
Edit Distance in
Near Linear Time: 𝑂(1) factor

Alex Andoni
Negev Shekel Nosatzki

(Columbia University)

https://arxiv.org/abs/2005.07678

https://arxiv.org/abs/2005.07678

Edit distance (Levenstein)

2

} Strings 𝑥, 𝑦 ∈ Σ!

} 𝑒𝑑!(𝑥, 𝑦) = minimum number of insertions/deletions/
substitutions to transform 𝑥 into 𝑦

𝑒𝑑!(banana,

ananas) = 2

Applications:
• bioinformatics
• natural language processing

Crucially: A classic dynamic programming

b a n a n a

a

n

a

n

a

s

2

56

1

1

1

1

1
1

2
22

22
22

2
2

2

2
2

3

33

3
3

3 3
3 4
4

4
4

4
5

5

𝐷(𝑖, 𝑗) = min
𝐷(𝑖 − 1, 𝑗 − 1), if 𝑥 𝑖 = 𝑦[𝑗]

𝐷(𝑖, 𝑗 − 1) + 1
𝐷(𝑖 − 1, 𝑗) + 1

𝐷(𝑖, 𝑗) = 𝑒𝑑(𝑥[1: 𝑖], 𝑦[1: 𝑗])

} Computing 𝑒𝑑!(𝑥, 𝑦):
} 𝑂(𝑛!) time [Wagner-Fischer’74]

Speed-up dynamic programming?

3

Faster Algorithms?

4

} Computing 𝑒𝑑!(𝑥, 𝑦):
} 𝑂(𝑛!) time [Wagner-Fischer’74]
} 𝑂(𝑛!/ log! 𝑛) [MP’80]
} Better in special cases (small 𝑒𝑑, average case, smoothed, etc):

[U83,LV85,M86,GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPS
V00,MS00,CM02,BCF08, AK08, K’19…]

} FGC: 𝑛!"#(%) likely best possible!
} assuming Strong Exponential Time Hypothesis [BI’15, AHWW’16,…]

} Approximation in near-linear time?
} log%/(𝑛 factor in 𝑛%)*(() time [BEKMRRS’03, BJKK’04, BES’06,

AO’09, AKO’10]
} 𝑂(1) factor in 𝑂 𝑛%.,-% quantum time [BEGHS’18]
} 𝑂(1) factor in 𝑂 𝑛%..%- time [CDGKS’18]
} 𝑂((1) factor & ±𝑛%"/ (additive in 𝑂 𝑛%)(time [KS’20, BR’20]

Main result

} Approach setup:
} 𝑒𝑑"(𝑥, 𝑦)ó an optimal alignment 𝜋: 𝑛 → 𝑛 ∪ {⊥}
} 𝑋# , 𝑌$: substrings starting at 𝑖/𝑗 of length 𝑤 (think 𝑤 = 𝑛%&')

} Then ∑#
()! *",,# "

-
≈ 𝑒𝑑"(𝑥, 𝑦)

Can compute 𝑒𝑑 𝑥, 𝑦 with 𝑂"(1) approx. in 𝑛#$" time

Goal: find near-optimal matching 𝜋 between 𝑋#’s and 𝑌$’s,
using calls to 𝑒𝑑- 𝑋# , 𝑌$ (possibly recursive)

𝑥

𝑦

banaaanas

ananas

𝑿𝒊

𝒀𝒋

Past approaches

Why should help? [BEGHS’18, CDGKS’18]
} Naive compute-all: 𝑛% calls to 𝑒𝑑& => time 𝑛%𝑤%

} Finding actual 𝜋: 𝑛/𝑤 .(%) time (~standard DP)

} Idea 0: enough to consider 𝑖 be multiple of 𝑤
} Issue: 𝑗 = 𝜋 𝑖 may not be 𝑤-multiple
} Can round 𝑗 to 𝛿𝑤, at the cost of additive 𝛿𝑛 error
} Reduces to ≈ 𝑛/𝑤 ! calls => time ≈ 𝑛!

Goal: find near-optimal matching 𝜋 between 𝑋#’s and 𝑌$’s,
using calls to 𝑒𝑑- 𝑋# , 𝑌$ 𝑋": interval of

length 𝑤

𝑥
𝑿𝟏 𝑿𝒘 𝑿𝟐𝒘

𝑦

Or ~𝑤%.0 if
recursing on 𝑒𝑑1

Reducing # of calls to 𝑒𝑑; 𝑋< , 𝑌=

} Idea 1: use triangle inequality to deduce 𝑒𝑑& 𝑋' , 𝑌(
} If 𝑋2 is “close” to 𝑋2! , …𝑋2" and 𝑌3 “close” to 𝑌3! , … 𝑌3" => so are all of

them, up to factor 2
} Reduces # of 𝑒𝑑1 computations from 𝑚! to ~2𝑚 (if ideal) !

} Idea 2: for 𝜋 𝑖𝑤 = 𝑗, most likely 𝜋 𝑖 + 1 𝑤 ≈ 𝑗 + 𝑤
} +Idea 1,2 [CDGKS’18]: 𝑛/𝑤).+ computations of 𝑒𝑑&!

} Total time: 𝑛/𝑤 %.0 ⋅ 𝑤! + 𝑛/𝑤 *(%)

} [KS’20, BR’20]: 𝑛/𝑤),- computations of 𝑒𝑑&
} Extra 𝑛%"/(() error term
} E.g., allows to ignore a 𝑛"/(() fraction of matches 𝑋2, 𝑌4(2)

Goal: find near-optimal matching 𝜋 between 𝑋#’s and 𝑌$’s,
using calls to 𝑒𝑑- 𝑋# , 𝑌$

𝑥
𝑿𝟏 𝑿𝒘 𝑿𝟐𝒘

𝑦

Our high-level approach
} For each 𝑤 = 1, 𝑛" , 𝑛%" , … 𝑛,
} build a distance oracle 𝐷& for the metric (𝔗&, 𝑒𝑑& ⋅,⋅)

where 𝔗& = all 2𝑛 substrings of length 𝑤

Oracle 𝐷#: for 𝐼, 𝐽 ∈ 𝔗$
• 𝑒𝑑# 𝐼, 𝐽 ≤ 𝐷#(𝐼, 𝐽)
• 𝐷#(𝐼, 𝐽) ≾ 𝑒𝑑# 𝐼, 𝐽 where it “matters”
• 𝐷#(𝐼, 𝐽) call takes 𝑂∗(1) time

𝐷.! 𝐷."! 𝐷.𝐷)

New goal: given 𝐷#/!$, compute 𝐷#, in 𝑛'()(+) time

=
…

Hamming
𝐷!(𝑋#, 𝑌#)

2 components:
} 1. Alignment algo: oracle 𝑎𝑙&(𝐼, 𝐽)
} 2. Matching algo: building 𝐷& from 𝑎𝑙&

𝑎𝑙&

𝑮𝒘
𝐷&

Distance oracle
data structure

Matching
algorithm

𝑂1(1) factor approx.
Any distance oracle OK,
as long as metric output

Distance 𝐺# (shortest path): for 𝐼, 𝐽 ∈ 𝔗$
• 𝑒𝑑# 𝐼, 𝐽 ≤ 𝐺#(𝐼, 𝐽)
• 𝐺#(𝐼, 𝐽) ≾ 𝑎𝑙# 𝐼, 𝐽 where it “matters”

𝑒𝑑# 𝐼, 𝐽 ≤ 𝑎𝑙#(𝐼, 𝐽) ≾ 𝑒𝑑# 𝐼, 𝐽
𝑎𝑙#(𝐼, 𝐽) uses 𝑂∗(1) time & 𝐷#/!$ calls

𝐷&/.!

E.g., [Thorup-Zwick’05] not metric output
But [Matousek’96]: embed into ℓ-. where
𝑑 = 𝑛+ = 𝑂∗(1) for approximation 𝑂(1/𝜖)

Matching Algorithm
} Enough to build graph 𝐺 for one scale 𝑐:

} Edge 𝐼, 𝐽 implies 𝑎𝑙 𝐼, 𝐽 ≤ 𝑂1(𝑐)
} For any alignment 𝜋, for 𝑖 ∈ 𝑛 :

} If 𝑎𝑙 𝑋2, 𝑌4 2 ≤ 𝑐, there is a 2-hop path in 𝐺
} Can miss O(error): ie ≾ number of pairs where 𝑎𝑙 𝑋2, 𝑌4 2 > 𝑐

} 𝑂∗(𝑛) time and calls to 𝑎𝑙

𝑎𝑙&

𝑮𝒘

Perfect Neighborhood Assumption:
• Either 𝑎𝑙 𝐼, 𝐽 ≤ 𝑐
• Or 𝑎𝑙 𝐼, 𝐽 ≫ 𝑐
Ie, 𝔗# composed of equivalence classes

BIG simplification…

A AAB

AAB D

C C

C C C

CC

CA

D𝑋' ’s

𝑌(’s

Instead of triangle
inequality

Main loop
1. Iteratively partition 𝔗& into finer parts

} In step 𝑡 = 1…1/𝜖, produce Π3
} ≈ 𝜆3 parts of size ≈ 𝑛/𝜆3, for 𝜆 = 𝑛1

} Construction in step 𝑡
} Sample 𝜆3 anchors ∈ 𝔗# (each will produce a part in Π3)
} For each anchor 𝐴, compare to all in Π3&%(𝐴) using 𝑎𝑙 oracle
} Obtain set 𝐸 𝐴 : all “equivalent” substrings (at distance ≤ 𝑐)

} Each such 𝐼 ∈ 𝐸 is given credit 𝜙4 𝐼 = "/6%

|8 4 |

Fix part 𝑃 ∈ Π01):
• Size 𝜆 ⋅ 𝑛/𝜆0
• About 𝜆 anchors inside
• Each should capture 𝑛/𝜆0

A AAB

AAB D

C E

C C E

CC

CCA

AD

Fix part 𝑃 ∈ Π01):
• Size 𝜆 ⋅ 𝑛/𝜆0
• About 𝜆 anchors inside
• Each should capture 𝑛/𝜆0
• 𝐼 ∈ 𝐸(𝐴) is given credit

𝜙2 𝐼 = ./3#

|5 2 |

Partition via proximity

A AAB

AAB D

C E

C C E

CC

CCA

AD

Issues:
1) Value of 𝑅?
2) Need to group
non-proximal sparse
substrings together

} Proximal extension of 𝐼 ∈ 𝐸(𝐴):
} Distribute 𝜙5(𝐼) to “nearby” 𝐽’s
} 𝑅 intervals 𝐽 ∈ 𝑃6"%(𝐼) to left/right
} Defines 𝜓5(𝐽)

} New partition Π/ of 𝔗&:
} Consider vectors 𝜓 𝐽 ∈ ℜ)

7#

} Partition using (weighted) minhash ℎ: 2 7# → 𝜆6 :
} 𝐽 assigned to part ℎ 𝜓 𝐽
} Pr[𝑋& and 𝑌'(&) separated] ≈ ||𝜓 𝑋& − 𝜓 𝑌' & ||* ≈ “local error”

Repeat for 𝑅 = 𝑛(8, for 𝑙 = 1…
Each level 𝑙 “takes care” of intervals 𝐼 of density 𝐸 𝐼 ≈ Θ∗ :/7#

:$%
Use thresholded 𝜓5(𝐽): zeroed-out if too small (to ensure no big parts)
Remove partitioned intervals from subsequent levels

Intervals partitioned according to their proximity

A sample of the rest
} Beyond “Perfect Neighborhood Assumption”:

} Challenge: can’t use usual ideas to reduce to PNA
} E.g., if choose a random cut-off point 𝑐:

constant probability to separate 𝑋& from 𝑌'(&) => like 𝑒𝑑 ≈ 𝑛
} Or FRT-like metric decomposition: Pr pair together ≈ 𝑛+, not enough
} Need a “for all” guarantee instead of “for each”

1. Smooth out everything: “matching quantities” => up to 𝑛*(()
} Eg, use fractional partitions (colorings): interval (logically) split b/w “parts”
} New challenges to keep palettes sufficiently sparse

2. Replace Jaccard (w-minhash) with “distortion resilient ℓ%”:
} 𝑑𝑑- 𝑝, 𝑞 = ∑& 𝑝& ⋅ 𝕀[𝑝& > 𝐹 ⋅ 𝑞&] for 𝐹 = 𝑛.(,)

} Alignment Algorithm 𝑎𝑙#:
} Challenge 1: 𝐷&/.! arbitrary metric
} Challenge 2: output of 𝑎𝑙& needs to be a metric

𝑎𝑙&

𝐷&/.!

Perfect Neighborhood Assumption:
• Either 𝑎𝑙 𝐼, 𝐽 ≤ 𝑐
• Or 𝑎𝑙 𝐼, 𝐽 ≫ 𝑐

𝑎𝑙1(𝐼, 𝐽) uses 𝑂∗(1) time and 𝐷1/:$ calls

Finale

} Approximation ~doubly-exponential in 1/𝜖
} Open questions:

} 𝑝𝑜𝑙𝑦(1/𝜖) approximation?
} Natural because using “dimension reduction” methods for metrics,

where standard to have 2/𝜖 approx. vs 𝑛(dimension

} Best runtime for 3 + 𝜖 approximation?
} E.g., ≈ 𝑛%.0 natural: bottleneck is dynamic programming on substrings
} Current best: ≈ 𝑛%.. [A’18, RSSS’19, GRS’20]

} < 3 approximation (beyond triangle ineq)? [RSSS’19]
} Many other edit distance problems:

} Text indexing [CDK’19, A’18], embedding/cutting modulus/NNS

Can compute 𝑒𝑑 𝑥, 𝑦 with 𝑂"(1) approx. in 𝑛#$" time

