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Multiscale analysis

Warwick, 2/2008

Most of our data analysis techniques involve strong 
assumptions on linearity, stationarity, etc.

Yet the world we live in is
non-linear

non-stationary

non-Gaussian

spatio-temporal

...
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The proper understanding of these “non-properties” requires 
new (more advanced) tools.

Many mistakes have been made by ignoring these non-
properties

These “non-properties” can however give deeper insight into 
the physics
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An old mystery

M. C. Escher didn’t know how to properly finish his drawing
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An old mystery

The solution was found last year : self-similarity !
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Wigner-Ville

Unfortunately, interferences arise when signals are mixed
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Wigner-Ville

Various methods have been developed for attenuating interferences in 
the Wigner-Ville transform

but these cross-terms remain a severe problem
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Tiling the plane

The problem is : how to properly partition the time-frequency plane ?
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Fourier vs multiscale analysis
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Wavelet transform : definition

Fourier 
transform

Continuous 
wavelet transform

X(τ, a) = 〈x(t), ψτ,a(t)〉 =
∫ +∞

−∞
x(t) ψ∗τ,a(t) dt

Discrete wavelet 
transform

Xj,k = 〈x(t), ψj,k(t)〉 =
∫ +∞

−∞
x(t) ψ∗j,k(t) dt

X(ω) = 〈x(t), ejωt〉 =
∫ +∞

−∞
x(t) e−jωt dt

mother 
wavelet

ψτ,aj,k(t) =
1

2j/2
ψ

(
2−jt− k

)

mother 
wavelet

ψτ,a(t) =
1√
a
ψ

(
t− τ

a

)

scale
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Mother wavelets : examples

  

Daubechies wavelets
of orders 1,2,4,8

Continuous 
wavelets

mexican hat

Morlet 

(complex)

Daubechies 1

(Haar)

Daubechies 2

The wavelet shape 
should reflect the type 
of features that are 
present in the data

Daubechies 4

Daubechies 8

ψ(t) =
1√

2πσ2
e−t2/2σ2

e−2πjνt

ψ(t) =
d2

dt2
1√

2πσ2
e−t2/2σ2
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Scalogram
12

Scalogram of the daily 
sunspot number

a=11 years
solar cycle

a=27 days
solar rotation
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Power spectral density

By integrating                                    over time, we recover a  “power 
spectral density”
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Morlet wavelet transform 
of the sunspot number, 
with 
frequency = 1/scale

|〈x(t), ψa,τ (t)〉|2
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What scales ?

As in Fourier analysis, the scales are bounded
The smallest scale should be > 4 sampling periods (2 for Fourier)

The largest scale should typically be < 0.25 x sequence length. 
This defines the cone of influence

Since the wavelets are self-similar, the scales should increase 
logarithmically (! linearly as in Fourier)

For the discrete wavelet transform, a dyadic grid is imposed

14
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Complex or real ?

Complex wavelets provide information about phase and amplitude. 
They are more appropriate for oscillatory behaviour.

Real wavelets are used instead for probing peaks and discontinuities.
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complex real
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How significant are the wavelet coeffs ?

Plotting confidence intervals is essential for determining the 
significance of peaks in the wavelet transform

16

Scalogram of a white noise 
process

Are the peaks really that 
significant ?
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Vanishing moments

A wavelet has n vanishing moments if

such a wavelet is orthogonal to polynomials of degree n-1
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∫ +∞

−∞
tk ψ(t) dt = 0 for 0 ≤ k < n

n=0 n=1 n=2 n=3 n=4 n=5

Warwick, 2/2008
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Hölder (Lipschitz) regularity

A function x(t) has a local Hölder exponent  h  if

Then the wavelet transform (with n’th order wavelets) will satisfy

|x(t + τ)− x(t)| ≤ K|τ |h(t), τ → 0

|X(τ, a)| ≤
{

K |a|h(t), a→ 0 if h(t) ≤ n
K |a|n, a→ 0 if h(t) ≥ n

If the wavelet order n is large enough, 
then the wavelet transform reveals local 
regularity
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Local regularity

The consequences of the previous property are

n’th order wavelets are insensitive to trends that can be described by 
polynomials of order < n

low order wavelets thus should be avoided, unless the signal has a low 
regularity

19

Adapt you wavelet to the properties of your data set
• regularity
• symmetry
• time-frequency localisation
• ...

Warwick, 2/2008

Discrete or continuous transform ?

Discrete transform
• non-redundant and uses orthogonal bases

• useful for multiresolution analysis 
(denoising) and compression

• scales are imposed

• very fast algorithms (faster than FFT)

Continuous transform
• highly redundant

• good for data analysis

• scales can be freely chosen

• computationally expensive
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Multiresolution analysis

signal

The discrete wavelet transform can be implemented by 
means of a fast pyramidal recursive filter bank

detail

approximation

detail

approximation

time

sc
al

e

detail

approximatio
n

Warwick, 2/2008

Why use wavelets then ?

Because wavelets are local in time AND frequency, they’re much more 
efficient than the Fourier transform for capturing transients.

There have been attempts to use wavelet bases for simulating HD / 
MHD, with limited success so far.
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Example

Wavelet denoising

Warwick, 2/2008
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Example

 AC magnetic field measurements made by the a sounding rocket in the 
terrestrial cusp region

The search coil data are heaviliy polluted by interference 
noise from nearby instruments. Is this hopeless ?
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Spectral analysis

Interference noise occurs at all scales, and is non-stationary 
! there is no way we can filter it out by Fourier analysis

Warwick, 2/2008
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Discrete wavelet analysis

Recipe for denoising with the discrete wavelet transform

Decompose the signal at different levels (Approximations and Details

At each level, compare the wavelet coefficients for noisy and quiet 
periods

Set to 0 all coefficients corresponding to “noise”"

Reconstruct the data
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D1

D2

D3

D4

A4

A3

A2

A1

original 
data

Set to zero all wavelet coefficients 
that exceed the threshold

Warwick, 2/2008
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Results

Time series
— raw signal
— denoised

Power spectral
density
— raw signal
— denoised
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Practical issues

Which wavelet should I use ?
Not so important, but symmetry considerations may play a role.

Much more important is the choice of the wavelet order :

• high order = smoother + larger support

• low order = more discontinuous + smaller support

How many levels ?
More levels = large scales are investigated more in detail

Where should I set the threshold ?
Depends a lot on the type of «"noise"»

Automatic thresholding criteria have been proposed, but selection must be 
driven by knowledge of the noise

Warwick, 2/2008
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Conclusion

Discrete wavelet transforms are remarkably efficient for removing 
transient patterns

Their lack of redundancy makes their interpretation difficult
! they’re rarely used for analysis purposes

«!Wavelet denoising is like removing weed while saving daisies!» 
 (M. Wickerhauser)



Example

Spectral analysis of ion motion in a turbulent 
magnetic field 

! an example of non-stationarity

Warwick, 2/2008
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Simulation model

Test particle simulations based on a 2-D model 
(Hada and Kuramitsu, 1999) 

Phase correlation of adjacent modes can be adjusted by modifying the 
phases

Wavefield is periodic in L (L=512), wavefield spectrum goes as
        

amplitude and phase coherence are varied
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Simulation model

phase coherence strongly affects ion diffusion 

through nonlinear trapping by large-amplitude 
waves
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Ion trajectories

ion trajectories in the x–t plane  (grey levels represent |B| )

uncorrelated 
phases

strong phase 
correlation

Brownian 
motion
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Ion motion

walk (+ Fermi 
acceleration)

 Particle motion is a mixture 

of trappings (gyration) and 

walks  (reflection by 

coherent structures)

walk

trapping ?

Warwick, 2/2008

36

Spectral analysis

We’re dealing with a self-similar process

Estimate the power spectral density of x(t) using windowed Fourier 
transform with various types of windows and detrendings
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Spectral analysis

?

?

What is the correct
 spectral index ?

Self-
similar ?

Warwick, 2/2008
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Spectral analysis

 Multiresolution analysis provides a sound and unique estimate of the 
spectral index

Fourier 
analysis

Multiresolution analysis
(shifted vertically by 1/10)
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Conclusion

Fourier analysis can be wrong when the time series is not sufficiently 
stationary

Even for stationary data, Fourier analysis gives a biased estimate of the 
spectral index  
! multiresolution analysis provides an unbiased and more robust 
estimate of the spectral index (Abry et al., 2000) 

But be careful to take wavelets of sufficiently high order

Example

Spectral index of a geomagnetic index 
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Another example : the AE index

The auroral 

electrojet (AE) index 
is a proxy for 
geomagnetic activity 
in the auroral regions. 

It exhibits 
nonstationarity and 
multifractal 
properties. 

Warwick, 2/2008
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Spectral index for AE
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Characterizing scale invariance

Scale invariance is a key concept in the statistical analysis of turbulence

The property of interest is the interplay between scales, rather than 
the role played by each individual scale  
!  spectral indices reveal one aspect only of scale invariance

To get a more complete picture, other estimators are needed
structure functions

waiting times

singularity spectra

...

For the particular case of our ion motion, it is interesting to look at the 
distance travelled by the ion

Warwick, 2/2008

44

Ion motion

Let                  be the mean squared distance travelled by an ion after a 
time  

For diffusion (Brownian motion)

For convection (ballistic motion)

More generally, we have

 Regimes with                        are particularly interesting, for the transport 
may then be neither ballistic, nor diffusive (anomalous transport)
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Ion motion

Application to ion 
motion in turbulent 
wavefield

motion below 
gyrofrequency is 

ballistic

motion is 
superdiffusive

finite sample 
size effects !

Example

Detecting intermittency
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Detecting intermittency in flows

Here intermittency = aternation of regimes with normal spectral 
content, and regimes with significant excess of energy in a given range 
of scales

Example : magnetic field measurements upstream the Earth’s bow 
shock

47

Interm
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Intermittency

To quantify the anomalous energy content, we define the 
local intermittency measure (LIM)

Any value of LIM that significantly exceeds 1 implies a local excess of 
energy

We then need to do a statistical test (chi-square)

48

γ(t, τ) =
|X(t, τ)|2

∫ tmax

tmin
|X(t′, τ)|2 dt′
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Intermittency

Example from magnetic field at bow shock: Fourier spectral analysis 
doesn’t reveal anything unusual
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Intermittency

A wavelet scalogram 
reveals the presence 
of structures at 
various scales, but is 
it really that 
intermittent ?

50
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Intermittency

The local 
intermittency 
measure reveals clear 
bursts

What are these ? 

51

γ(t, τ) =
|X(t, τ)|2

∫ tmax

tmin
|X(t′, τ)|2 dt′

Warwick, 2/2008

Intermittency

The scalogram reveals the existence of occasional bursts of energy 

52

! "!! #!! $!! %!! &!!! &"!!
!&!

!'

!

'

&!

()*+,-./

0
&
,-
1
2
/

!"# !$# !!# !%# !&# %## %'# %(#
!'#

!"

#

"

'#

'"

)*+,-./0

1
-.
2
3
0

-

-
1
'

414



Warwick, 2/2008

Intermittency

This bursty behaviour can be observed both in the continuous and in 
the discrete wavelet transform

53

! "!!! #!!! $!!! %!!! &!!! '!!! (!!! )!!! *!!! "!!!!

!"!

!

"!

+,-.-/01

2-345670381-/.59/-27:

0
3
8
1-2
9
;
4

0
"
<"

0
#
<#

0
$
<%

0
%
<)

0
&
<"'

0
'
<$#

0
(
<'%

0
)
<"#)

0
*
<#&'

0
"!
<&"#

Multiscale decomposition 
of the magnetic field
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Intermittency

Since the wavelet transform is linear, many interesting mathematical 
property remain valid
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Example

The same concept can be 
used to detect changes : 

monthly mean of 
eastward component of 
geomagnetic field 
(de Michelis et al., 2003)

55

In order to show the differences between the results
obtained by the standard wavelet analysis applied by
Alexandrescu et al. [3] and those obtained using the
LIM method with the condition LIMa,b

2 N3, we ana-
lysed the geomagnetic time series recorded at Cham-
bon la Forêt (CLF) geomagnetic observatory.
Geomagnetic data used in this work are monthly
means (defined as averages over all days of the
month) of the geomagnetic eastward (Y) component,

which is supposed to be not seriously affected by
external disturbance fields. The time series have
been subjected to a careful preliminary analysis
since, for the purpose of our study, length, continuity
and quality of the magnetic field record play a funda-
mental role.

Plate I shows the results coming from LIM ana-
lysis in comparison with those related to the applica-
tion of standard wavelet analysis in the case of CLF
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Plate I. Monthly mean values of the geomagnetic secular variation for the eastward component ( Y) measured at Chambon la Forêt (CLF)

observatory from 1890 to 2002 (panel a). Wavelet transform absolute value obtained using Alexandrescu et al. [3] methodology (panel b).

Results from LIM analysis using the condition LIMa,b
2N3 (panel c).

P. De Michelis, R. Tozzi / Earth and Planetary Science Letters 235 (2005) 261–272264

LIM

wavelet 
transform

Bx

Example

Identifying polarised wave packets 

in AC magnetic field measurements
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Magnetic field fluctuations

AC magnetic field measurements at a quasiperpendicular bow shock 
(STAFF instrument)

Warwick, 2/2008
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STAFF spectrogram
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Spectrogram vs scalogram

spectrogram 
(Fourier)

scalogram (Morlet 
wavelets)

there is nothing really special about the 
scalogram !

Warwick, 2/2008
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Polarisation

Since spectral characteristics alone are not very appealing here, we look for the 
polarisation vs time and frequency

Compute

Diagonalise

The polarisation is  

Bz

By

Bx
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Time 
series

Spectrogram of By

Polarisation

are these patches 
meaningful ?

interference noise

Warwick, 2/2008
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Fourier vs wavelet

Polarisation

Power
spectral
density

Fourier 
analysis

Wavelet 
analysis
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Polarisation

Angle of polarisation plane 
[rad]

Time 
series

Warwick, 2/2008
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Conclusion

Wavelets are better suited for the characterization of 
wave packets

This is important for turbulent wavefields in which different types of 
waves may coexist

But the compromise between time and frequency resolution cannot 
be avoided



Example

Automated event timing multipoint data
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Timing

A major fraction of multisatellite data analysis involves timing of 
specific events on the 4 satellites

Timing = when does a given event occur on the 4 spacecraft ?

Warwick, 2/2008
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Timing

But accurate timing can become quite difficult when one does not 
observe the same «"pattern"» on all four spacecraft

Examples where there is no clear solution

This becomes a pattern identification problem

t t

t
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Standard approach

The usual approach involves computation of the cross-correlation 
function

And looking for the lag 
that maximizes

lag

Warwick, 2/2008
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Standard approach

 This cross-correlation approach has many drawbacks
The width T of the interval greatly influences the result. How should its value 
be chosen ?
It is biased by large scales
It is easily misled by offsets and trends

 We use instead a multiresolution approach that has been developed in 
the frame of stereoscopic vision 
(Perrin & Torresani, 2001)
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Multiresolution approach

At each time t, the wavelet 
transform of u(t) uniquely 
describes u(t) in a local 
neighbourhood : amplitude, 
derivative, texture, ...

! similar patterns should 
therefore have similar wavelet 
coefficients

! instead of comparing the 
time series, we compare their 
wavelet coefficients

Warwick, 2/2008
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Example

A test case : electron density measurements 
(Soucek et al., 2004)



Warwick, 2/2008

73

Multiresolution approach

Time series 

Cross-correlation 
between their wavelet 
coefficients

la
g

lag is well 
defined

ambiguous 
answer

Warwick, 2/2008

74

Why is this approach better ?

Multiresolution analysis offers several advantages :

good resolution : its resolution can be better than the sampling period 
(for correlation analysis, it is fixed by the window width)

robustness : it can handle patterns that do not look exactly the same

it is data-adaptive : the method selects itself the scales at which the 
corelation is the highest (like in artificial vision)
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Final result

Time series 

Cross-correlation 
between wavelet

coefficients

Estimated lag

Warwick, 2/2008
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Example : comparison of EIT images

Image at 1:38
= right image 

Image at 3:20
= left image

disparity due to 
solar rotation varies 

from 0 to 6 pixels

horizontal 
disparity between 

2 images (in 
pixels)



Example

Extracting coherent structures from 
turbulent flows

Warwick, 2/2008

Turbulent flows

2 key issues in the analysis of 2D (or 3D) turbulence are:

how to identify and isolate coherent structures ?

can Navier-Stokes simulations be improved using spectral methods 
with better basis functions than Fourier modes ?

78

Vorticity field in 2D turbulence 
(Farge et al., 1985)
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Turbulent flows
79

elliptic 
regions (dominated 

by rotation) : coherent 
vortices

hyperbolic 
regions (dominated 
by deformation) : 

incoherent 
background 

shear 
layers

2D numerical 
simulation of 
vorticity field 

(Farge et al., 1996)

Pitfalls
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Beware of pitfalls

Example :  Arneodo et al. (Nature, 
1991) claimed to have seen the 
Richardson cascade in fully 
developed turbulence, simply by 
looking at the intricate structure of 
the wavelet transform

Warwick, 2/2008

Torrence
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69Bulletin of the American Meteorological Society

a. Fourier red noise spectrum

Many geophysical time series can be modeled as

either white noise or red noise. A simple model for red

noise is the univariate lag-1 autoregressive [AR(1), or

Markov] process:

x x z
n n n
= +!"

1
, (15)

where " is the assumed lag-1 autocorrelation, x
0
 = 0,

and z
n
 is taken from Gaussian white noise. Following

Gilman et al. (1963), the discrete Fourier power spec-

trum of (15), after normalizing, is

P
k N

k
=

!

+ ! ( )
1

1 2 2

2

2

"

" " #cos
, (16)

where k = 0 … N/2 is the frequency index. Thus, by

choosing an appropriate lag-1 autocorrelation, one can

use (16) to model a red-noise spectrum. Note that " = 0

in (16) gives a white-noise spectrum.

The Fourier power spectrum for the Niño3 SST is

shown by the thin line in Fig. 3. The spectrum has been

normalized by N/2$2, where N is the number of points,

and $2 is the variance of the time series. Using this

normalization, white noise would have an expectation

value of 1 at all frequencies. The red-noise background

spectrum for " = 0.72 is shown by the lower dashed

curve in Fig. 3. This red-noise was estimated from ("
1

+ %
&"

2
)/2, where "

1
 and "

2
 are the lag-1 and lag-2

autocorrelations of the Niño3 SST. One can see the

broad set of ENSO peaks between 2 and 8 yr, well

above the background spectrum.

b. Wavelet red noise spectrum

The wavelet transform in (4) is a series of bandpass

filters of the time series. If this time series can be

modeled as a lag-1 AR process, then it seems reason-

able that the local wavelet power spectrum, defined

as a vertical slice through Fig. 1b, is given by (16). To

test this hypothesis, 100 000 Gaussian white-noise

time series and 100 000 AR(1) time series were con-

structed, along with their corresponding wavelet power

spectra. Examples of these white- and red-noise wave-

let spectra are shown in Fig. 4. The local wavelet spec-

tra were constructed by taking vertical slices at time

n = 256. The lower smooth curves in Figs. 5a and 5b

show the theoretical spectra from (16). The dots show

the results from the Monte Carlo simulation. On av-

erage, the local wavelet power spectrum is identical

to the Fourier power spectrum given by (16).

Therefore, the lower dashed curve in Fig. 3 also

corresponds to the red-noise local wavelet spectrum.

A random vertical slice in Fig. 1b would be expected

to have a spectrum given by (16). As will be shown in

section 5a, the average of all the local wavelet spectra

tends to approach the (smoothed) Fourier spectrum of

the time series.

c. Significance levels

The null hypothesis is defined for the wavelet power

spectrum as follows: It is assumed that the time series

has a mean power spectrum, possibly given by (16);

if a peak in the wavelet power spectrum is significantly

above this background spectrum, then it can be as-

sumed to be a true feature with a certain percent con-

fidence. For definitions, “significant at the 5% level”

is equivalent to “the 95% confidence level,” and im-

plies a test against a certain background level, while

the “95% confidence interval” refers to the range of

confidence about a given value.

The normalized Fourier power spectrum in Fig. 3

is given by N|x$
k
|2/2$2, where N is the number of points,

x$
k
 is from (3), and $2 is the variance of the time series.

If x
n
 is a normally distributed random variable, then

both the real and imaginary parts of x$
k
 are normally

distributed (Chatfield 1989). Since the square of a

normally distributed variable is chi-square distributed

with one degree of freedom (DOF), then |x$
k
|2 is chi-
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FIG. 4. (a) The local wavelet power spectrum for a Gaussian

white noise process of 512 points, one of the 100 000 used for

the Monte Carlo simulation. The power is normalized by 1/$2, and

contours are at 1, 2, and 3. The thick contour is the 95% confidence

level for white noise. (b) Same as (a) but for a red-noise AR(1)

process with lag-1 of 0.70. The contours are at 1, 5, and 10. The

thick contour is the 95% confidence level for the corresponding

red-noise spectrum.
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ENSO provides a substantive addition to

the ENSO literature. In particular, the

statistical significance testing allows

greater confidence in the previous wave-

let-based ENSO results of Wang and

Wang (1996). The use of new datasets

with longer time series permits a more

robust classification of interdecadal

changes in ENSO variance.

The first section describes the datasets

used for the examples. Section 3 de-

scribes the method of wavelet analysis

using discrete notation. This includes a

discussion of the inherent limitations of

the windowed Fourier transform (WFT),

the definition of the wavelet transform,

the choice of a wavelet basis function,

edge effects due to finite-length time se-

ries, the relationship between wavelet

scale and Fourier period, and time series

reconstruction. Section 4 presents the

theoretical wavelet spectra for both

white-noise and red-noise processes.

These theoretical spectra are compared to

Monte Carlo results and are used to es-

tablish significance levels and confi-

dence intervals for the wavelet power

spectrum. Section 5 describes time or

scale averaging to increase significance

levels and confidence intervals. Section

6 describes other wavelet applications

such as filtering, the power Hovmöller,

cross-wavelet spectra, and wavelet co-

herence. The summary contains a step-

by-step guide to wavelet analysis.

2. Data

Several time series will be used for examples of

wavelet analysis. These include the Niño3 sea surface

temperature (SST) used as a measure of the amplitude

of the El Niño–Southern Oscillation (ENSO). The

Niño3 SST index is defined as the seasonal SST av-

eraged over the central Pacific (5°S–5°N, 90°–

150°W). Data for 1871–1996 are from an area aver-

age of the U.K. Meteorological Office GISST2.3

(Rayner et al. 1996), while data for January–June 1997

are from the Climate Prediction Center (CPC) opti-

mally interpolated Niño3 SST index (courtesy of D.

Garrett at CPC, NOAA). The seasonal means for the

entire record have been removed to define an anomaly

time series. The Niño3 SST is shown in the top plot

of Fig. 1a.

Gridded sea level pressure (SLP) data is from the

UKMO/CSIRO historical GMSLP2.1f (courtesy of D.

Parker and T. Basnett, Hadley Centre for Climate Pre-

diction and Research, UKMO). The data is on a 5°

global grid, with monthly resolution from January

1871 to December 1994. Anomaly time series have

been constructed by removing the first three harmon-

ics of the annual cycle (periods of 365.25, 182.625, and

121.75 days) using a least-squares fit.

The Southern Oscillation index is derived from the

GMSLP2.1f and is defined as the seasonally averaged

pressure difference between the eastern Pacific (20°S,

150°W) and the western Pacific (10°S, 130°E).
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FIG. 1. (a) The Niño3 SST time series used for the wavelet analysis. (b) The

local wavelet power spectrum of (a) using the Morlet wavelet, normalized by 1/

!2 (!2 = 0.54°C2). The left axis is the Fourier period (in yr) corresponding to the

wavelet scale on the right axis. The bottom axis is time (yr). The shaded contours

are at normalized variances of 1, 2, 5, and 10. The thick contour encloses regions

of greater than 95% confidence for a red-noise process with a lag-1 coefficient of

0.72. Cross-hatched regions on either end indicate the “cone of influence,” where

edge effects become important. (c) Same as (b) but using the real-valued Mexican

hat wavelet (derivative of a Gaussian; DOG m = 2). The shaded contour is at

normalized variance of 2.0.
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Some useful references

B. Burke Hubbard, The world according to wavelets: the story of a mathematical 
technique in the making (Peters, 1998): a friendly introduction

I. Daubechies, Ten lectures on wavelets (SIAM, 1992): more mathematical, a classic

S. Mallat, A wavelet tour of signal processing (Academic Press, 2002) : excellent 
reference on wavelets 

J.-L. Starck & F. Murtagh, Astronomical image and data analysis (Springer, 2006): 
wavelets for astronomical images

Wavelets and turbulence: lots of articles by M. Farge, K. Schneider, et al.,  see
http://wavelets.ens.fr/

G. Paschmann, et al. Analysis Methods for Multi-Spacecraft Data (ISSI, Bern, 2000), 
can be downloaded from  
http://www.issi.unibe.ch/PDF-Files/analysis_methods_1_1a.pdf


