Zombie Dynamics:

Optimal Learning in Agent-Based Models with Dynamic Environment

Q. Caudron, M. Tildesley

February 27, 2012

Abstract

Artificial intelligence is rapidly becoming ubiquitous in everyday life, and is widespread in its applications, from uses in search engines to learning and control in complex autonomous systems. Multi-agent systems are often used to probe the properties of large systems where a complicated set of rules allows them to act "intelligently". Learning agents are able to become more competent in unknown environments via a *critic* which operates a feedback mechanism into a machine learning algorithm. However, little work has been done on agent-based learning in systems with dynamic environments, where agent environments can change rapidly, as a function of time or interaction with the agents themselves. This project seeks to assess different mechanisms in reinforcement learning and prediction in agents in a hostile, rapidly-changing setting: a zombie apocalypse.

Aims

The aim of the project is to assess different methods of agent learning of long-term strategies in a system far from equilibrium. The student will

- Simulate an agent-based human-zombie system in a dynamic environment
- Implement different learning mechanisms (reinforcement, stochastic feedback, strategy-sharing)
- Compare learning strategies for optimal survival state and learning rate

Methods

A short and simple set of agent-based rules will be used in simulation, in order to maintain a low inherent system complexity. Agents will be allowed to learn by different strategies such as by reinforcement learning, a genetic-algorithm-like stochastic mechanism with feedback, and communication-learning where agents are able to pass on learned strategies to others.

The system is expected to demonstrate certain classic emergent phenomena on the short-term, namely **particle aggregation**, **flocking** and **swarm behaviour**. In addition to this, particles are allowed to act upon their environment:

- Leaving ant-colony-like pheromone signals (local communication)
- Altering the terrain's energy landscape (construction)
- Low-effectiveness long-distance communication (radio)

These possibilities will allow agents to learn a variety of survival strategies; learning will occur over long timescales, rendering this analogy suitable to agents in a rapidly-evolving environment, such as in riots and crowd panic situations, warfare simulations or economics.

Introductory Reading

S. J. Russell and P. Norvig, *Artificial Intelligence : A Modern Approach*, second edition, Prentice Hall (2003).