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T he Hamiltonian

A A A A

H=_J<%:>Sisj_hzi:3i ! oy

s;==x1, 1=1,...,N 4 : A A

< 17 > - sum of all nearest neighboring « a A
pair of spins i

J - coupling constant | 4 4 4+ 14

h - external field
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- Ising model inveted by W Lenz (1920).

- Solved in 1-D by E Ising (1924): no phase transition in 1-D.

- Solved in 2-D by L Onsager (1944): 2nd order (continuous) phase transition.
- Still unsolved in 3-D.

- In 4 or more dimensions, mean field.

- Paradigm in statistical physics. ~800 papers/year with diverse applications.
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Canonical ensemble:

The probability for the system to be in
microstate v:

1

where 8 =1/kgT.
The partition function:

Z(B,h) =) _exp(—BEy)

T he magnetization

The energy

=-J ) 5i8j — hz:s1

<ij >

The mean magnetization

= (My) = ZMI/ exp(—BEy)

The mean energy

=(Ey) = %ZEU exp(—SEy)

The isothermal susceptibility

oM 1
= (G )p = i (M2) — 07

The heat capacity at constant field

oU 1
= (57), = e (42) - 7
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Lattice of spins s, = *1




10. 1. The mean-field approximation

Recall that the Ising configurational energy is

E({S:}) ——hZS ~J XSS,

<ij>
Consider all contributions involving spin j
G(SJ) = —th - JSJZSk
k

where the sum is over nearest neighbours (n.n.) k of site j.

We now approximate this contribution by replacing the S, by their mean value

n.mn

ems(Sj) = —hSj — JS; Y (Sk) = —hmsS;
k

where
hms=h+ Jzm

and m, the magnetisation per spin, is just the mean value of any given spin

1

m = NZ(S") = (Sk) Vk

i



Thus the mean field approximation is to replace the configurational energy (1) by the energy
of a non-interacting system of spins each experiencing a field h,,;. For this problem we can
write down the single-spin Boltzmann distribution straightaway

e_ﬁf‘rn,f(sj) eﬁh'rnfsj

ZSJ::E]_ e_ﬁfm,j(sj) eﬁhan _|_ e_ﬁh’frnf

p(S;) (6)

However, we still have a consistency condition to fulfil: the value of the magnetisation m
predicted by (6) should be equal to the value of m used in the expression for h,,f (4). Thus
we require

m = Y p(S;)S;
Si=4+1

el@h'rrr,f _ e_ﬁh'm,f

= oy tanh(5h,.s) (7)




and we arrive at the mean-field equation for the magnetisation

m = tanh(Bh + Jzm) (8)

First we will consider the case h = 0 (zero applied field). The solutions of
m = tanh(3Jzm) (9)

are best understood graphically. We see that for low 3 (high T") the only solution is m = 0

tanh(pJm)

f(m)=m




whereas for high 3 (low T') there are three possible solutions m = 0 and m = +|m|. The
solutions with |m| > 0 appear when the the slope of the tanh function at the origin is greater
than one

d
%tanh(ﬁjzm) . > 1 (10)
Using the expansion of tanh for small argument
3
tanhx ~ x — % (11)
(actually we only need the first term at this point), we find the condition (10) is
Bz >1
which gives, remembering 3 = 1/kT,
zJ
T, ==~ 12
- (12)

Thus for T" > T, only the paramagnetic m = 0 solution is available, whereas for 7" < T, we
also have the ferromagnetic solutions +|m/|. These are the physical solutions for 7" < T, as
we shall see in the next subsection.
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Metropolis algorithm (Monte Carlo)

1. Set the desired temperature 7' and
external field h. 3a. Make a trial change, e.g. by flipping

a randomly chosen spin.

2. Initialize the system, e.g. use a ran-
dom configuration or a configura- 3b. Determine the change in energy AFE

tion from a previous simulation.

3c. If AE < 0 accept the new configu-
3. Perform the desired number of Monte ration
Carlo sweeps through the lattice.

3d. If AE > 0 generate a random num-
4. Exclude the first configurations (let ber r between 0 and 1, and if

the system equilibrate). exp(—AE/kgT) > r
— gT) >

accept the new configuration, oth-
5. Compute average quantities from sub- erwise count the old configuration
sequent configurations and estimate once more.

the error from statistically indepen-
dent configurations.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

