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® Most of our data analysis techniques involve strong
assumptions on linearity, stationarity, etc.

® Yet the world we live in is
® non-linear
® non-stationary
® non-Gaussian
@ spatio-temporal
9 ..

Warwick, 2/2008
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@® The proper understanding of these “non-properties” requires
new (more advanced) tools.

® Many mistakes have been made by ignoring these non-
properties

® These “non-properties” can however give deeper insight into
the physics

Warwick, 2/2008

An old mystery
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® M. C.Escher didn't know how to properly finish his drawing

> e A ——

Warwick, 2/2008



An old mystery
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® The solution was found last year : self-similarity !
\

Warwick, 2/2008

Wigner-Ville
A

® Unfortunately, interferences arise when signals are mixed

Waty(t,v) = Wa(t,v) + Wy (t,v) + 20{Wory (6, v) }
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Wigner-Ville
L e WP Tt L Wy VP T T WY e WVl VA

@® Various methods have been developed for attenuating interferences in
the Wigner-Ville transform

but these cross-terms remain a severe problem

Signal in time
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Tiling the plane

A

@® The problem is : how to properly partition the time-frequency plane ?

Shannon Fourier

frequency At AI/

time

1V

Gabor Wavelet

Warwick, 2/200




Fourier vs multiscale analysis
A ™l TIPS BRI A VSR g i

FOURIER

amplitude

0 100 200 300 400
Warwick, 2/200: time [sec]

Wavelet transform : definition
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. _I_(X) .
Fourier X(w) = (x(t), ") = / x(t) e 79t dt
transform —00
- +w
Continuous X(r,0) = (alt) ora(®) = [ olt) v (0) de
wavelet transform —o0 ’

wavelet Vra

mother () = 1 w(t—T)

Vva a
. scale
Discrete wavelet Xjr=(x(t),¥;r(t) = / x(t) V5 (t) dt
transform —00
1 .
MOtheT 410 (t) ¥ (277t~ k)

Warwick, 2/2008 wavelet 2i7/2



Mother wavelets : examples

A

Daubechies 1 . hat )
mexican ha
(Haar) ¢(t) _ d_ 1 — 12 /202
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(complex) (t) _ 1 e_t2/2026—27rjut
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wavelets

The wavelet shape
should reflect the type

Daubechies 8 ) of features that are
Daubechies wavelets present in the data
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Power spectral density
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® Byintegrating |(x(t), ¥a.~(t))|° over time, we recover a “power
spectral density”

10 :
Fourier transform Morlet wavelet transform
—o— Wavelet transform f=1/a Of the sunspot number,
10° 1 with

frequency = 1/scale

power spectral density
S

10 \_ \_3 \_2 |
10 10 10 10 10

freaniencv [1/davl

What scales ?

AT o ALV, b St 27 RO, e VR et

® Asin Fourier analysis, the scales are bounded
@ The smallest scale should be > 4 sampling periods (2 for Fourier)

@ The largest scale should typically be < 0.25 x sequence length.
This defines the cone of influence

scale

log(ampl)

time [sampling periods] x 10"
® Since the wavelets are self-similar, the scales should increase
logarithmically ( linearly as in Fourier)

@ For the discrete wavelet transform, a dyadic grid is imposed

Warwick, 2/2008




Complex or real ?
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® Complex wavelets provide information about phase and amplitude.
They are more appropriate for oscillatory behaviour.

@® Real wavelets are used instead for probing peaks and discontinuities.

complex n=2048 n_=60 a_ =4 a_ =512 real salogram  n=2048 n_ =60 a_ =4 a =512
sca min max sca min max

ampitude
: o

o [4)] -
amplitude
o

. © .
= O (=] o 2
T T T T T

scale
logampl)

L

1
i

H‘ | il
0 500 1000 1500 2000 500 1 OOO 1500 2000
time [sampling periods] time [sampling petiods]

How significant are the wavelet coeffs ?

@® Plotting confidence intervals is essential for determining the
significance of peaks in the wavelet transform

scalogram n=2048 n__ =60 a =4 a =512
sca min max

o 2f
g’ Scalogram of a white noise
Al 7 process

Are the peaks really that
significant ?

scale

logampl)
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Warw time [sampling periods]




Vanishing moments

A

A wavelet has n vanishing moments if

400
/ thap(t)dt =0 for 0<k<n

— 00

such a wavelet is orthogonal to polynomials of degree n-1

n=0

J\

Warwick, 2/2008

n=2 n=4 n=5

Holder (Lipschitz) regularity

A function x(t) has a local Holder exponent h if

lx(t+7) — x(t)] < K|7‘|h(t), 77— 0

Then the wavelet transform (with n’th order wavelets) will satisfy

Kla/"® —a—0 if h(t)<n
< —
|X(T,CL)‘_{ K]a|", a— 0 if h(t)Zn

If the wavelet order n is large enough,
then the wavelet transform reveals local
regularity

Warwick, 2/2008




Local regularity
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The consequences of the previous property are

@ n'th order wavelets are insensitive to trends that can be described by
polynomials of order < n

® low order wavelets thus should be avoided, unless the signal has a low
regularity

Adapt you wavelet to the properties of your data set
* regularity

* symmetry

* time-frequency localisation

Warwick, 2/2008

Discrete or continuous transform ?
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SC SCALE

AR

TIME TIME
Continuous transform Discrete transform
* highly redundant * non-redundant and uses orthogonal bases
* good for data analysis » useful for multiresolution analysis
* scales can be freely chosen (denoising) and compression
» computationally expensive * scales are imposed

« very fast algorithms (faster than FFT)

Warwick, 2/2008
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Multiresolution analysis
TR AT~ A NN by ot W TR I e VYRR et

. detail time
signa l
detail
‘l_ ‘ i [ [ ] [ ] [ ] (] 2
approximatio detail §
t r—' i r— [ [ ] (]

approximatio

[\ [” :
approximatio
n
The discrete wavelet transform can be implemented by

means of a fast pyramidal recursive filter bank
Warwick, 2/2008
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Why use wavelets then ?
LY W Tt s WP SV A, T Y st VOV Ll WV

® Because wavelets are local in time AND frequency, they’re much more
efficient than the Fourier transform for capturing transients.

® There have been attempts to use wavelet bases for simulating HD /
MHD, with limited success so far.

Warwick, 2/2008



Example

Wavelet denoising

24

Example
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AC magnetic field measurements made by the a sounding rocket in the
terrestrial cusp region

1000F T T T T T T T 7
)]
E
£ 500 MMWWHL b )M 1
S frite
) |
()= I I I I I | E
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

time [sec]

The search coil data are heaviliy polluted by interference
noise from nearby instruments. Is this hopeless ?

Warwick, 2/2008
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Spectral analysis
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By Npts=16384 Neff=46 overl=50
8
10 ———— ———

6
10

4
10

Power Spectral Density

I I ‘I H‘2 I IIH 3 T 4
10 10 10 10
Frequency

2
10

Interference noise occurs at all scales, and is non-stationary
=> there is no way we can filter it out by Fourier analysis

Warwick, 2/2008
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Discrete wavelet analysis
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Recipe for denoising with the discrete wavelet transform

® Decompose the signal at different levels (Approximations and Details

® Ateach level, compare the wavelet coefficients for noisy and quiet
periods

® Setto 0 all coefficients corresponding to “noise”

® Reconstruct the data

Warwick, 2/2008



500

1 . .
Set to zero all wavelet coefficients l | original
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28
Results
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Practical issues
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® Which wavelet should | use ?
@ Not so important, but symmetry considerations may play a role.
® Much more important is the choice of the wavelet order :
* high order = smoother + larger support
+ low order = more discontinuous + smaller support

® How many levels ?
@ More levels = large scales are investigated more in detail

® Where should | set the threshold ?

@ Depends a lot on the type of « noise »
® Automatic thresholding criteria have been proposed, but selection must be
driven by knowledge of the noise

Warwick, 2/2008
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Conclusion
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@ Discrete wavelet transforms are remarkably efficient for removing
transient patterns

® Their lack of redundancy makes their interpretation difficult
=>» they're rarely used for analysis purposes

« Wavelet denoising is like removing weed while saving daisies »
(M. Wickerhauser)

Warwick, 2/2008




Example

Spectral analysis of ion motion in a turbulent
magnetic field

= an example of non-stationarity

32

Simulation model
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@® Test particle simulations based on a 2-D model
(Hada and Kuramitsu, 1999)

B
()-8 () (ke
k,l

® Phase correlation of adjacent modes can be adjusted by modifying the
phases

® Wavefield is periodic in L (L=512), wavefield spectrum goes as

B x k=2

® amplitude and phase coherence are varied

Warwick, 2/2008
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Simulation model
L e WP Tt L Wy VP T T WY e WVl VA

1 — 1
same
spectrum g g

£ | £
= 0.5 5

-0.5

phase coherence strongly affects ion diffusion

through nonlinear trapping by large-amplitude
waves

Warwick, 2/2008
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Ion trajectories
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ion trajectories in the x—t plane (grey levels represent |B| )

uncorrelated strong phase
] 250~m-correlation B
b §r
200 l'{" ‘\ / ‘}"’

150

100

50

-200 -100 0 100 200

Warwick, 2/2008
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Ion motion
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Particle motion is a mixture

: _ 2500, :
of trappings (gyration) and : \ I Am
walks (reflection by 2000 ' a U // J“walkv
coherent structures) | / VY

1500+ |
= 1000+ walk (+ Fermi
1 / acceleration)
5001 .
trapping 2 /
0h A N
o \/‘\_ ‘,// \/‘
-500" ; : . .
0 50 100 150 200 250
time [gyroperiods])

Warwick, 2/2008
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Spectral analysis
L e WP Wt (L W VO T Y st WV U L WAL

® We're dealing with a self-similar process
= u(z) = A%u(Az)
= u(k) = Fu(z) ~ k77

@® Estimate the power spectral density of x(t) using windowed Fourier
transform with various types of windows and detrendings

Warwick, 2/2008
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Spectral analysis

A

power spectral density

10" 10° 10° ] S‘?If'
frequency [gyroperiods’1] similar 2

What is the correct
spectral index ?

Warwick, 2/2008
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Spectral analysis
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Multiresolution analysis provides a sound and unique estimate of the
spectral index

10

10 -
3 .
2 Fourier
a) .
© analysis
S .0l -
5 10
@
2
2 100 | Multiresolution analysis |

(shifted vertically by 1/10)

-4 -2 0
10 10 10
frequency [gyroperiods’1]

Warwick, 2/2008
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Conclusion
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@® Fourier analysis can be wrong when the time series is not sufficiently
stationary

® Even for stationary data, Fourier analysis gives a biased estimate of the
spectral index

=>» multiresolution analysis provides an unbiased and more robust
estimate of the spectral index (Abry et al., 2000)

® But be careful to take wavelets of sufficiently high order

Warwick, 2/2008

Example

Spectral index of a geomagnetic index
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Spectral index for AE
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Characterizing scale invariance
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@® Scale invariance is a key concept in the statistical analysis of turbulence

® The property of interest is the interplay between scales, rather than
the role played by each individual scale
=>» spectral indices reveal one aspect only of scale invariance

® To get a more complete picture, other estimators are needed
@ structure functions
® waiting times
@ singularity spectra
@ ..

@ For the particular case of our ion motion, it is interesting to look at the
distance travelled by the ion

Warwick, 2/2008
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Ion motion
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Let (A,_,~2>Tbe the mean squared distance travelled by an ion after a

time T

® For diffusion (Brownian motion)

(Ax®); =2Dr
@ For convection (ballistic motion) .,, o o
(Ax®), =v°1°
® More generally, we have 7
(Ax?), =aTH
Regimes with are particularly interesting, for the transport
may then be neiti.l‘.<yl.“...<..:nor diffusive (anomalous transport)

Warwick, 2/2008
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Ion motion
TN AT ™98 ol AN b bt ST R A, A8 VIR i

= 15
510
A Application to ion
Y motion in turbulent
%101()* { wavefield
&
>
: motion below
10 ] rofrequency is
10 10" 10 10’ 10° 10° 10'l] &Y bal?istic Y
interval length T
< | /// motion Is
5 superdiffusive
c 2 S .
o] I SR RS IR St A
o
ﬁ o o
> | finite sample
= size effects !
3
-2 “““‘71 ‘ IHHHO | “"”"1 IHM2 ‘ | HHS | o
10 10 10 10 10 10 10

interval length 7

Example

Detecting intermittency
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Detecting intermittency in flows

IO AT™ 0 o AN b St 27 R OIS  gy rts

@ Here intermittency = aternation of regimes with normal spectral
content, and regimes with significant excess of energy in a given range
of scales

® Example : magnetic field measurements upstream the Earth’s bow

shock
10
5 L .
E ﬁ
— 0 - |
-
5+ a
_1 0 | | | | |
0 200 400 600 800 1000 1200
time [s]
Warwick, 2/2008
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Intermittency

AT o ALV, b St 27 RO, e VR et

@® To quantify the anomalous energy content, we define the
local intermittency measure (LIM)

| X (t,7)]?
[fmas | X (¢, 7) |2 dit!

tmin

7(t77) -

Any value of LIM that significantly exceeds 1 implies a local excess of
energy

We then need to do a statistical test (chi-square)

Warwick, 2/2008
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Intermittency
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® Example from magnetic field at bow shock: Fourier spectral analysis
doesn’t reveal anything unusual

E o
B
p , ]
10 B,
_100 260 460 _660 860 10‘00 1200 b B
time [s] g 3
[0
a 10°
S
B
o
B -2
—_ 10 B
o
=
(o]
o
107t
The power spectral ~ — 1
density look rather dull 10 10 10
Warwick, 2/2008 Frequency
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Intermittency
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scalogram n=9800 n_ =60 a_ =4 a__ =2400
sca min max

@ Sr -
Ei
A wavelet scalogram 50 |
reveals the presence & .| |

of structures at
various scales, but is
it really that
intermittent ?

scale
o
log(ampl)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time [sampling periods]

Warwick, 2/2008
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A

The local
intermittency
measure reveals clear
bursts

What are these ?

| X (¢, )

scale
—t
Q

Intermittency

intermittency factor n=9600 n_.=60

amplitude

10

v(t,7) =

Warwick, 2/2008

Jimes | X (t,7)|2 dt!

10’

0

| !nl 'Pl
NN

time

1000 2000 3000 V4000 50006 68000 7000 8000 9000

r25

r20

r15
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Intermittency

® The scalogram reveals the existence of occasional bursts of energy

15

B [nT]

\

|
760
Warwick, 2/2008

780 790 800 810
time [s]

770
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Intermittency

A

@® This bursty behaviour can be observed both in the continuous and in
the discrete wavelet transform

10

o ﬂ - original
Ea it e t a,=1
LR RE /! |
— i [ TURIPTORAY WO T . L ! a, =2
# ' b gty » Pl
-10 ' 4.
[ WW‘.‘F' a5=
i
= it Lottt d sk bl eod ik PR T S T e a,=8
% (R M R L B Bt T LA A U B R (DAL
© a5=16
M a6=32
J a7=64

a8:128
Multiscale decomposition WWMMWM/\/\/

. ) a9=256
of the magnetic field
a10=512
. 0 1dOO 2060 SdOO 4060 5060 6060 7600 8060 9060 10000
Warwick, 2/2008 time [sampling units]
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Intermittency
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@® Since the wavelet transform is linear, many interesting mathematical
property remain valid

10*

original data set
surrogate data set

—_
o
w
T
!

probability density
function of wavelet
coefficients (DOG

wavelet) at scale=8

probability density
3

—_
o

T

!

-5 0 5
amplitude

Warwick, 2/2008
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Example a0

CLF a)

Bx

nth]

A

The same concept can be = »
used to detect changes :

i

l]'l;h\;\:b.-.lllll[lllll

dY/dt [n
E

6 wavelet
monthly mean of transform
eastward component of
geomagnetic field Ea
(de Michelis et al., 2003) 3

2

1

6

LIM

5

o
2

LR
il | )‘ '"' } ‘Jm II\N I

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Time [year]
Plate I. Monthly mean values of the geomagnetic secular variation for the eastward component ( ¥) measured at Chambon la Forét (CLF)

observatory from 1890 to 2002 (panel a). Wavelet transform absolute value obtained using Alexandrescu et al. [3] methodology (panel b).
Warwick, 2/2008 Results from LIM analysis using the condition LIM, >3 (panel c).

Example

Identifying polarised wave packets
in AC magnetic field measurements




Magnetic field fluctuations

® AC magnetic field measurements at a quasiperpendicular bow shock

A w«,, !

ampl

1/frequency

4 5 6 7 8
time [sampling periods]
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Spectrogram vs scalogram

IO AT™ 0 o AN b St 27 R OIS  gy rts

scalogram n=12001 n__ =10 a =4 a =150
sca min max

30 T T

ampl

3

3
=
}
I —

&
g 10°
1 2 3 4 5 6 7 8 g 10 N 0 2 4 6 8 10 12
time [sampling periods] x10° time [sampling periodsj x10*
spectrogram scalogram (Morlet
i P TIPPNAY saranralate)
Warwick, 212008 there is nothing really special about the
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Polarisation

@ Since spectral characteristics alone are not very appealing here, we look for the
polarisation vs time and frequency
B,

® Compute

S.l‘.l S.Ly Srz
v Y Y
S(w)=| Syz Syy Sy

\ \ Y
A_S;:;L‘ k_Szy ‘-SZZ

D<p<l1 p=1—

® Diagonalise

)\m in

/\7na;1:

® The polarisatioir 1>

Warwick, 2/2008
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Fourier vs wavelet

Wavelet Fourier
analysis analysis
polarisation (wavelet) polarisation (Fourier)

0.8 0.8
£ £
g 0.6 . R E 0.6
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2 e
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power spectral density (wavelet) 4 power spectral density (Fourier)
10
10°
2
T 10 Power
= =
2 . spectral 2
S 10 ]
o ° o
K density & o
2
10
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Conclusion
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® Wavelets are better suited for the characterization of
wave packets

@® This is important for turbulent wavefields in which different types of
waves may coexist

@® But the compromise between time and frequency resolution cannot
be avoided

Warwick, 2/2008



Example

Automated event timing multipoint data
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Timing
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® A major fraction of multisatellite data analysis involves timing of
specific events on the 4 satellites

® Timing = when does a given event occur on the 4 spacecraft ?

Bow shock crossina on March 31, 2001, 19:00:38 — 19:00:5Q, FGM data
100 T T T T T T

SCH
SC2
SC3

AR

80

E
= 60r i
a1]
40 i
20 ! ! L | I !
0 2 4 6 8 10 12 14
Warwick time [sec]
68
Timing

A

@ But accurate timing can become quite difficult when one does not
observe the same « pattern » on all four spacecraft

® Examples where there is no clear solution

~

@® This becomes a pattern identific

Warwick, 2/2008
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Standard approach
A

® The usual approach involves computation of the cross-correlation
function

T _ _
(=3 [u1(t) — @ ][uz(t — ) — Ug]

t=-T

Uul JU2

o

f\ |
O R
0.5 / 1
Q A / W‘M/ | \
200 400 600 800

1000

-05

® And looking for the lag

. / // f\
that maximizes T !
c(7)

“\\\\
lag
—gOO —260 —1(I)0 0 1(I)O 260 300
Warwick, 2/2008 lag
Standard approach
A

Warwick, 2/2008

T _ _
(=3 [u1 () — ta][uz(t — 7) — Ug]

t=-T

This cross-correlation approach has many drawbacks

@ The width T of the interval greatly influences the result. How should its value
be chosen ?
@ Itis biased by large scales

@ Itis easily misled by offsets and trends

We use instead a multiresolution approach that has been developed in
the frame of stereoscopic vision
(Perrin & Torresani, 2001)



7

Multiresolution approach

A

WHISPER plasma frequency, SIC 1, starting Feb 26, 2001, 5:53:23 UT
50 T T T T T T T T T

At each time t, the wavelet 40

transform of u(t) uniquely ol W NW |
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time series, we compare their
wavelet coefficients
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Example

AT o ALV, b St 27 RO, e VR et

A test case : electron density measurements
(Soucek et al., 2004)

Whisper plasma frequency from Feb 26, 2001 5h53m23s, Cluster1 and Cluster2
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A

Multiresolution approach

Whisper plasma frequency from Feb 26, 2001 5h53m23s, Cluster1 and Cluster2
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Why is this approach better ?

Multiresolution analysis offers several advantages :

good resolution :its resolution can be better than the sampling period
(for correlation analysis, it is fixed by the window width)

robustness :it can handle patterns that do not look exactly the same

it is data-adaptive :the method selects itself the scales at which the
corelation is the highest (like in artificial vision)
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Final result
e B T W Tt AW

Time series

Cross-correlation
between wavelet
coefficients
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Whisper plasma frequency from Feb 26, 2001 5h53m23s, Cluster1 and Cluster2
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Example : comparison of EIT images

1000
100 200 300 400 500 600 700 800 900 1000

Image at 1:38

disparity due to
solar rotation varies
from O to 6 pixels

x-shift[pixels]

= right image

horizontal
disparity between
2 images (in

1000 5
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plerS) 200 300 400 500 600 700 800 900 1000

Image at 3:20

= left image
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Example

Extracting coherent structures from
turbulent flows

78

Turbulent flows
AN AT ™98 ol AN NN b bt MW R A, A8 VIR i

2 key issues in the analysis of 2D (or 3D) turbulence are:

® how to identify and isolate coherent structures ?
ﬁ _’“" // Vorticity field in 2D turbulence
\\\\, /) (Farge et al., 1985)

@Q@ -/

N 13' Ol $/
SSON(EF

@® can Navier-Stokes simulations be improved using spectral methods
with better basis functions than Fourier modes ?

()f | (l - V) U= —/—)Vp SAVAITE SN §

Warwick, 2/2008
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Turbulent flows
L B Tt L O W, Tty W st W L T DA

elliptic
regions (dominated
by rotation) : coherent
vortices

2D numerical £
simulation of i
vorticity field
(Farge et al., 1996)

hyperbolic
regions (dominated
by deformation) :
incoherent
background

shear
layers

Warwick, 2/2008

Pitfalls
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Beware of pitfalls
AT P AN VAN b bt P T AVt

Example : Arneodo et al. (Nature,
1991) claimed to have seen the
Richardson cascade in fully
developed turbulence, simply by
looking at the intricate structure of
the wavelet transform

Warwick, 2/2008
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Torrence

AN AT™ S0 o AN, b St 27 R O, e VR et

a. a=0.00
1 T T T T T
o wy (7 Uy e &
s G TRIERL S
= 10 = =z
B =
3] g
o
100
0 100 200 300 400 500
Time (dt)
)
e}
kel
[
o
1004
0 100 200 300 400 500
Time (6t)

Fic. 4. (a) The local wavelet power spectrum for a Gaussian
white noise process of 512 points, one of the 100 000 used for
the Monte Carlo simulation. The power is normalized by 1/0? and
contours are at 1, 2, and 3. The thick contour is the 95% confidence
level for white noise. (b) Same as (a) but for a red-noise AR(1)
process with lag-1 of 0.70. The contours are at 1, 5, and 10. The
thick contour is the 95% confidence level for the corresponding

Warwick, 2/2008 red-noise spectrum.
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Some useful references
AN AT PN NN o W R N AP VU et

® B. Burke Hubbard, The world according to wavelets: the story of a mathematical
technique in the making (Peters, 1998): a friendly introduction

® |. Daubechies, Ten lectures on wavelets (SIAM, 1992): more mathematical, a classic

® S. Mallat, A wavelet tour of signal processing (Academic Press, 2002) : excellent
reference on wavelets

® J.-L. Starck & F. Murtagh, Astronomical image and data analysis (Springer, 2006):
wavelets for astronomical images

@® Wavelets and turbulence: lots of articles by M. Farge, K. Schneider, et al., see
http://wavelets.ens.fr/

® G. Paschmann, et al. Analysis Methods for Multi-Spacecraft Data (1SS, Bern, 2000),
can be downloaded from
http://www.issi.unibe.ch/PDF-Files/analysis methods 1 la.pdf
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