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PHYSICAL REVIEW
LETTERS

VOLUME 59 27 JULY 1987 NUMBER 4

Self-Organized Criticality: An Explanation of 1/f Noise

Per Bak, Chao Tang, and Kurt Wiesenfeld

Physics Department, Brookhaven National Laboratory, Upton, New York 11973
(Received 13 March 1987)

We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized
critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This
picture also yields insight into the origin of fractal objects.

PACS numbers: 05.40.+j, 02,90 +p
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RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 40, NUMBER 10 1 OCTOBER 1989

1/f noise, distribution of lifetimes, and a pile of sand

Henrik Jeldtoft Jensen
Nordisk Institute for Teoretisk Atomfysik (NORDITA), Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Kim Christensen and Hans C. Fogedby
Institute of Physics, Arhus University, DK-8000 Arhus C, Denmark
(Received 26 June 1989)

A connection between the distribution of lifetimes and the power spectrum is derived. It is
shown that the flow of sand down the slope in the cellular automaton model, considered recently
by Bak, Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987)], has a 1/f? power spectrum in
one and two dimensions. The flow over the rim of the system behaves similar to the transport in
a real sand pile as measured by Jaeger, Liu, and Nagel [Phys. Rev. Lett. 62, 40 (1989)].
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Addition of Avalanche
sand grains: = Critical slope ¢+——occurrence:
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FIG. 1. Self-organized critical state of minimally stable
clusters, for a 100x 100 array.
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Avalanche dynamics in a pile of
rice
Vidar Frette*, Kim Christensen,

Anders Malthe-Sgrenssen, Jens Feder,
Torstein Jossang & Paul Meakin

Department of Physics, University of Oslo, PO Box 1048, Blindern, N-0316
Oslo, Norway

THE idea of self-organized criticality' (SOC) is commonly illus-
trated conceptually with avalanches in a pile of sand grains. The
grains are dropped onto a pile one by one, and the pile ultimately
reaches a stationary ‘critical’ state in which its slope fluctuates
about a constant angle of repose, with each new grain being
capable of inducing an avalanche on any of the relevant size
scales. Some numerical models of sand-pile dynamics do show
SOC'™®, but the behaviour of real sand piles remains ambig-
uous® %, Here we describe experiments on a granular system—a
pile of rice—in which the dynamics exhibit self-organized critical
behaviour in one case (for grains with a large aspect ratio) but not
in another (for less elongated grains). These results show that
SOC is not as ‘universal’ and insensitive to the details of a system

* Present address: Department of Physics of Complex Systemns, The Weizmann Institute of Science, Rehovot
TE100, Israel.

NATURE - VOL 379 - 4 JANUARY 1996
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A forest-fire model and some thoughts on turbulence

Per Bak, Kan Chen
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

and

Chao Tang
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Received 9 March 1990; revised manuseript received 1 April 1990; accepted for publication 7 April 1990
Communicated by A.R. Bishop

in the context of a forest-fire model we demonstrate critical scaling behavior in a “turbulent” non-equilibrium system. Energy
is injected uniformly, and dissipated on a fractal. Critical exponents are estimated by means of a Monte Carlo renormalization-
group calculation.
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VOLUME 69, NUMBER 11 PHYSICAL REVIEW LETTERS 14 SEPTEMBER 1992

Self-Organized Critical Forest-Fire Model

B. Drossel and F. Schwabl

Physik -Department der Technischen Universitat Miinchen, D-8046 Garching, Germany
(Received 30 June 1992)

A forest-fire model is introduced which contains a lightning probability f. This leads to a self-
organized critical state in the limit f— 0 provided that the time scales of tree growth and burning down
of forest clusters are separated. We derive scaling laws and calculate all critical exponents. The values
of the critical exponents are confirmed by computer simulations. For a two-dimensional system, we show

that the forest density in the critical state assumes its minimum possible value, i.e., that energy dissipa-
tion is maximum.

BEAUTIFUL
AZVIEWS

EV




Self-Organised Criticality

- A burning cell turns into an empty cell
- A tree will burn if at least one neighbor is burning
- A tree ignites with probability f even if no neighbor is burning

- An empty space fills with a tree with probability p

[ < p < Tamax

/

Longest fire

Control parameter: p/f
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FIG. 2. Mean number of clusters and mean cluster radius as
functions of the cluster size for f/p=1/70 and d =2.
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FIG. 3. Mean forest density as a function of maximum forest
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VYOLUME 71, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1993

Punctuated Equilibrium and Criticality in a Simple Model of Evolution

Per Bak
Brookhaven National Laboratory, Upton, New York 11978

Kim Sneppen
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (J, Denmark

(Received 7 July 1993)

A simple and robust model of biological evolution of an ecology of interacting species is introduced.
The model self-organizes into a critical steady state with intermittent coevolutionary avalanches of
all sizes; i.e., it exhibits “punctuated equilibrium” behavior. This collaborative evolution is much
faster than noncooperative scenarios since no large and coordinated, and hence prohibitively unlikely,
mutations are involved.
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Our model, intended to represent the main features
of all of this, is defined and simulated as follows: (i)
N species are arranged on a one-dimensional line with
periodic boundary conditions. (ii) A random barrier, B;,
equally distributed between 0 and 1, is assigned to each
species. At each time step, the ecology is updated by (iii)
locating the site with the lowest barrier and mutating it
by assigning a new random number to that site, and (iv)
changing the landscapes of the two neighbors to the right
and left, respectively, by assigning new random numbers
to those sites, too.

Bak & Sneppen (1993) Phys Rev Lett
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FIG. 4. Punctuated equilibrium behavior. Activity vs
time in a local segment of ten consecutive sites is shown for
a system of size N = 512. Time is measured in units of the
number of mutations. In real time, the intermittency is fur-
ther enhanced by the exponential enlargement of the periods

of stasis.
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FIG. 5. Distribution of avalanche sizes in the critical
state. Here an avalanche is defined by subsequent sequential
activity below punctuation of the barrier B = 0.65.
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