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1. Description of the mini-project
It is, of course, well known that systems consisting of many interacting elements can undergo
phase transitions as a control parameter (e.g. temperature) is varied. However, it is perhaps
less obvious that systems of non-interacting elements can also be governed by systems of
equations that display phase transitions. In this context, it has recently been discovered that the
parameters that govern the optimal coding of an uncoupled neural population (network) display
phase transitions Ref. [1]. The coupling that ultimately leads to the phase transition arises
from the optimization process itself. This occurs because the set of parameters that optimise
the performance of the network are inter-dependent and hence in some sense are coupled. For
example, changing and fixing one parameter will require all other parameters to be adjusted
to keep the system operating optimally. In addition, the objective function to be optimised
(in our case the mutual information) depends on these parameters in a highly nonlinear way.
Consequently, one can view the optimisation process as that of navigating a ’potential landscape’
that exhibits multiple attracting states - these states can display bifurcations (similar to saddle
node) as parameters are changed. All of these considerations illustrate that the optimisation
of an uncoupled network of neurons can result in a complex solution that exhibits multiple
transitions/bifurcations.

At present, there is no theory that predicts the critical parameters of the transition or their
type (e.g.some look like 1st order transitions and others like 2nd order). However, we have been
able to map the theory into a minimization problem that looks very much like the minimisation of
a free energy in statistical physics (details below). Interestingly, the partition function associated
with the free energy can be identified to be the Fisher information of the system. In the project
you will investigate these transition, initially using numerical techniques but hopefully it will be
able to develop a theortical understanding. In particular we will identify the type of transition
and characterise the critical control paramaters at which they occur.

Although these results are of immediate interest to the coding of information by neural
systems we also believe that some of our main results are generic in the sense that they are
applicable to a wide range of other optimized systems. For example, there are strong analogies
between to phase transitions observed in the context of deterministic annealing applied to fuzzy
clustering Ref [2]. We also suspect that the results may be relevant to optimised voting systems
(and other Boolean type networks) but this has yet to be established. Part of this project will
be to look at the applicability of the results/methods to other types of networks that commonly
occur in connection with studies of complex systems.



2. Background Information - Optimization of neural systems
We consider the network/population of McCulloch-Pitts type neurons shown in Fig. 1. This
network is used to model the quantization of analogue signals by analogue-to-digital converters
as well as to study the coding of information by neural systems. It is of sufficient simplicity that
theoretical progress can be made but at the same time captures the primary feature of neurons
i.e. the presence of a neural threshold.
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Figure 1. Array (population) of McCulloch-Pitts neuorns. Each of the K neurons, with
threshold values θn, n = 1, ..,K, is subject to independent additive noise, ηn, n = 1, ..,K. The
common input to each neuron is a random signal, X, which in the results presented here is
assumed to be Gaussian. Each neuron thresholds its input to produce a binary signal, yn. The
overall output is the sum of each yn.

Each neuron is connected to a common random signal, x, but has an independent noise source
ηn. The response of each neuron is governed by

yn = Θ(x + ηn), n = 1, .., K, (1)

where Θ(.) is the Heaviside function and the response of the population, Y is

Y =
K∑

n=1

yn. (2)

If the input signal has probability density function PX(x), then the mutual information
between the input and output is given by [5]

I(X; Y ) = −
K∑

i=0

PY (i) log2 PY (i)−
(
−

∫ ∞

−∞
PX(x)

K∑

i=0

PY |X(i|x) log2 PY |X(i|x)dx

)
, (3)

where
PY (n) =

∫ ∞

−∞
PY |X(n|x)PX(x)dx.

Therefore for a given signal distribution, the mutual information depends entirely on the
conditional probabilities, PY |X(n|x). If the noise distribution is specified, the only free variables



are the population size, K, and the threshold values. Let P̂n be the probability of neuron n
‘spiking’ in response to signal value x. Then

P̂n =
∫ ∞

θn−x
fη(η)dη = 1− Fη(θn − x), (4)

where Fη is the cumulative distribution function of the noise and n = 1, .., K.
Given a noise density and arbitrary threshold values, P̂n can be calculated exactly for any

value of x from (4). These can then by used in an algorithm specified in [3] for calculating the
conditional probabilities, PY |X(n|x).

We now aim to find the threshold settings that maximize the mutual information as the input
SNR varies. This goal can be formulated as the following nonlinear optimization problem:

Find: max
{θn}

I(X; Y )

subject to: {θn} ∈ RK . (5)

It is necessary to solve (5) numerically using standard unconstrained non-linear optimization
methods such as the conjugate gradient method [4]. However, note that the objective function
is not convex, and there exist a number of local optima. This problem can be overcome by
employing random search techniques such as simulated annealing. We present here in Figs. 2-
5 results for the optimal thresholds obtained by solving Problem (5) for Gaussian signal and
Gaussian noise, as a function of σ := ση

σx
, where ση and σx are the noise and signal standard

deviation respectively; we have set σx = 1 for all results. In Figs. 2, 3, 4, 5 we have K = 3, 4, 5, 15
respectively [1].
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Figure 2. Optimal thresholds against
noise intensity, σ, for K = 3. Repro-
duced from Ref. [1]
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Figure 3. Optimal thresholds against
noise intensity, σ, for K = 4. Repro-
duced from Ref. [1]

It can be observed that the dependence of the optimal threshold values on the noise level is
similar for all results. For large σ it is optimal to set all the thresholds equal to the signal mean
which is zero in this case. As the noise is reduced this optimal solution bifurcates, at a value σ1,
in favour of grouping all the thresholds at two distinct values. Further reduction in the noise
level results in three distinct values becoming optimal. This pattern is repeated as the noise is
reduced further. In general it is observed that the number of distinct threshold values increases
as 1 → 2 → 3 → . . . → K as the noise level is reduced. It should be noted that the exact values
of the noise at which the transitions occur (e.g. σ1) depends on the size of the population size
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Figure 4. Optimal thresholds against
noise intensity, σ, for K = 5. Repro-
duced from Ref. [1]
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Figure 5. Optimal thresholds against
noise intensity, σ, for K = 15.
Reproduced from Ref. [1]
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Figure 6. Plot of I(X,Y ) against noise intensity, σ, for K = 15, the optimal thresholds (dashed
line) and θi = 0 ∀ i (solid line). The solid line shows the suprathreshold stochastic resonance
(SSR) effect [5, 3]. Reproduced from Ref. [1]

K. This problem is discussed in Chapter 8 of Ref. [1]. For the limit K → ∞, it is observed
that an asymptotic limit of σ1 exists, but that its value is dependent on the distributions of the
signal and noise. For example, for Gaussian signal and noise the limiting σ1 is about 0.8, while
for logistic signal and noise it is about 1.2. However, qualitatively, the pattern is always the
same.

These results raise a number of interesting points. First, the structure of the optimal threshold
distribution is discrete. Numerical experiments indicate that this bifurcational structure is not
changed even in the limit K → ∞. Consequently, the clustering of thresholds into distinct
groups is not a consequence of the finite number of neurons but is rather a property of the
system (channel) itself. Second, the existence of these distinct groups indicate an optimal coding
strategy is to group neurons with similar thresholds together into subpopulations; the number
of distinct subpopulations depends on the level of noise. Third, the optimal design solution is



strongly dependent on the level of the noise. Indeed, this point is graphically highlighted in
Fig. 6.

In Fig. 6 the MI is plotted as a function of the noise level for two different cases i) for the
optimal threshold values (dashed line) shown in Fig. 5 and ii) for the optimal threshold solution
for σ > σ1 (solid line); i.e. the thresholds are held constant at θi = 0 ∀ i as the noise level is
varied. The two curves coalesce at σ1. It can be observed that while the solution θi = 0 ∀ i is
optimal for σ > σ1 this solution performs very badly in the limit σ → 0. Indeed, it achieves a
MI of only 1-bit compared to the optimal solution at σ = 0 which achieves 4-bits. Consequently,
the correct choice of neural parameters (and hence the resulting neural code) is seen to strongly
depend on the level of noise.

An interesting consequence of the sub-optimal nature of the solution θi = 0 ∀ i at small σ is
that it gives rise to a suprathreshold stochastic resonance [5, 3] i.e. the MI is maximised at a
non-zero level of noise. Such counter-intuitive ‘noise-benefits’ rely on some aspect of a system
being ‘sub-optimal’ [5, 1].

Some theoretical progress in calculating the optimal information can be made by utilising a
connection between mutual information and Fisher information. Following [6, 7] we can write,

Y (x) = T (x) +
√

V (x)ξ (6)

where T (x) is the mean output for a give input x and V (x) is the variance of the output
conditioned on the input, and ξ is a random variable with zero mean and unit variance. For not
too large V (x)/N2 we can write

I(X; Y ) ≈ H(x)− 1
2

∫

x
fx(x) log2

(
2πe

J(x)

)
dx, (7)

where the Fisher information J(x) is given by

J(x) ≈

(
dT (x)

dx

)2

V (x)
. (8)

Given that the input entropy H(x) only depends on the statistics of the signal and not on the
properties of the channel, maximisation of (7) can be seen to be equivalent to a minimisation of
the function

F = −〈log2 Z〉x, (9)

where Z = J(x) and the average, 〈.〉x is taken over the input signal distribution. It is interesting
to note that this looks similar to the minimisation of a Free Energy with a partition function Z.

These expressions can be simplified by noting that the responses of the neurons, yn(x), are
(conditionally) independent. Consequently, the mean response and variance can be obtained by
summing the individual means, Tn(x), and variances,Var(yn|x) [1]. Hence,

T (x) = E(Y |x) =
N∑

n=1

Tn(x), (10)

and

V (x) = Var(Y |x) =
N∑

n=1

Var(yn|x) =
N∑

n=1

Tn(1− Tn). (11)



The final expression for the variance comes from the fact that P̂n = Tn and the variance of each
neuron is governed by Bernoulli statistics, which gives Var(yn|x) = P̂n(1 − P̂n). Consequently,
substituting these expressions into Eq. (8) yields

Z = J(x) =

(∑N
n=1

dTn(x)
dx

)2

∑N
n=1 Tn(1− Tn)

. (12)

It is interesting to note that Eq. (12) only requires specification of the mean response Tn(x),
i.e. the tuning curve of each neuron. Furthermore, Tn(x) is, itself, simply related to the
cumulative noise distribution of each neuron as Tn(x) = 1 − Fη(θn − x). Consequently, it is
largely the cumulative noise distribution that ultimately specifies the information flow in these
systems.

A particularly simple expression for the mutual information can be derived under the
assumption that the noise has a logistic distribution. In this case the cumulative distribution
function of the noise is Fη(θn − x) = [1 + exp (−β(θn − x))]−1 where β is the inverse noise
level. With this assumption it can be shown that Tn, via Fη, satisfies the differential equation
associated with the logistic function, that is

dTn

dx
= βTn(1− Tn). (13)

Noting that the expression for the Fisher information simplifies to J(x) = β2
∑N

n=1 Tn(1− Tn),
Eq. (9) can be written

F ({θn}, β) = −
〈

log2

∑ β2

4

[
cosh2

(
β

2
(θn − x)

)]−1
〉

x

. (14)

To obtain the optimal information it is now necessary to find the set {θn} that minimises
F ({θn}, β) for a given β. Although we have used a similar approach to find the location of the
first bifurcation point for large N we have not been successful in describing the entire sequence
of bifurcations. We speculate that further progress might be made by using a replica approach,
but we have been unable to verify this.
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