
A Q-learner is a basic concept in machine learning, introduced by Chris Watkins in his 1989 PhD 

thesis (http://www.cs.rhul.ac.uk/home/chrisw/ ).  It is defined as follows: a Q-learner has a finite set 

of states, and for each state it has (1) a finite set of actions (which are transitions to other states), 

and (2) a time-varying discrete probability distribution on the set of actions (initialized to uniform).   

Thus, the full set of distributions can be thought of as a probability transition matrix.  The Q-learner 

starts in an initial state.   After making a transition (selected according to the appropriate discrete 

distribution), it gets a reward, and this reward is used to update the distribution associated with the 

starting state.  This is done repeatedly.  The update is by a specific rule (with two free parameters) 

defined by Watkins, and typically results in the actions tending to cause transitions to “good” states.   

For example, a Q-learner performing a random walk on a graph can be “taught” to prefer a specific 

route by being given larger rewards when it encounters the preferred route.  Watkins proved a 

convergence theorem for this process. 

The previous ideas are now classical.   For a novelty, I wish to start with a (small, connected) graph 

and place an independent Q-learner on each node.   The Q-learners only have knowledge of their 

neighbours (and, where necessary, their neighbours’ states).   We now wish to study the global 

behaviour of this network.   Initial study would be by simulation (this is quite easy with modern 

software with multi-threading ability); it is not clear whether any theory is possible.  Two specific 

problems are: 

1. Graph colouring.   The state is a positive integer (thought of as a colour) with a specified 

upper bound.   Two neighbours are said to conflict if they have the same colour.    We want 

to eliminate conflicts.   Actions are transitions to other colours.   Rewards could be defined 

as (1) if all conflicts with neighbours are eliminated by the new colour, a large positive 

reward is given; (2) if it is impossible to eliminate all conflicts (because not enough colours 

are available), then the reward is the number of conflict eliminated.   Question: Does this 

process have a global equilibrium state?  If so, how fast is it reached, and how are the 

fluctuations around the equilibrium distributed? 

 

2. Shortest-path routing.  A source and destination node are specified.   Packets are forwarded 

by nodes.   There are two types of packets: data and acknowledgement.   Both keep an 

internal count of how many hops they have made (edges traversed).    The input state is the 

neighbour from which a packet is received; the output state is the neighbour to which it is 

forwarded.  Upon receiving a packet, a node selects a neighbour to forward it to (from its 

own distribution), but the reward is delayed – when the packet reached the destination 

node, and acknowledgement packet is generated and directed back to the source.   When 

(and if) this acknowledgement packet passes a node which previously routed the data 

packet, the reward is dependent on the total number of hops (higher reward for smaller 

number).  Does this process converge to the globally optimum shortest path? 
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