

• See Hanson, PhD Thesis, University of California, Berkeley, 1993.

2. Split:

• Start with one state. This is equivalent to assuming a history of length

zero. I.e., an IID process.

• Add a symbol to history length. Split each state only if doing so increases

predictability.

• Repeat.
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CSSR

• Shalizi and Shalizi(Klinkner) have implemented a state-splitting algorithm

known as CSSR. (Causal State Splitting Algorithm)

• See Shalizi and Shalizi pp. 504–511 of Max Chickering and Joseph Halpern

(eds.), Uncertainty in Artificial Intelligence: Proceedings of the Twentieth

Conference, http://arxiv.org/abs/cs.LG/0406011.

• See also Shalizi, Shalizi, and Crutchfield.

http://arxiv.org/abs/cs.LG/0210025. 2002.

• CSSR source code is available at http://bactra.org/CSSR.

• CSSR has been applied to: crystallography, geomagnetic fluctuations, natural

languages, anomaly detection, natural languages, and more.
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Computational Mechanics References and Applications

Almost all of the papers below can be found online either on arXiv.org or with a

little bit of searching.

• Crutchfield and Young, Phys. Rev. Lett, 63:105-108, 1989

• Crutchfield and Young, in Complexity, Entropy and the Physics of Information, Addison-Wesley,

1990. [Detailed analysis of Logistic and Tent maps]

• Crutchfield, Physica D, 75:11-54, 1994. [Long article, good review section, many different

examples. A good place to start.]

• Shalizi and Crutchfield. J. Statistical Physics. 104:819. 2001. [Mathematical foundations of

causal states. Careful proofs of optimality and minimality.]
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Applications and Extensions of Causal States

• Hanson, PhD Thesis, University of California, Berkeley, 1993. [Cellular Automata]

• Hanson and Crutchfield, Physica D, 103:169-189, 1997. [Cellular Automata]

• Upper, PhD Thesis, University of California, Berkeley, 1997. [Hidden Markov Models]

• Delgado and Solé, Phys. Rev. E, 55:2338-2344, 1997. [Coupled Map Lattices]

• Witt, Neiman and Kurths, Phys. Rev. E, 55:5050-5059, 1997. [Stochastic resonance]

• Goncavales, et. al., Physica A, 257, 385-389. 1998. [Dripping faucets]

• Feldman and Crutchfield, SFI:98-04-026, 1998. [One-dimensional Ising models. Includes lengthy

review, calculations of excess entropy, and comparisons to statistical mechanical quantities.]

• Varn, et al. Physical Review B. 66:156. 2002. [Layered Solids]

• Clarke, et al. Physical Review E. 67:016203. 2003 [Geomagnetism]

• Palmer, et al. Advances in complex systems. 1:1-16. 2001. [Climate modeling, ǫ-machines

inferred from empirical data.]

• Shalizi, Discrete Mathematics and Theoretical Computer Science, AB(DMCS) (2003): 11-30.

[Dynamical systems on random networks]
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Applications and Extensions of Causal States, Continued

• Görnerup and Crutchfield. SFI 04-06-020. [Self-assembling evolutionary systems]

• Ray. Signal Processing. 84:1114. 2004.

• Shalizi, et al. Physical Review Letters. 93:118701. 2004. [Cellular automata in more than one

dimension]

• Padro and Padro, in Proceedings of the Fifth International Workshop on Finite-State Methods and

Natural Language Processing. 2005.

• Young, et al. Physical Review Letters. 94:098701. 2005. [Two-dimensional brain slices.

Applications to Alzheimer’s disease.]

• Park, et al. Physica A. 379:179. 2007. [Financial time series. Stock market.]

• Klinkner, et al. arXiv:q-bio/0506009v2. [Shared information in neural networks.]

• Shalizi, et al. Phys. Rev.E. 73: 036104. 2006. [2D cellular automata. Automatic order-parameter

finding!]
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Computational Mechanics Conclusions:

Questions:

• What are patterns and how can we discover them?

• What does it mean to say a system is organized?

Summary:

• Computation theory classifies sets of sequences by considering how difficult it

is to recognize them.

• Causal states and ǫ-machines adapt computation theory for use in a

probabilistic setting.

• The ǫ-machine provides an answer to the question: What patterns are

present in a system?

• The ǫ-machine can be inferred directly from observed data.

• The ǫ-machine reconstruction pattern can discover patterns—even patterns

that we haven’t seen before.
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Outline

1. Four examples illustrating the subjectivity or contextuality of complexity.

2. Exploring the the relationship between complexity and entropy.

3. Some thoughts on possible futures for complexity measures.
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Thoughts on the Subjectivity of Complexity

• There is not a general, all-purpose, objective measure of complexity.

• Objective knowledge is, in a sense, knowledge without a knower.

• Subjective knowledge depends on the knower.

• Complexity, at least as I’ve been using the term, is a measure of the difficulty

of describing or modeling a system.

• This will depend on who is doing the observing and what assumptions they

make.

• Depending on the observer a system may appear more or less complex.

• Entropy and complexity are often related in interesting ways.

• I’ll illustrate this with four examples.
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Example I: Disorder as the Price of Ignorance

• Let us suppose that an observer seeks to estimate the entropy rate.

• To do so, it considers statistics over sequences of length L and then

estimates hµ using an estimator that assumes E = 0.

• Call this estimated entropy hµ
′(L). Then, the difference between the

estimate and the true hµ is (Prop. 13, Crutchfield and Feldman, 2003):

h′µ(L) − hµ =
E

L
.

• In words: The system appears more random than it really is by an amount

that is directly proportional to the the complexity E.

• In other words: regularities (E) that are missed are converted into apparent

randomness (h′µ(L) − hµ).

• Crutchfield and Feldman, “Regularities Unseen, Randomness Observed.” Chaos. 15:23-54.

2003.
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Example II: Effects of Bad Discretization

• Iterate the logistic equation: xn+1 = f(xn), where f(x) = rx(1 − x).

• Result is a sequence of numbers. E.g., 0.445, 0.894, 0.22, 0.344, . . ..

• Generate symbol sequence via:

si =















0 x ≤ xc

1 x > xc

.

• For many values of r this system is chaotic.

• It is well-known that if xc = 0.5, then the entropy of the symbol sequence is

equal to the entropy of the original sequence of numbers.

• Moreover, it is well known that hµ is maximized for xc = 0.5.
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Example II: Effects of Bad Discretization (continued)

• Our estimates for hµ and E depend strongly on xc.

• Using an xc 6= 0.5 leads to an hµ is always lower than the true value.

• Using an xc 6= 0.5 can lead to an over- or an under-estimate of E.
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• Note: r = 3.8 in this figure.
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Example III: A Randomness Puzzle

• Suppose we consider the binary expansion of π. Calculate its entropy rate

hµ and we’ll find that it’s 1.

• How can π be random? Isn’t there a simple, deterministic algorithm to

calculate digits of π?

• It is not random if one uses Kolmogorov complexity, since there is a short

algorithm to produce the digits of π.

• It is random if one uses histograms and builds up probabilities over

sequences.

• This points out the model-sensitivity of both randomness and complexity.
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• Histograms are a type of model. See, e.g., Knuth. arxiv.org/physics/0605197. 2006.
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Example IV: Unpredictability due to Asynchrony

• Imagine a strange island where the weather repeats itself every 5 days. It’s

rainy for two days, then sunny for three days.

B

C

D

E

A
Rain

Rain

Sun

Sun

Sun

• You arrive on this deserted island, ready to begin your vacation. But, you

don’t know what day it is: {A, B, C, D, E}.

• Eventually, however, you will figure it out.
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Example IV: Unpredictability due to Asynchrony

• Once you are synchronized—you know what day it is—the process is

perfectly predictable; hµ = 0.

• However, before you are synchronized, you are uncertain about the internal

state. This uncertainty decreases, until reaching zero at synchronization.

• Denote by H(L) the average state uncertainty after L observations are

made.

• The total state uncertainty experienced while synchronizing is the Transient

Information T:

T ≡
∞
∑

L=0

H(L) . (8)
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Example IV: Unpredictability due to Asynchrony

• It turns out that different periodic sequences with the same P can have very

different T’s.

• For a given period P :

Tmax ∼
P

2
log2 P , (9)

and

Tmin ∼
1

2
log2

2 P , (10)

• E.g., if P = 256, then

Tmax ≈ 1024 , and Tmin ≈ 32 . (11)

• For disturbingly more detail, see Feldman and Crutchfield, “Synchronizing to

Periodicity.” Advances in Complex Systems. 7:329-355. 2004.
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Summary of Examples

• In all cases choice of representation and the state of knowledge of the

observer influence the measurement of entropy or complexity.

1. Ignored complexity is converted to entropy.

2. Measurement choice can lead to an underestimate of hµ and an over- or

under-estimate of E.

3. π appears random.

4. A periodic sequence is unpredictable and, in a sense, complex.

• Hence, statements about unpredictability or complexity are necessarily a

statement about the observer, the observed, and the relationship between the

two.

• So complexity and entropy are relative, but in an objective, clearly specified

way.
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Modeling Modeling

• Much of what I have presented in the last several lectures can be viewed as

an abstraction of the modeling process itself.

• These examples provide a crisp setting in which one can explore trade-offs

between, say, the complexity of a model and the observed unpredictability of

the object under study.

• The choice of model can strongly influence the result yielded by the model.

This influence can be understood.

• The hope is these models of modeling can give us some general, qualitative

insight into modeling.
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Model Dependence

• There is no (computable), all-purpose measure of randomness or complexity.

• This isn’t cause for despair. Just be as clear as you can about your modeling

assumptions.

• Sometimes modeling assumptions can be hidden.

• I don’t think will ever be a 100% objective measure of complexity. A

statement about complexity will always be, to some extent, a statement about

both the observer and the observed.
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Complexity vs. Entropy

• What is the relationship between complexity and entropy?

• Are they completely unrelated? Is complexity the opposite of entropy?

• Is complexity an absence of unpredictability, or the presence of something

else?
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One approach: Prescribing Complexity vs. Entropy Behavior

• Zero Entropy −→ Predictable −→ simple and not complex.

• Maximum Entropy −→ Perfectly Unpredictable −→ simple and not complex.

• Complex phenomena combine order and disorder.

• Thus, it must be that complexity is related to entropy as shown:

Entropy

C
om

pl
ex

ity

• This plot is often used as the central criteria for defining complexity.
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Complexity-Entropy Phase Transition?

Edge of Chaos?

• Additionally, it has been conjectured that there is a sharp transition in

complexity as a function of entropy:

Entropy 

C
om

pl
ex

ity

• Perhaps this complexity-entropy curve is universal—it is the same for a broad

class of apparently different systems.

• Part of the motivation for this is the remarkable success of universality in

critical phenomena and condensed matter physics.
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Complexity vs. Entropy: A Different Approach
Define Complexity on its own Terms

• Do not prescribe a particular complexity-entropy behavior.

• To be useful, a complexity measure must have a clear interpretation that

accounts in a direct way for the correlations and organization in a system.

• Consider a well known complexity measures: excess entropy

• Calculate complexity and entropy for a range of model systems.

• Plot complexity vs. entropy. This will directly reveal how complexity is related

to entropy.

• Is there a universal complexity-entropy curve?
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Logistic Equation: Bifurcation Diagram
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• For a given r (horizontal axis), the “final states” are shown.

• Chaotic behavior appears as a solid vertical line.

• Examples:

– r = 3.2: Period 2.

– r = 3.5: Period 5.

– r = 3.7: Chaotic.
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Complexity vs. Entropy: Logistic Equation

Plot the excess entropy E and the entropy rate hµ for the logistic equation as a

function of the parameter r.
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• Note that E and hµ depend on a complicated way on r.

• Hard to see how complexity and entropy are related.

• Numerical results. For each r, 1 × 10
7 symbols were generated. The largest L was 30 for low

entropy sequences. r was varied by increments of 0.0001.
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Complexity-Entropy Diagrams

• Plot complexity vs. entropy. This will directly reveal how complexity is related

to entropy.

• This is similar to the idea behind phase portraits in differential equations: plot

two variables against each other instead of as a function of time. This shows

how the two variables are related.

• It provides a parameter-free way to look at the intrinsic information processing

of a system.

• Complexity-entropy plots allow comparisons across a broad class of systems.
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Complexity-Entropy Diagram for Logistic Equation

• Excess entropy E vs. entropy rate hµ from two slides ago.
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• Structure is apparent in this plot that isn’t visible in the previous one.

• Not all complexity-entropy values can occur; there is a forbidden region.

• Maximum complexity occurs at zero entropy.

• Note the self-similar structure. This isn’t surprising, since the bifurcation

diagram is self-similar.
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Ising Models

Consider a one- or two-dimensional Ising system with nearest and next nearest

neighbor interactions:

• This system is a one- or two-dimensional lattice of variables si ∈ {±1}.

• The energy of a configuration is given by:

H ≡ −J1

∑

i

sisi+1 − J2

∑

i

sisi+2 − B
∑

si .

• The probability of observing a configuration C is given by the Boltzmann

distribution:

Pr(C) ∝ e−
1

T
H(C) .

• Ising models are very generic models of spatially extended, discrete degrees

of freedom that have some interaction that makes them want to either do the

same or the opposite thing.
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Complexity-Entropy Diagram for 1D Ising Models
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• Excess entropy E vs. entropy rate hµ for the one-dimensional Ising model

with anti-ferromagnetic couplings.

• Model parameters are chosen uniformly from the following ranges:

J1 ∈ [−8, 0], J2 ∈ [−8, 0], T ∈ [0.05, 6.05], and B ∈ [0, 3].

• Note how different this is from the logistic equation.

• These are exact transfer-matrix results.
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Complexity-Entropy Diagram for 2D Ising Models
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• Mutual information form of the excess entropy Ei vs. entropy density hµ for

the two-dimensional Ising model with AFM couplings

• Model parameters are chosen uniformly from the following ranges:

J1 ∈ [−3, 0], J2 ∈ [−3, 0], T ∈ [0.05, 4.05], and B = 0.

• Surprisingly similar to the one-dimensional Ising model.

• Results via Monte Carlo simulation of 100x100 lattices.
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Complexity-Entropy Diagram for 2D Ising Model
Phase Transition
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• Convergence form of the excess entropy Ec vs. entropy density hµ for the

two-dimensional Ising model with NN couplings and no external field.

• Model undergoes phase transition as T is varied at T ≈ 2.269.

• There is a peak in the excess entropy, but it is somewhat broad.

• Results via Monte Carlo simulation of 100x100 lattice.
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Complexity-Entropy Diagram for 2D Ising Model Phase
Transition, continued
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• Convergence form of the excess entropy Ec vs. entropy density hµ versus

temperature T for the two-dimensional Ising model with NN couplings and no

external field.

• Model undergoes phase transition as T is varied at T ≈ 2.269.

• There is a peak in the excess entropy is broader if plotted as a function of T

than when plotted against hµ as on the previous slide.

• Results via Monte Carlo simulation of 100x100 lattice.
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Ising Model Configurations

• Typical configurations for the 2D Ising model below, at, and above the critical

temperature.
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Cellular Automata

• The next row in the grid is determined by the row directly above it according to

a given rule

• Start with a random initial condition

Example:

Rule

TimeCondition
Initial

• The number of cells away from the center cell that the rule considers is known

as the radius of the CA.
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Different Rules Yield Different Patterns

• Each pattern is for a different rule.
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Complexity-Entropy Diagram for Radius- 1, 1D CAs
(aka Elementary CAs, or ECAs)
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• Excess entropy E and entropy density hµ for all distinct (88)

one-dimensional elementary cellular automata.

• E and hµ from the spatial strings produced by the CAs.

• Since there are so few ECAs, it’s hard to discern a pattern. What if we try

radius-2 CAs?
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Complexity-Entropy Diagram for Radius- 2, 1D CAs
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• Excess entropy E vs. entropy rate hµ for 10, 000 radius-2, binary CAs.

• E and hµ from the spatial strings produced by the CAs.

• The CAs were chosen uniformly from the space of all such CAs.

• There are around 4.3 × 109 such CAs, so it is impossible to sample the

entire space.
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Complexity-Entropy Diagram for Markov Models
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• Excess entropy E vs. entropy rate hµ for 100, 000 random Markov models.

• The Markov models here have four states, corresponding to dependence on

the previous two symbols, as in the 1D NNN Ising model.

• Transition probabilities chosen uniformly on [0, 1] and then normalized.

• Note that these systems have no forbidden sequences.
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Topological Markov Chain Processes

• Consider finite-state machines that produce 0’s and 1’s.

• Assume all branching transitions are equally probable

• Examples:
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Topological Processes and Statistical Complexity

• These topological processes can be exhaustively enumerated for any finite

number of states.

• We now use a different measure of complexity: the statistical complexity Cµ

• Cµ is the Shannon entropy of the asymptotic distribution over states.

• We consider only minimal machines.

• Cµ ≥ E.
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Complexity-Entropy Diagram for Topological
Processes
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• hµ, Cµ pairs for all 14, 694 distinct topological processes of n = 1 to n = 6

states. (Work done by Carl McTague.)

• Note the prevalence of high-entropy, high-complexity processes.
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A Gallery of Complexity-Entropy Diagrams

The next slide shows, left to right, top to bottom, complexity-entropy diagrams for:

1. Logistic Equation

2. One-Dimensional Ising model with nearest- and next-nearest-neighbor

interactions

3. Two-Dimensional Ising model with nearest- and next-nearest-neighbor

interactions

4. One-Dimensional radius-2 cellular automata

5. Random Markov chains

6. All 6-state topological processes
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A Mosaic of Complexity-Entropy Diagrams
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Complexity-Entropy Diagrams: Summary

• Is it the case that there is a universal complexity-entropy diagram?

Entropy 

C
om

pl
ex

ity

• No!

• However, because of this non-universality, complexity-entropy diagrams

provide a useful way to compare the information processing abilities of

different systems.

• Complexity-entropy plots allow comparisons across a broad class of systems.
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Complexity-Entropy Diagrams: Conclusions

• There is not a universal complexity-entropy curve.

• Complexity is not necessarily maximized at intermediate entropy values.

• It is not always the case that there is a sharp complexity-entropy transition.

• Complexity-entropy diagrams provide a way of comparing the information

processing abilities of different systems in a parameter-free way.

• Complexity-entropy diagrams allow one to compare the information

processing abilities of very different model classes on similar terms.

• There is a considerable diversity of complexity-entropy behaviors.
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Some Thoughts on the Past, Present, and Future of Complexity Measures

• Over the past two decades there have been considerable advances in how

we think about and measure complexity, memory, structure, and pattern.

• There are now several, well understood and (fairly) widely used ways to

approach structural complexity. Useful for:

– Analyzing real data

– Deepening understanding of model systems and fundamental sources of

complexity or regularity.

– Shedding light on foundational issues in pattern discovery.

• Along the way there has been (too much) hype and quite a few neat ideas

that have turned out to be not as useful as one may have hoped.
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A Few Cautionary Notes

• The term complexity has many different meanings. At least one adjective is

needed to help distinguish between different uses of the word.

• Be cautious of “edge of chaos” hype.

• Don’t invent a new complexity measure unless you have a compelling reason

to do so.

• A good complexity measure should tell you something other than the value of

the complexity measure.

• All Universal-Turing-Machine-based complexity measures suffer from several

drawbacks:

1. They are uncomputable.

2. By adopting a UTM, the most powerful discrete computation model, one

loses the ability to distinguish between systems that can be described by

computational models less powerful than a UTM.
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Complexity = Order × Disorder?

• There are a number of complexity measures of the form:

Complexity = Order × Disorder

• Disorder is usually some form of entropy.

• Sometimes “order” is simply (1 − hµ).

• Often, “order” is taken to be some measure of “distance from equilibrium,”

where equilibrium and equiprobability are sometimes considered to be

synonymous.

In my view these sorts of complexity measures have some serious shortcomings:

• Lack a clear interpretation and direct accounting of structure.

• Unclear that distance from equilibrium is equivalent to order.

• Assign a value of zero complexity to all systems with vanishing entropy.
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Open Questions and Future Directions

1. Mathematical and Conceptual Foundations.

(a) Ay’s and Löhr’s talks today

(b) Situations in which the excess entropy and/or the statistical complexity

diverge

2. Extensions

(a) Non-stationary data

(b) Two-dimensional systems

• Feldman and Crutchfield, Physical Review E,67:051104, 2003 and references therein.

• Shalizi, et al., Phys. Rev. Lett. 93:118701, 2004.

• Young, et al. Physical Review Letters. 94:098701. 2005.

• Shalizi, et al. Phys. Rev. E. 73: 036104. 2006.

(c) Complexity of networks
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Open Questions and Future Directions

3. Applications

(a) Understand more fully the relation between various complexity measures

and critical phenomena.

(b) Disordered or inhomogeneous systems, e.g. spin glasses.

(c) Agent-based models.

(d) Empirical data, a.k.a., the real world. (Watkins’ talk. )

(e) Other model systems. (Nerukh’s talk.)

4. Inference

(a) Better estimators for causal states, statistical complexity, etc.

(b) Connection between measures of complexity and the difficulty of learning

a pattern.

(c) On-line complexity estimation.
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Open Questions and Future Directions

• In general, I believe that these tools are a useful framework for considering

questions of complexity, organization, and emergence.

• These concerns seem to me to be central to the study of complex systems.
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Thanks and Acknowledgments

• Much of what I’ve presented is joint work with with Jim Crutchfield.

• Thanks also to: Hao Bai-lin, Erica Jen, Kristian Lindgren, Susan McKay, Carl

McTague, Cris Moore, Richard Scalettar, Cosma Shalizi, Dan Upper,

Dowman Varn, Jon Wilkins, Karl Young,

• Graduate Students: Please consider applying to the Santa Fe Institute’s

Complex Systems Summer Schools in Beijing, China, and Santa Fe, USA.

• Please also consider applying for SFI Postdoctoral Fellow positions.

• I would welcome comments, questions, suggestions, and critique.

• Thank you!
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