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Outline

!Higher Order Spectra (HOS)

! Their properties

! Application to wave-wave interactions

! Spectral energy transfers
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!Why is the Fourier transform ubiquitous ?

!Because Fourier modes are the eigenmodes of linear 
differential systems, which occur so frequently
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! Frequencies are therefore natural invariants of linear stationary 
differential systems

Why Fourier spectra ?
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Linear vs nonlinear

! In linear systems, all the pertinent information is contained in the 
power spectral density

! In nonlinear systems, Fourier modes may get coupled

 ! their phases also contain pertinent information

! higher order spectral analysis precisely exploits this phase 
information



Warwick 2/2008 7

Techniques for nonlinear systems
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Definition of HOS

! Take a nonlinear system that is described by

 f(u) : a continuous, nonlinear and time-independent function

 u(x,t) : plasma density, magnetic field, …

! With mild assumptions, one may decompose f into a series 
(Wiener, 1958)
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Definition of HOS

! Taking the discrete Fourier transform, we get a Volterra series

 with

! The kernels  !  embody the physical information of the process. In 
a Hamiltonian framework, they are directly connected to known 
physical processes (Zakharov, 1970)

! In plasmas,only low order kernels are expected to be significant 
(Galeev, 1980)
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Three-wave couplings

! A Fourier mode can only couple to other ones in a specific way

! For quadratic nonlinearities, the resonance condition reads

 
This describes three-wave interactions

 Examples : harmonic generation, decay instability (L"S+L’)

P(f)

f"k "l "p
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Three-wave couplings
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Four-wave couplings

!

! For cubic nonlinearities, the resonance condition is

 

 This describes four-wave interactions

 Example : modulational instability 
               (L+S = L’+L’’) P(f)

f"k "l "p"m
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Definition of HOS

! Rearranging the Volterra series and taking the expectation for a 
homogeneous plasma (!/!x = 0), we have

power spectrum bispectrum trispectrum

The power spectrum P("p) is not an invariant quantity anymore !
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The bicoherence

! The normalised bispectrum gives the bicoherence

! The bicoherence is bounded : 0 < b2 < 1

! It measures the amount of signal energy at bifrequency ("k, "l) 

that is quadratically phase coupled to "k+l 

! bicoherence =0    ⇔     no phase coupling
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The tricoherence

! Similarly define the tricoherence

! It measures the amount of signal energy at trifrequency              

("k, "l , "m) that is quadratically phase coupled to "k+l+m 

Example :

swell in a water basin
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Example : water waves
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Principal domain of bicoherence
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Because of symmetries, 
the principal domain 
reduces to a triangle
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Example : water waves

   

harmonic generation
1.2 + 1.2 " 2.4 Hz
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Bicoherence : interesting properties

! Signals that are asymmetric vs time reversal ( u(t) # u(—t) ) give 
rise to imaginary bispectra

! typically occurs with wave steepening

! Signals that are up-down asymmetric  ( u(t) # — u(t) ) give rise to 
real bispectra 

! typically occurs with cavitons

t
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〈ukulu
∗
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〈ukulu
∗
k+l〉 imaginary
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Asymmetry : ocean waves example

  bicoherence from real part only bicoherence from imaginary part only

Conclusion : up-down asymmetry but no clear evidence for steepening
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Physical picture



High bicoherence ! Nonlinear interactions
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Example : sine wave + first harmonic
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We generate a sine wave + its first harmonic + some noise

There is no nonlinear coupling here !
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Example : sine wave + first harmonic

! Even though there is no nonlinear coupling at work, the 
bicoherence is huge, simply because the phases are coupled

25
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Another example

! Sometimes, a nonlinear instrumental gain may explain the phase 
coupling

!

! But in most cases, we forget that we need a large statistics to 
determine a significant level of bicoherence (at least 30 wave 
periods)
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u
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swell (i.e. they are phase coupled to the fundamental) because this is where
they are most efficiently generated by the wind.

These two examples both reveal the existence of significant phase couplings
between specific Fourier modes. We must stress, however, that a phase coupling
does not necessarily imply the existence of nonlinear wave interactions per se.
In the first example, the ridge could be interpreted both as a decay (0.6 →
f1 + f2) or as an inverse decay (f1 + f2 → 0.6) process. At this stage we cannot
tell whether the observed phase coupling is accompanied by an energy transfer
between Fourier modes (i.e. the wavefield is dynamically evolving) or whether it
is just the remnant of some nonlinear effect that took place in the past or maybe
even some nonlinear instrumental effect. This caveat has been highlighted by
Pécseli and Trulsen [53]. Multipoint measurements are needed to unambiguously
assess nonlinear wave interactions. This will be addressed shortly in section 2.6.

2.4 Estimating higher order spectra

Higher order spectra can be estimated either by direct computation of the higher
order moments from Fourier transforms, or by fitting the data with a parametric
model.

The Fourier approach is computationally straightforward: the time series
is divided into M sequences, for each of which the Fourier transform is computed.
An unbiased estimate of the bispectrum is then

B̂(ωk, ωl) =
1

M

M
∑

i=1

u(i)
k u(i)

l u∗ (i)
k+l , (13)

The empirical estimate of the bicoherence becomes
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Careful validation of higher order quantities is essential as these quantities are
prone to errors. Hinich and Clay [30] have shown that the variance of the bico-
herence is approximately

Var[b̂2] ≈
4b̂2

M

(

1 − b̂2
)

, (15)

and that this quantity has a bias

bias[b̂2] ≈
4
√

3

M
. (16)

It is therefore essential to have long time series (i.e. many intervals M) in order
to properly assess low bicoherence levels. This constraint becomes even more
stringent for tricoherence estimates.
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Example
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! Sometimes, a nonlinear instrumental gain may explain the phase 
coupling

!

! But in most cases, we forget that we need a large statistics to 
determine a significant level of bicoherence (at least 30 wave 
periods)

Var b̂2 ≈ 4b̂2

M

(
1− b̂2

)

Var b̂2 ≈ 4b̂2

M

(
1− b̂2

)

M : number of independent ensembles

Bias b̂2 ≈ 4
√

3
M

Another example : 

magnetic field measurements 
by two satellites
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Example : magnetic field data

! The dual AMPTE-UKS and AMPTE-IRM satellites measure B just 
upstream the Earth’s quasiparallel bow shock
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Excerpt of magnetic field

! Structures seen by UKS are observed about 1 sec later by IRM

AMPTE-UKS

AMPTE-IRM
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Excerpt of magnetic field

! Some structures show clear evidence for steepening (SLAMS)

|B|

Bx

precursor 
whistler
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Bicoherence of AMPTE data

! Existence of quadratic 
wave interactions is 
attested by bicoherence 
analysis

! The tricoherence is weak, 
suggesting that four-wave 
interactions are not at 
play

0.15 + (0.4 to 0.6) = 0.55 to 0.75 Hz
SLAMS  +   whistlers = more whistlers   
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Physical picture

! There is a phase coupling between the precursor whistlers and the 
SLAMS

|B|

Bx

coupling 
?
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Physical picture

HOS tell us there is a phase coupling

But they don’t say what caused this coupling 

! are the whistlers instabilities triggered by the SLAMS ?

! were the whistlers generated farther upstream and are they now 

frozen into the wavefield ?

! are the whistlers inherently part of the SLAMS (= solitary waves) ?

! is all of this an instrumental effect ?
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Physical picture

To answer this question unambiguously, 

we need spatial resolution, 

i.e. multipoint measurements

A transfer function approach
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Nonlinear Transfer Function
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Model of the black box

! First approximate the spatial derivative (Ritz & Powers, 1980)

! Then assume the random phase approximation (mostly valid for 
broadband spectra)

! The Volterra model then naturally leads to a kinetic equation
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The kinetic equation

! The kinetic equation tells us how the spatial variation of the 
spectral energy at a given frequency varies according to linear/
nonlinear processes (Monin & Yaglom, 1976)

Pp : power spectral 

density at 
frequency "p

losses/gains due to 
quadratic effects

losses/gains due to 
cubic effects

linear growth
or damping

The spectral energy transfers  T  tell us how much energy is exchanged 
between Fourier modes : the are the key to the dynamical evolution of 

the wavefield
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The linear term

! We first consider the energy balance

! How much of the spatial variation of the spectral energy is due to 
linear / nonlinear effects ?

SLAMS are 
linearly
unstable 
(growth)

whistlers are 
linearly

damped but 
receive energy 

through 
nonlinear 
couplings
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The spectral energy transfers

! The quadratic enery transfer  Tm,n  quantifies the amount of 

spectral energy that flows from "m + "p " "m+p  

waves at ~0.65 Hz receive 
energy through nonlinear 
coupling between 0.15 Hz 

and 0.5 Hz
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Physical picture

! Whistler waves are an inherent part of the SLAMS, which result 
from a competition between nonlinearity and dispersion
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Miscellaneous

! Volterra kernels, like HOS are sensitive to noise and finite sample 
effects. Careful validation is crucial.

! Nonlinear transfer function models have traditionally been 
estimated in the Fourier domain (Ritz & Powers, 1980)

! Kernels estimation by nonlinear parametric models (NARMAX = 
Nonlinear AutoRegressive Moving Average with eXogeneous inputs) 
today is a powerful alternative (Aguirre & Billings, 1995)
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Conclusions

! HOS have been there for a long time - but they’re are still as 
relevant

! They are the right tools for describing weakly nonlinear wave 
interactions (weak turbulence, …)

! But as for all higher order techniques, careful validation is 
compulsory to avoid pitfalls


