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SPATIAL DISPERSION AS A DYNAMIC COORDINATION
PROBLEM

ABSTRACT. Following Schelling (1960), coordination problems have mainly
been considered in a context where agents can achieve a common goal (e.g.,
rendezvous) only by taking common actions. Dynamic versions of this problem
have been studied by Crawford and Haller (1990), Ponssard (1994), and Kramarz
(1996). This paper considers an alternative dynamic formulation in which the
common goal (dispersion) can only be achieved by agents taking distinct actions.
The goal of spatial dispersion has been studied in static models of habitat se-
lection, location or congestion games, and network analysis. Our results show
how this goal can be achieved gradually, by indistinguishable non-communicating
agents, in a dynamic setting.
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1. INTRODUCTION

Thomas Schelling’s classic book [20] gave a cogent if not formal
presentation of the problem faced by two non-communicating play-
ers who wish to meet at a common location. He emphasized the
importance of a common culture in producing ‘focal points’ which
enable the players to distinguish among several possible meeting
points, that is, among equilibria of the associated common interest
game. Subsequently two dynamic models of Schelling’s static prob-
lem were developed in which the a priori focal points, or notions of
a common culture, were replaced by coordination principles which
developed over time. The first of these, informally proposed in [1],
analyzed for discrete settings in [3], and explicitly modelled in [2],
is called the ‘rendezvous search problem’ (see also [9]). It places
Schelling’s problem in the context of geometric search theory and
more specifically that of search games [8]. As appropriate in a search
theory model, the players in this formulation obtain no information
regarding the whereabouts of the other until they meet. The possibil-
ity of culturally biased focal points is removed in this model through
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formal symmetry assumptions regarding the locations. The second
family of models, called ‘coordination games’, was introduced by
Crawford and Haller [5] and extended to the multiple player setting
by Kramarz [16]. These models are put into a unified context by
Ponssard in [19] and analyzed in terms of learning by Blume [4]
and Goyal and Janssen [10]. In these games, information about play-
ers’ choices is revealed after each period. In all these problems (or
games), the aim of the coordination is to produce a common choice
or location for all the players.

This article introduces the opposite coordination aim, that of at-
taining distinct locations (spatial dispersion), while maintaining sim-
ilar dynamics and information to the problems discussed above. This
aim has often been considered in a static context, as in the following
situations.

1. Location Games: Retailers(or candidates for election) simul-
taneously choose their positions within a common space so as
to maximize the area for which they are the closest. For an
excellent survey, see [7].

2. Habitat Selection: Males of a species choose territories where
there are no other males; animals choose feeding patches with
low population density with respect to food supply. Fretwell and
Lucas [6] introduced the equilibrium notion of the ideal free
distribution. (originally in terms of birds choice of nesting sites).
A recent application of this concept is given in [13].

3. Congestion Games: Individuals seek facilities or locations of
low population density, for example unemployed workers will-
ing to migrate to find jobs. A recent article in this area is [15]. In
particular, our model may provide a foundation for the ‘match-
ing function’ introduced by Mortensen and Pissarides [17, pp.
2575-6] to account for frictions in the labor market.

4. Network Problems: Travelers choose routes with low conges-
tion levels. (See [13].)

If we seek a spatial dispersion setup which mirrors Schelling’s
choice of a common location in New York for two friends to meet,
the following seems a good story. A group of friends living in New
York awaits the arrival of an old friend who settled elsewhere but is
visiting. The New Yorkers would like to disperse among the poten-
tial locations that the visitor might first approach. Similarly, the aims
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of Schelling’s paratroopers, who in [20] wish to meet after landing,
might be modified so that they wish instead to find a wounded col-
league — for this purpose they would want to disperse rather than
to meet. Alternatively, the paratroopers might want to disperse so
as to prevent infiltration by an enemy agent. An economic variant
of this scenario given by Palfrey [18] has dispersion to discourage
entry into a spatial market.

We will establish that, just as in the coordination games of Craw-
ford and Haller and the multiplayer version of Kramarz, the players
may use spatial configurations that arise in the course of the game
through chance and choice to coordinate their actions. Such config-
urations have been called ‘dynamic focal points’ by Kramarz [16],
and we shall define them for our purposes. For example in the two
person setup of [5], if the players find themselves at distinct loca-
tions out of a total of n = 3 locations, a state we denote by [1, 1, 0],
they can successfully coordinate in the next period by going to the
currently empty position and thus ensuring a meeting. Less obvious
is that in the n = 5 location case (with memory) they should go
independently from [1, 1,0, 0, O] to the three empty locations. If
they are unlucky, and choose distinct locations, then they can surely
meet in the next period by choosing the unique location which has
been unoccupied in both periods. (It turns out that this leads to a
shorter expected meeting time than if they coordinate immediately
on the two occupied locations, meeting with conditional probability
1/2 in each period.)

The spatial dispersion problem I' (m, n) introduced here begins
with an initial random placement of m indistinguishable agents onto
n indistinguishable locations. For example if m = 8 and n = 4,then
the locations might have the following populations (written in de-
creasing order): [4, 2,2, 0]. This distribution (and all subsequent
ones) becomes common knowledge for the next period. The agents
move according to a common rule (depending only on the current
distribution) until they reach the equidistribution [2, 2, 2, 2]. We
consider which common strategy (mixed) takes the least expected
time to reach the equidistribution. In fact, to simplify the analysis,
we always take m = n so that in the resulting problem I" (n) the aim
of the players is to attain the distribution [1, 1, ..., 1] with a single
agent at each location. In other words, we seek common rules for
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non-communicating memoryless agents to achieve distinct locations
in least expected time. An important example of a dynamic focal
point for this dispersion problem occurs when n = 5 and the initial
(or later) distribution of populations is given by [3, 2, 0, 0, 0] . In this
situation, agents at the population 3 location should go to the empty
locations (they cannot distinguish between these) while those at the
population 2 location should go equiprobably to the locations with
populations 3 and 2. (Obviously for such a strategy to be feasible,
agents must be able to distinguish the population at their current
location and at the other locations, and we assume this.) This local
strategy for the configuration [3, 2, 0, 0, 0] does not ensure that they
achieve distinct locations in the next period, but it does help to re-
duce the expected time to achieve distinct locations, and will satisfy
our formal definition (given in Section 3) of a dynamic focal point.
In fact, this is the simplest such dynamic focal point, as no other
ones exist forn < 5.

2. THE OPTIMAL DISPERSION PROBLEM I" (N)

In this section we formally define the dynamic coordination problem
I" (n) , in which n agents are randomly (equiprobably and independ-
ently) placed at time zero onto n unordered locations, and seek to
minimize the time 7 (called the dispersal time) taken to achieve dis-
tinct locations. At the end of each period each agent chooses which
location to move to for the next period based solely on the popula-
tion at his current location and the populations at the other locations.
The agents have no common a priori labelling of the locations,
though they can distinguish locations by their current populations.
A societal state (or simply state) of the game is simply a list of
the numbers of population at different locations, given in decreasing
order. For example, when n = 4, a state [3, 1, 0, O] describes the
situation where one of the locations has three agents, another (called
a singleton location) has one agent (called a singleton agent), and
two of the locations are empty. The current societal state is always
common knowledge. In general, the set S, of all societal states
for the problem I' (n) can be described as follows, where s; is the
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number of agents at the i’th most populated location.

S :{SZ[S1,S2,---,Sn]:S12522---zsn20,

n
Zs,:n}.
i=1

The objective described above as ‘achieving distinct locations’ can
now be rephrased as reaching the state s = [1,1,..., 1] consist-
ing entirely of singletons. An important subset of S, for our pur-
poses will be determined by those states which have exactly r non-
singleton locations, which we denote by S),. Formally we have,

S, =1{s=1Is1,8,....0:] €S, #{i :5i #1} =r}. (1)

As this is a spatial model, we assume that each agent can distin-
guish his current location. For example, the strategy of ‘staying
still’ should always be allowed. So we need to define a personal-
ized state as a societal state together with an indication of where a
particular agent is located. To do this, we will modify the notation
for a societal state by adding a * after the number indicating the
population at an agent’s location. So for example the personalized
state [3,2%,2,1,0,0,0,0] describes the situation of an agent who
is at a location of population 2 and can see that there is a location
with population 3, another location which also has population 2, one
singleton location, and the rest empty.

We assume that agents base their decision on where to move
only on their position within the current population distribution,
that is, on their personalized state. Consequently we restrict our
attention to Markov strategies. A (Markov) strategy Q tells each
agent how to move probabilistically from each of his personalized
states. It is symmetric with respect to agents, in that all agents must
be given the same strategy. In this sense, we are considering the
problem with indistinguishable agents. (See Section 8.2 for a dis-
cussion of a similar problem with distinguishable agents who need
not all adopt the same strategy.) For example, in the personal state
[3.3.2%,2,1,0,0,0,0,0, 0], a strategy will specify the probability
g3 of going (equiprobably) to one of the locations where there are
three agents, a probability g, of remaining at the current location, a
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TABLE I

Expected dispersal times for random strategy

n 2 3 4 5 6 7 8 9 10

®'/nh)—-1 1 35 9.6 250 638 1624 4151 1066.6 2754.7

probability g» of going to the other location with two agents, gq; of
going to a singleton location, and gg of going to an empty location.
The agents cannot distinguish between locations (other than their
own) with the same population.

It is worth observing that the random strategy of picking at each
stage equiprobably among the n locations will produce a permuta-
tion (one agent at each location) with probability n!/n", and con-
sequently the expected time required is (n"/n!) — 1 (since we start
at time O with a random initial distribution). We list these expected
times in Table I so the reader will see the level of improvement given
later by the basic simple strategy (see Table II).

The random strategy is clearly inefficient since even when agents
attain a singleton status, it may be lost in the next period. Since the
aim of the problem is for each agent to become a singleton, we will
henceforth assume that, for any individual, becoming a singleton is
an absorbing state. We require that singleton agents should stay still
and non-singleton agents should not move to singleton locations. In
our formal notation this means that if a personalized state has a 1*
then g, = 1 and that no player should go to a singleton location, that
is, g1 = 0. Such strategies will be called progressive. We denote the
set of all progressive Markov strategies for the problem I' (n) as Q,,.
A strategy Q € Q, determines a Markov chain on the set of states
Sy, with the distinct location state s = [1,..., 1] as the unique
absorbing state. Since all agents use Q with independent randomiza-
tion, the transition probabilities of the chain depend in a polynomial
fashion on the probabilities g; specified in Q as functions of the
personalized states. Our restriction to progressive strategies ensures
that in the resulting Markov chain on the states S, the number of
singleton locations is non-decreasing in time. Let 7 (Q, s) denote
the expected time for the Markov chain based on the strategy Q to
reach the absorbing state 5 from the state s. Similarly, we define
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T (Q) to be the expected time for the Markov chain based on Q to
reach s starting from the distribution on S,, corresponding to the ini-
tial random placement of the agents on the n locations. The notation
T (Q) is really shorthand for 7 (Q, ..., Q), since our assumption
of indistinguishable agents required that all agents follow the same
strategy. Later, when we briefly look at game theoretic versions of
the problem, we shall use the latter notation with arguments that are
not necessarily all the same.

For any societal state s € S,, let v(s) = minpeg, T (Q, s)
denote the least expected time required to reach s from s. In partic-
ular, we have v (5) = 0. Observe that since we are using progress-
ive strategies (which preserve singleton locations), we can evaluate
v (s) by deleting singletons and thereby reducing the dimension of
the problem. For example v ([2, 1, 0]) = v ([2, 0]) . More generally,
if u > 1 is the rightmost number before the 1s in a state (the 2 in
the state [2, 1, 0]), we have the ‘singleton deletion property’,

v (s, s2,...,u,1,1,...,1,0,...,0])

=v([s1,s2,...,u,0,...,0]). 2)
Let
v, = min T (Q) (3)
QeQ,

denote the least time to achieve the distinct location state s, starting
from a random initial placement of the agents, where each state s
occurs with probability p (s) based on an independent and equi-
probable placement of the players. For example when n = 3 the
initial distribution p over Sz is given by

1 2 2
p([?)’ 0’ 0]) - 5’ p([z’ 1a 0]) = g’ and p([l’ 1a 1]) - §
4)

A strategy Q € Q,, which achieves this minimum time v,, in (3) will
be called optimal. So for any fixed n, we have

vp= Y p)v(s). (5)

SES,
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To illustrate some of these ideas we first examine the trivial case
n = 2. There are two societal states, the absorbing state s = [1, 1]
and [2,0], and they have unique personalized states [1*, 1] and
[2*,0]. In the initial random distribution each occurs with prob-
ability p = 1/2. Of the two personalized states, only the latter
has any strategic latitude. Define a strategy Q. by setting g, = x
and go = 1 — x (that is, x is the probability of staying still and
1 — x is the probability of moving to the other location). If we let
T, =T (Qy, [2, 0]) denote the expected time to reach s from [2, 0]
when using the strategy Q, described above, we obtain

Ii=[2x(1 -0+ -2xA-x)]1+T), (6)

as the Markov chain determined by Q. on S; has transition probab-
ility [2x (1 — x)] from state [2, O] to state [1, 1] (corresponding to
exactly one of the two agents moving) and complementary probab-
ility from state [2, 0] to itself (corresponding to both agents moving
or both staying). Solving the recursive equation (6) for T, gives
T, = 1/[2x (1 — x)],which has a minimum of

v([2,0]) =2 (7)

atx = 1/2. Consequently v, = [1/2]0+[1/2]2 = 1.

It is worth noting that for n = 2 the random strategy of moving or
staying still with equal probability is also optimal for agents starting
at distinct nodes who want to be together (the opposite aim), both
in the rendezvous search context [3] (without revealed actions) and
the coordination game [5] (with revealed actions). Even from this
simple example, it is clear that the determination of v,, will involve
the optimal control of a Markov chain and is related to Markov
decision problems. The fact that the transition probabilities can not
be chosen directly but only as polynomials in the decision variables
(x in the above example) means that those advanced theories cannot
be directly applied. In any case we will retain in this paper a direct
probabilistic approach that avoids those theories and is consequently
more transparent. It seems that future work in this area will however
have to be more technical.
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3. SIMPLE STRATEGIES AND EQUILIBRIUM PROPERTIES

The use of general Markovian strategies (Q,,) requires the agents to
accomplish accurate calculation of arbitrary probabilities. In some
cases we may wish to consider simpler agents or alternatively, want
to see how much optimality is lost by using simpler strategies. To
this end we define a simple strategy as one which assigns to each
personalized state a subset of the populations (other than 1 of course)
occurring in that state. The understanding is that the agent moves
equiprobably to a location having one of those populations. For ex-
ample, if we assign the population set {2, 0} to the personalized state
[3, 2*¥.2.1,0,0,0, 0] then an agent at a location with population 2
will go equiprobably to one of the six locations with population 2 or
0. We will write this assignment as [3, 2*,2,1,0,0,0,0] — {2, 0}.
Note that in a simple strategy an agent cannot distinguish (in his ac-
tions) between his current location and other locations with the same
population. In keeping with our restriction to progressive strategies,
we will only define simple strategies on non-singleton personalized
states (no 1*) and we will not allow a 1 to be included in the set of
acceptable populations.

We are particularly interested in the efficacy of the basic simple
strategy, the simple strategy in which non-singleton agents always
choose equiprobably over the non-singleton locations. That is, the
set of acceptable populations assigned to a personalized state in-
cludes all the populations other than 1 occurring in that state. We
shall denote the basic simple strategy by Q. We have seen in the pre-
vious section that the basic simple strategy 0 is optimal whenn = 2
(which is the only n where it agrees with the random strategy). We
shall discuss the optimality properties of the basic simple strategy
for various n in subsequent sections. For the time being we give
some easy results concerning the weaker equilibrium properties that
it possesses. ~

We first observe that in cases like n = 2, where Q is optimal, we
do not have to worry about individual agents trying to improve the
group outcome (i.e., to lower the expected dispersal time) by unilat-
erally deviating from Q. This is an immediate consequence of the
following easy general result relating optimal strategies (universally
adopted) to symmetric Nash equilibria.
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LEMMA 1. If Q € Q, is optimal for I" (n), then the symmetric
strategy profile (Q, Q, ..., Q) is a Nash equilibrium for the game
G (n) with the same dynamics where each player’s utility is the
negative of the dispersal time T .

Proof. This is a well-known argument. Suppose on the contrary
that T (Q', Q,...,0) < T(Q, Q, ..., Q) for some Q'. Consider

a new strategy Q for I' (n) which is a mixture of Q" and Q with
respective probabilities ¢ and 1 — e, with ¢ close to zero. If all agents
adopt this strategy then the expected dispersal time is given by

T(Q,...,Q):(1—8)”T(Q,Q,...,Q)
+n(l—e)"teT (0, Q,....0) +...,

where we have left out terms with higher powers of ¢. For ¢ = 0
clearly T (Q e Q) equals 7 (Q, Q, ..., Q), but for sufficiently

small positive ¢ it is strictly less than T (Q, Q, ..., Q). This con-
tradicts our assumption that Q was optimal for the problem I' (n) . O

In the cases where Q is optimal for I' (n) , the above lemma estab-
lishes that there is no incentive for any agent to deviate from this
instruction. However, for n where Q is not optimal (see Corollary
8) the following argument is needed.

LEMMA 2. For all n the basic simple strategy Q (when adopted
by all agents) forms a symmetric Nash equilibrium for the game
G (n). (We assume, as in the team problem, that all agents must use
progressive strategies.)

Proof. Observe that the dispersal time T 1is the first passage time
to § starting from a random distribution in the Markov chain on S,
determined by the chosen strategy. Consequently if two strategies
determine the same Markov chain on &, then they have the same
expected dispersal time. We claim that if a single agent deviates
from the basic simple strategy, then the resulting Markov chain is
the same as if no agent deviates. To see this, consider any state,
and let r denote the number of its non-singleton locations. If the
deviating player moves to say the first of these locations (in some
ordering common to this agent and an observer), and the remaining
r — 1 non-singleton agents move randomly to these r locations, the
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resulting distribution of populations over these unordered locations
is the same as if the deviating agent also chose randomly. (The
expected population of the ‘first’ location is not the same, but the
distribution over unordered locations will be the same.) O

We can also examine the equilibrium properties of the basic sim-
ple strategy Q in the game G (n) in which the players are more
selfish and pay a cost (negative utility) in each period equal to the
number of their neighbors (fellow occupants of the same location).
In this game we have no a priori restriction to progressive strategies
— players are allowed to move to a singleton location.

PROPOSITION 3. The basic simple strategy profile (when 0 is
universally adopted) forms a subgame perfect symmetric Nash equi-
librium of the game G (n) .

Proof. Suppose there are n players, one of whom is considering
deviating. Clearly if this player ever becomes a singleton, his future
costs are zero if he never deviates, which is a minimum. So assume
that at some time this player is a non-singleton in a state with r non-
singletons (including himself). Such a player will have on average
(r — 1) /r neighbors next period if he moves to any non-singleton
state, and exactly 1 neighbor if he moves to a singleton state. So a
deviator can not improve his immediate cost. So we have to check
whether a deviation which takes him to a current singleton state (it
will have population 2 if he moves there) can lower his future costs
by decreasing r, and hence, decreasing (r — 1) /r. So suppose that
when he doesn’t deviate (follows the basic simple strategy) he has
x neighbors in the following period. If instead of this he moves to
a singleton, we ask how the number of singletons will change. If
x > 1 the deviation will result in one fewer singleton, if x = 1 the
number of singletons will be unchanged, and if x = 0 the deviation
will produce two fewer singletons. So in no case will the future
situation for this player be improved by having more singletons and
decreasing the number r of non-singletons. O
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4. DYNAMIC FOCAL POINT STATES

The basic simple strategy Q is a natural response to a situation
where agents cannot distinguish between locations, and indeed for
some small 7 it is even optimal (see Proposition 5). However as a
result both of random outcomes in the dynamics on S, and of the
strategies that produce these dynamics, the agents may be able to
make use of the population distribution to coordinate their actions.
This possibility is entirely analogous to the coordination suggested
in [5] whereby two rendezvousers placed at two out of three possible
locations can use this distribution to coordinate on the unique unoc-
cupied location as a meeting point. An analogous situation arises in
the dispersion problem on n = 5 locations when the state 3, 2, 0, 0,
0] is arrived at. The players at the location with population 3 can
go independently to the empty locations and those at the popu-
lation 2 location can go independently to the two locations with
nonzero population. This corresponds to the simple strategy which
is described at this state by

[3*,2,0,0,0] — {0},
[3,2%,0,0,0] - {3,2}.

Unlike the situation in the example of Crawford and Haller [5],
this doesn’t necessarily produce the desired result (dispersion to
[1, 1,1, 1, 1]) in a single move, but as we shall see later it reduces
the expected dispersal time relative to the basic simple strategy. With
this example in mind, we make the following definition.

DEFINITION 4. A societal state s € S, is called a dynamic focal
point state if there is a simple strategy which deviates from the basic
simple strategy only on personalized states corresponding to s, and
which has a lower expected dispersal time than the basic simple
strategy.

To determine whether such dynamic focal point states s can arise
in our problem, we will obviously need to evaluate the expected
dispersal time corresponding to the basic simple strategy Q. To this

end, define w(s) = T (s, Q) to be the expected (dispersal) time
to reach the distinct location state § starting from s and using the
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basic simple strategy, and define w,, to be this expected time when
starting from the initial random distribution over S,. If we review
the analysis for n = 2 given earlier in terms of this new notation,
we see that wo, = vy = 1 (and we have trivially that w; = vy = 0).
To evaluate w,, for larger n we need to consider the probability p,, ,
that if n agents are placed randomly on n locations, exactly r of
these locations will be singleton locations. This probability can be
computed by the following formula (kindly shown to us by Graham
Brightwell):

n

= Z( . )2 L (8)
Pnr = -0 PG = '

i=r

For example when n = 2, we have p> 1 = 0 (it is impossible to
have exactly one singleton) and p2 o = p22 = 1/2. (Whenn =i,
the expression (n — i)~ is considered to be 1.)

Observe that when the basic simple strategy is employed starting
from a state s € S, with exactly r > 0 nonsingleton locations
(which implies r > 2) , the distribution at the next period over the
r locations which are not presently singletons will be the same as
the initial distribution on S, and consequently the expected time to
reach § = [1, ..., 1] from the state s using the basic simple strategy
is 1 + w,. Since this observation will be used often we state it in
formal notation, using the definition (1) as follows:

Fors € S, T(Q,s):1+wr. 9)
Consequently we have the following formula for w,,.

Wy = Pn,0 1+ w,) + pn,l(l +wu—1) + ...

+ pnn—2 (1 +wp), or (10)
1 n—2
wy, = (1_—pno> (pn,o + 2_: pn,rwn—r) ,
r=1
which gives w, as a function of wj, ..., w,_1. The first ten values

of wy, are given in Table II.

It is worth observing that leaving singletons alone (the only dif-
ference with the random strategy whose times are given in Table I)
certainly makes a large reduction in the expected dispersal time.
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TABLE II

Expected dispersal times for the basic simple strategy O

n 1 2 3 4 5 6 7 & 9 10

w, 0 1 %:1.625 21 25 28 31 34 36 38

5. ANALYSISFOR N =3

In this section we determine the strategy for n = 3 agents to achieve
the distinct location state s = [1, 1, 1] in least expected time vs.
We find that it is the basic simple strategy QO defined in the previous
section.

We begin the analysis by noting that we already know the least
expected time for two of the states: v ([1,1,1]) = v(s) = 0, by
definition; and v ([2, 1, 0]) = v ([2, 0]) = 2, by the singleton dele-
tion property (2) and (7). In the latter case (analyzed in Section 2) the
agents stay or move to the unoccupied location equiprobably. In the
remaining state [3, 0, 0], with unique personalized state [3*, 0, O] ,
there is a single strategic variable a = ¢,, with complementary
probability b = 1 — a = go. That is, each agent stays still with
probability a, goes equiprobably to the unoccupied locations with
probability 1 — a. Let T,, denote the expected time to get to § from
(3,0, 0) when using the strategy with parameter a. Then we have
that

T, =

1

&+ b3/4} (1+T,)

[3ab2/2 + 3b% /4 + 3a2b] (1+v[2,1,0])

-

30022 (1 +v[1, 1, 1])

—
Q

3453 /4} (1+T,) + [3ab2 124304 + 3a2b} 3)

_|_

:3ab2/2: (1),

with solution

T 2 —5+3a — 94% + 943
“7\3 a’l—1—a+a? ’
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which has a minimum of 7, = 21/8 = v ([3,0,0]) ata = 1/3.
At the single previously undetermined state [3*, 0, O] the optimal
strategy of staying still with probability 1/3 corresponds exactly to
the basic simple strategy of going to non-singleton locations equi-
probably. Thus the basic simple strategy Q is optimal from any state
in S3. Consequently from (5) and (4) we have

21
v3==pﬂ3il0D<3;>%-P(D,LOD(3-+p(U,L1D(®

(1T)
121 22 20_13
—§<§)+§()+§()—§,

which of course agrees with w3 (see Table II) since the basic simple
strategy has been shown to be optimal. This implies that there cannot
be any dynamic focal point states in S3. We summarize this in the
following.

PROPOSITION 5. The basic simple strategy Q is optimal for the
spatial dispersion problem T" (3) . There are no dynamic focal points
for the problem T" (3).

6. ANALYSISFOR N =4

In this section we will establish that for spatial dispersion prob-
lem I' (4) the basic simple strategy 0 is still optimal among all
simple strategies but is no longer optimal (within the full set Q,
of all progressive Markov strategies). We begin by considering only
simple strategies. Observe that once a singleton location is attained,
the singleton deletion property (2) reduces the problem to the case
n = 3, where we showed in the previous section that the basic
simple strategy is optimal. So we need consider only the two states
in 84 which have no singleton locations, namely [4, 0, 0, 0] and
[2, 2,0, 0]. Each of these corresponds to a unique personalized state,
namely [4*, 0,0, 0] and [2*, 2.0, 0]. We need to check whether
there is any way to define a simple strategy over these two per-
sonalized states which improves on the basic simple strategy of
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[4%,0,0,0] — {4,0} and [2*,2,0,0] — {2,0}, which corres-
ponds to a completely random selection of locations.

Observe first that any simple strategy with [4*, 0,0, 0] — {4}
has [4, 0, 0, 0] as an absorbing state, and consequently infinite ex-
pected dispersion time! Next, observe that [2*, 2,0, 0] — {2} is
equivalent to [2*,2,0,0] — {0}, since either can be described by
saying that all four agents move randomly to a common set of two
locations. So we need not consider simple strategies involving the
latter of these two possibilities. We are left with only three modifica-
tions of the basic simple strategy on the two new personalized states
to consider as possible improvements, and it is easily calculated that
all three do strictly worse than the basic simple strategy:

strategy 1: ~ [4*,0,0,0] — {0} and [2*,2,0,0] — {2}.
strategy 2:  [4*,0,0,0] — {0} and [2*,2,0,0] — {2,0}.
strategy 3: [4%,0,0,0] — {4,0} and [2*,2,0,0] — {2}.

We now show that while for n = 4 the basic simple strategy is
optimal among simple strategies, it is not optimal within the full
strategy set S,. For n = 4 the method of improving on the ba-
sic simple strategy uses a localized strategy from the societal state
[2,2,0,0], that is, one which distinguishes an agent’s own location
of population 2 from the other location of population 2. Suppose that
agents use the basic simple strategy, except from state [2, 2, 0, 0].
From here, they use the localized strategy of staying still with prob-
ability 1/2 and moving to a O-location with probability 1/2 (equi-
probably to each). They never go to the other location of population
2. Then the transitions from [2, 2, 0, 0] are summarized in Table III,
according to the independent coin tossing (move-stay) of the four
agents.

Combining the different ways of getting to the five possible states
in 84 using this strategy, we get the following transition probabilities
from [2, 2, 0, 0] .

[4,0,0,0] 1/128

[2,2,0,0] 19/128
[3,1,0,0] 12/128
[2,1,1,0] 80/128
[1,1,1,1] 16/128
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TABLE 111
Prob  Type Result Cond prob  Total prob-128
1
T6 none move [2,2,0,0] 1 8
4
6 one moves [2,1,1,0] 1 32
2
T6 two move, from [2,2,0,0] 1/2 8
same location [2,1,1,0] 1/2 8
4
6 two move, from [2,1,1,0] 1/2 16
distinct locations  [1,1,1,1] 1/2 16
4
6 three move [3,1,0,0] 1/4 8
2,1,1,0] 3/4 24
[4,0,0,0] 1/8 1
1
6 all four move [3,1,0,0] 4/8 4
[2,2,0,0] 3/8 3

If this strategy is used for only one period and then the basic simple
strategy is used, the expected time to reach s = [1, 1,1, 1] from
[2, 2,0, 0] can be computed using singleton deletion (2) as

20 (1 +T (Q, [4,0,0, 0])) L2 (1 +T (Q, 3.0, 0]))

128 128
80 i 16 i
+@(1+T(Q, 2, 01))+@(1+T(Q, [1]))
B ST .1 SR L7 SR
T g T W T g e W) T g e T
16
2
+ 128( + wy), by (9)

_20 (22T 12 13) 80
T 128 108) ' 128 §) ' 128

+ 16 (1) =2.9808
1287 7
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which is less than the time of 14+w4 = 335/108 = 3. 101 9 when us-
ing the basic simple strategy. Consequently using the above strategy
in all periods will yield an expected time less that of the basic simple
strategy. So we have shown that the basic simple strategy is not
optimal for n = 4. Summarizing the results of this section for n = 4,
we have the following.

THEOREM 6. For the spatial dispersion problem I' (4) the basic
simple strategy is optimal among simple strategies and consequently
there are no dynamic focal point states. However the basic simple
strategy is not optimal (among all strategies in Sy).

7. ANALYSISFORN =5

For the spatial dispersion problem I' (5) we will now show that the
basic simple strategy is not even optimal among the simple strategies
because the state § = [3, 2, 0, 0, 0] is a dynamic focal point. We do
this by finding a simple strategy which differs from the basic simple
strategy only on the state § = [3, 2,0, 0, 0] and has a lower dis-
persal time. Since there are no singleton locations in [3, 2, 0, 0, 0],
it follows from (9) that

T (Q, 3,2,0,0, 0]) — 14 ws =35,

We will show that the agents can improve by employing the simple
strategy O which is defined as the basic simple strategy in all other
states, but at state § = [3, 2, 0, 0, 0] is given by the rules mentioned
in the Introduction of

[3%,2,0,0,0] — {0}, and
[3,2%,0,0,0] - {3,2}.

In other words, agents at the location with population 3 go to empty
locations equiprobably, and agents at the location with population
2 equiprobably stay still or go to the location with population 3.
The group of three will go to one of the n = 3 substates [1, 1, 1],
[2,1,0], or [3,0,0]. The group of two will go either to [1, 1] or
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[2, 0] . The possible states are given below in a matrix which shows
how they arise from the random actions of the two groups of agents.

[1, 1, 1] [2, 1, 0] [3,0,0]
(1,17 |[1,1,1,1,1]|[2,1,1,1,0] | [3,1,1,0,0]
[2,0] | [2,1,1,1,0] | [2,2,1,0,0] | [3,2,0,0,0]

Note that under this strategy the system cannot return to § =
[3, 2,0, 0, 0] once it leaves s, because all the distinct successors of
§ have at least one singleton (which can never be lost in the future).
Consequently after leaving § the strategy 0 is identical to the basic
simple strategy Q and, hence, the expected timetos = [1, 1, 1, 1, 1]
using O from the other five states in the table is given by the function
w whose values were computed in Table II. Since the distribution
over the columns is (%, g, é) (see (4)), the distribution over the rows
is (%, %) , and the motion of the two groups of agents is independent,

we obtain the following formula for the expected time T (Q, §)

from § to § when using strategy Q . The six terms are listed going
left to right in the top row and then the bottom row. The subscript of
w gives the number of non-singleton locations.

18T (Qs) —2(1 +wo) + 61 +w)+1(1+ws)

+20+w) + 6 +wp) +1(1+7(0.5)).

Solving for T (Q §> and then substituting the known values wg =

0, wa =1, w3 =13/8, wy = %, we obtain,

v . 18 2 8 1 6
T(Q,s) — + —Zwo+ w2+ —Zw3 + —Zwy, or

171 17 17 17
.\ 2897
T (Q, s) = 270 _ 3668,
1224

which is considerably less than T (Q, §> = 14+ w5 = 3.5. This ana-

lysis shows that the state [3, 2, 0, 0, 0] is a dynamic focal point state.
We showed earlier that there are no dynamic focal point states for
n < 4. Furthermore, since states of the type [3,2,1,1,1,...1,0,0]
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occur for all values of n greater than or equal to 5, and all of these
configurations are dynamic focal points, we have

THEOREM 7. The spatial dispersion problem I" (n) has a dynamic
focal point state if and only if n > 5.

Since we have previously shown that the basic simple strategy
is optimal for n = 2 and 3 but not for n = 4, and the existence
of a dynamic focal point state precludes its optimality, we have the
following.

COROLLARY 8. The basic simple strategy Q is optimal for the
spatial dispersion problem T" (n) if and only if n < 3, and optimal
within the class of simple strategies if and only if n < 4.

8. NON-PROGRESSIVE STRATEGIES

We have been assuming thus far that the agents are restricted to us-
ing progressive strategies which maintain singleton states once they
are achieved. In this section we first discuss this assumption within
our previous model (where we conjecture that it is harmless) and
then present two variations on our previous model where restricting
to progressive strategies definitely is suboptimal. In the first of these
models, individuals have ‘limited habitats’ in that they may go only
to certain locations. The second model has ‘distinguished agents’
who may use distinct strategies.

First observe that even in our basic model, there may be non-
progressive strategies which are optimal. Consider for example the
basic simple strategy O (which is optimal for n = 3) as it relates to
the personalized states corresponding to the state [2, 1, 0], but con-
sidered within the wider space of generalized strategies (progress-
ive and non-progressive strategies). We would write it as follows
(if working within progressive strategies the second line would be
omitted):

[2%,1,0] = {2, 0}, and
[2,1%,0] — {1}.
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Suppose we modify it on this state to

[2*,1,0] — {1,0}, and
[2,1%,0] — {2}.

This is a non-progressive strategy which produces the same Markov
chain on &3 as Q, since the single agent will remain a singleton
agent (albeit at a new location), while the two neighbors move ran-
domly to a common set of two locations (which no one else will
enter). So it is certainly possible for a non-progressive strategy to be
optimal among generalized strategies. However we conjecture the
following:

CONIJECTURE 1. Forany n, there is always a progressive strategy
for the spatial dispersion problem I" (n) which is optimal among all
generalized strategies.

However there are two variations on our problem I' (n) for which
we can show that progressive strategies are always suboptimal: the
version with limited habitats and the version with distinguishable
agents.

8.1. Limited Habitats

Up to this point, we have been assuming that a satisfactory outcome
arises from any configuration with one agent per location, regardless
of which agents are where. We now consider situations in which
each agent has only certain locations, called acceptable habitats,
where he may be placed. For example, the agents may be people
and the locations houses, and perhaps not all houses are acceptable
to all people. Another version of this restricted matching problem is
called the Marriage Problem, where say the agents are a set of boys
and the locations are girls. Each boy knows a certain subset of the
girls, and the problem is to find a matching (each boy assigned to a
different girl) with the property that every boy is assigned to a girl
that he knows. In some cases, such a matching is impossible. Neces-
sary and sufficient conditions for the existence of such a matching
were established by P. Hall (see [12]) in the so called ‘Marriage
Theorem’: An acceptable matching exists if and only if it is true that
for every set of k boys, k = 1, ..., n, together they know at least k
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girls. There are efficient algorithms for finding such matchings (see
[11]) but they cannot be implemented by the type of agents we are
modelling in this paper.

Here we consider a dynamic version of the Marriage Problem
(sometimes called the Assignment Problem, with a story involving
workers and jobs). Initially every boy is assigned at random to one
of the girls that he knows. He knows the distribution (of boys) over
his set of acceptable girls (those whom he knows) and over the un-
acceptable girls. In each period he may move to another acceptable
girl, but based only on the population distributions (or more form-
ally, the two population distributions). We seek the strategy which,
if adopted by all the boys, takes the least expected time to reach an
acceptable matching. It should be observed that a finite minimum
exists, since the random strategy of going to a random acceptable
location (independent of the configuration) has finite expected time,
less than that given by Table I.

We will not consider this problem in complete generality, only in
a family of situations which we call the circular dispersion problem
C (n) . In this problem there are n boys, boy i knows girl j if and
onlyif j =i or j =i + 1 (with arithmetic modulo n). The problem
facing any two agents are equivalent via a circular permutation of the
boys and girls. The aim is to minimize the time required to achieve
a matching with each boy assigned to a girl that he knows. There
are two such matchings, one with each boy i assigned to girl i and
another with each boy i assigned to girl i + 1 (modn). However
in keeping with our previous language, we will refer to agents and
locations. The information available to each boy is the population
distribution over the two acceptable locations (one of these will have
a star indicating his own location) and the population distribution
over the remaining n — 2 locations.

We first consider the case n = 3. The labeling of the boys and
girls (or agents and locations) is from the point of view of an ob-
server. Each boy can simply recognize the two girls that he knows,
and he can’t even distinguish between them. A state of the sys-
tem (called a configuration) can be represented by a 3—tuple of
sets Ay, A, A3, where A; denotes the set of boys at location i.
From the observer’s point of view, there are two solutions, namely
{1}, {2}, {3} and {3}, {1}, {2} . Since no locations is acceptable to
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all three agents, it is not possible to have a state with a popula-
tion of 3 at any location, that is, # (A;) < 2. Consequently there
are four personalized states in this problem, namely ([2*,0], [1]),
([2*,1].101), ([1*,0].[21), and ([1*, 1], [1]) . For example, the
first of these says that I have one neighbor at my current location,
no one is at the other location acceptable to me, and one agent
is at the location which is not acceptable to me. A little analysis
shows that the last of these, namely ([1*, 1], [1]), actually corres-
ponds to an acceptable matching for all agents, and consequently
an agent should stay still from this personalized state. An optimal
strategy which results in an acceptable matching in one step is the
following:

(i) If alone (singleton), stay still.

(i1) If not alone and your other acceptable location is occupied, stay

still.
(ii1) If not alone and your other acceptable location is not occupied,
move to it.

Note that this is a progressive strategy. Our claim regarding this
strategy is easily checked. Since each agent has two acceptable loc-
ations, there are eight possible initial configurations, which we list
as three sets: agents at location i, i = 1, 2, 3. For each, we give the
acceptable matching that results in a single step from the strategy.
Of course the first two are acceptable initial configurations.

initial configuration next configuration

{1}, {2}, {3} {1}, {2}, {3}
{3}, {1}, {2} {3}, {1}, {2}
{1,3}, {2}, {} {1}, {2}, {3}
{1,3}, 0}, {2} {3}, {1}, {2}
{1}, 0,12, 3} {1}, {2}, {3}
. {1}, {2, 3} {31, {1}, {2}
{1, {1,2}, {3} {1}, {2}, {3}
(31, 11,2}, ) {31, {1}, {2}

To explain this table, consider for example the third initial configur-
ation, {1, 3}, {2}, {}. Since agent 2 is alone, he stays still by rule (i).
Since agent 1 is not alone and his other acceptable location (location
2) is occupied (by agent 2), he stays still by rule (ii). Since agent 3
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TABLE IV

Personalized states for C(4)

label personalized state

1%, 1], [1,1]
1%, 1], [2, 0]
1*,0], [2, 0]
2%,0],[1,1]
2*,0],[2,0]
2*,1].11,0]

I CHE = T e BN S N
oo/, e/

is not alone, and his other acceptable location (location 3) is empty,
he goes there.

Next we consider the case n = 4. The acceptable matchings (ab-
sorbing configurations) in this case are {1}, {2}, {3}, {4} and {4},
{1}, {2}, {3} . There are six personalized states for this problem, as
given in Table IV. A strategy for this problem tells an agent whether
to stay still or to move to his other acceptable location, depending
only on his personalized state (it need not be defined for the person-
alized state ‘a’, since this corresponds only to an absorbing state). A
pure strategy will give a definite answer, a mixed (or Markov) one a
probability.

The societal states may be visualized as in Figure 1 by listing
agents 1-4 down a column on the left and locations 1 to 4 in another
column to the right. In every state an agent is either linked by a
horizontal line to the location on his right (with the same number) or
by a slanted line to the location below (with the next higher number).
Using the circular symmetry of the problem we may chose the list
starting with any agent on top, so as to maximize the number of
horizontal lines starting from the top. This gives a reduced set of six
configurations with respectively 4,3,2,1,1,0 horizontal lines at the
top of the picture. The first and last of these are the absorbing final
states. For each agent in each state, we give his personalized state
according to the labelling of Table IV. Note that there is no intended
interaction between distinct columns, simply six separate pictures.

In this figure the bottom (fifth) location in each right-hand column
is the same as the top (first) location. The labeling of the personal-
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Figure 1. Six states for C(4).

ized states shows that the absorbing state 6 is strategically equivalent
to state 1 and state 5 is strategically equivalent to state 2.

Consider state 3, and the two singleton agents (both with person-
alized state c). If a progressive strategy is adopted, their assignments
will never change. However, these assignments conform neither to
the absorbing state 1 or to the absorbing state 6, so the dispersal time
from state 3 will be infinite. Consequently no progressive strategy
for the problem C (4) can be optimal (or even have finite dispersal
time). Another observation is that no pure strategy has a finite expec-
ted dispersal time. To see this, suppose state 4 is reached (this will
occur with positive probability at time zero regardless of the strategy
used). Regardless of whether the pure strategy says to stay still or
move from personalized state e, state 4 will be an absorbing state of
the Markov chain. (If the instruction is to move, then the resulting
state will not initially be listed in Figure 1, but after moving one of
the horizontal lines to the top of the figure it will again correspond
to state 4.)

8.2. Distinguishable Agents

Up to now we have been assuming that the same strategy is given to
each agent at the beginning of the problem I' (n) (or we have looked
for symmetric equilibria in an associated game). If we are allowed
to give different strategies to the agents, we call this problem I'" (n) .
In keeping with the similar assumption that has sometimes been
made in rendezvous problems we will call this the problem ‘with
distinguishable agents’. For example a book on this topic for n = 3,
held by all agents, could say what the tallest agent should do, the
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middle agent, and the shortest agent. Obviously the expected dis-
persal time cannot be larger for this problem, since it is still possible
to tell all the agents to follow the same strategy. We shall not give a
complete analysis of I’ (n) , but we shall show that even for n = 3
an optimum cannot be attained by progressive strategies.

THEOREM 9. For the spatial dispersion problem I (3) with dis-
tinguishable agents, the optimal expected dispersal time is v = %.
No strategy profile consisting of progressive strategies can attain
this time.

Proof. We first establish that v} is % and then we show that pro-
gressive strategy profiles have higher expected meeting times. First
consider the state [2, 1, 0]. Since this is not the absorbing state
[1,1, 1], we clearly have v’'[2,1,0] > 1. The (partial) strategy
profile in which agenti = 1, 2, 3 moves from wherever he happens
to be in the state [2, 1, 0] to the unique location with population
i — 1 ensures an immediate transition from [2, 1, 0] to [1, 1, 1] and,
therefore, establishes that v’ [2, 1, 0] = 1. From state [3, 0, 0] we
tell agent 1 to stay still and agents 2 and 3 to move to a zero popula-
tion location. Half the time this leads to the absorbing state [1, 1, 1]
and half the time to [2, 1, 0], and so this strategy profile goes from
[3,0,0]to [1, 1, 1] in expected time

(L+v'[1,1,1]) + % (1+'[2,1,0])

M| —

—11 11 1—3
—5()4—5( + )—5-

To show that this time cannot be improved, consider the most gen-
eral strategy profile from [3, 0, 0], in which agents 1,2,3 move to a
zero population location with respective probabilities p, g, r. This
leads immediately to the absorbing state [1, 1, 1] if one agent stays
still and the other two move to distinct locations, an event that occurs
with probability

1
P(p,q,r) = E[p(l - —=r)+A—=p)—-q)r
+ {1 = pgd—r)].
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Since from any other state it takes at least one period to get to
[1, 1, 1] it follows that

U,[3,0,0]Z 1(P(P’CI”’))+2(1_P(P’CI”’))

1
= [4—2P (p.q.1)]

1
=sl4-pA-U-n+A=-p)d=q)r
+ (A =p)gd—r)]

1
:5[4—p(1—qr)+r—2qr+q]

1
25[4—(1—qr)+r—2qr+q] (taking p = 1)

1
25[3—qr—|—r+q]

1 3
> 5[3] =5 (taking ¢ =r = 0).

So we have v’ [3,0,0] = % and, since the same strategy profile is
used to obtain v’ [3, 0, 0] and v’ [2, 1, 0], we have by (5) that

vy = pI[3,0,0] v'[3,0,01+ p[2,1,0] v'[2,1,0]
+p[l, 1,11V [1,1,1]

_ (3,28
_9<2) 3()_6'

(This time should be compared with the much larger optimal dis-
persal time of v3 = 13/8 for the case of indistinguishable agents
obtained in Equation (11).)

We now show that no progressive strategy profile can give such a
low dispersal time. Given the above analysis, it is enough to demon-
strate that no strategy profile which uses all progressive strategies
can ensure getting from [2, 1, 0] to [1, 1, 1] in a single step. In order
to achieve this for certain, one of the agents at the population 2 loc-
ation must move to the population O location, while the other must
stay still. So we must assign rules (move or stay) to the three agents
so that any two of them (the two that arrive at the personalized state
[2*, 1, O]) will be assigned distinct rules (one will move and the
other will stay). However the ‘pigeon-hole principle’ ensures that if
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three agents are placed among (given) two rules (move or stay from
[2*, 1, O]) two of them will be placed at the same rule. In other
words, two of the agents will be given the same rule. If these two
agents share a location (with the other agent elsewhere) then the
state [1, 1, 1] will not be attained at the next move. Consequently no
progressive strategy profile can attain the expected dispersal time of
2 O
It is worth noting that the analysis of the last paragraph of the above
proof does not imply that a progressive profile cannot be optimal for
I’ (3) if the problem is started from the state [3, 0, 0] . The following
progressive strategy profile is indeed optimal from [3, 0, 0] .

1. Agent 1 stays still in [3*, 0, 0] and stays still in [2, 1%, 0].
2. Agent 2 moves in [3*, 0, O] ,stays still in [2, 1*, 0] , and moves
empty location in [2*, 1, O] .
3. Agent 3 moves in [3*, 0, 0] ,stays still in [2, 1*, 0], and stays
still in [2*, 1,0] .
Suppose this strategy profile is adopted. From [3, 0, 0] we move to
[1, 1, 1] half the time and to [2, 1, O] half the time. In the latter case
the singleton agent will be agent number 1. Of the remaining two
agents who are together, one (agent 2) will move to the unoccu-
pied location, and one (agent 3) will stay still, so in the next period
we arrive at [1, 1, 1]. So the expected time to reach [1, 1, 1] from
[3, 0, 0] using this progressive strategy profile is % (1) + % 2) =
% = ©v’[3,0, 0]. The reason this approach cannot be used in the
usual formulation of I'' (3) is that if [2, 1, 0] is attained as an initial
position (rather than as a follower of [3, 0, 0]) we cannot be sure of
the agent locations.

8.3. Distinguished Locations

We have been assuming throughout that agents can distinguish be-
tween locations only through the differing populations at these loc-
ations. Suppose however that the agents have a common a priori
numbering of the locations. This would obviously help for any n
in the rendezvous problem, as they could all immediately go to say
location 1. But does this initial common labeling help in the spa-
tial dispersion problem? The answer depends on the number n (of
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agents and of locations), as we shall see in this section. (Note that
we cannot simply tell player i to go to location i, as we are retaining
the assumption that the strategy must be symmetric — the same for
each player.)

First observe that having the locations distinguished would not
help in the case n = 2, because in the only nonabsorbing state [2, 0]
the locations are already distinguished by their differing populations
(the empty location and the non-empty location).

For n = 3, the same observation applies to the state [2, 1, 0] .
However, the state [3, 0, 0] has to be analyzed further, as in the new
formulation the agents can distinguish between the two empty loc-
ations. Consider the strategy which equals the basic simple strategy
except from [3, 0, 0], where it tells the agents to go to the com-
monly labeled locations 1,2,3 with respective probabilities x, y, z.
Since the expected time to reach s = [1, 1, 1] from [2, 1, 0] is 2 and
from [1, 1, 1] is O, the expected time T to reach s = [1, 1, 1] from
[3, 0, 0] using this strategy (playing the optimal random strategy at
states with at most two non-singletons) is given by the equation

T = (x3+y3+z3)(1+T)
+(3x2(1—x)+3y2(1—y)+3z2(1—z))(1+2)
+ (6xyz) (1+0), or

- 1\ [ 1+6x+6y — 6x% — 6y> — 24xy+18x%y+18xy?
B x4y —x2—2xy — y2+xZy+xy? '

3

But this expression has a minimum at x = y = 1/3 (and, hence,
alsoz =1—x—y =1/3)of 21/8, which is the same optimum and
the same (basic simple) strategy as in the case with indistinguishable
locations. So we have shown the following.

PROPOSITION 10. For n < 3 the basic simple strategy remains
optimal even when strategies that distinguish between locations are
allowed.

This result cannot, however, be extended beyond n = 3. For ex-
ample, suppose we are in the (unordered, as usual) state [2, 2, 0, 0],
with locations 1 and 2 having population 2 and locations 3 and 4
empty. The strategy in which an agent at location 1 equiprobably
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stays or moves to location 3, and an agent at location 2 equiprobably
stays or moves to location 4, has expected dispersal time 8/3, assum-
ing the basic simple strategy is used whenever there are no more than
three non-singleton states. To see this, observe that when using this
strategy the state [2, 2, 0, 0] is equally likely to be followed by any
of the four ordered states [2,2,0,0], [1,1,1,1], [2,1,0, 1], and
[1,2, 1, 0]. Hence, the expected dispersal time 7 satisfies

T:1(1+T)+%(1)+%(1+v[2,0]), or

W] oo A~

T = —, since v [2, 0] has been shown to equal 2.

No strategy which does not distinguish between locations can ach-
ieve such a low dispersal time. A full analysis of the problem with
distinguished locations is beyond the scope of this article. However
the problem appears as interesting as the one with indistinguishable
locations that we have examined.

Of course if we have both distinguishable agents and distinguish-
able locations, the problem disappears, as we simply have agent i go
to location i. This is what happens in a company parking lot where
each space is marked with the name of its approved occupant.
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