Edit Distance in
Near Linear Time: O(1) factor

Alex Andoni
Negev Shekel Nosatzki

(Columbia University)

https://arxiv.org/abs/2005.07678

https://arxiv.org/abs/2005.07678

Edit distance (Levenstein)

» Strings x,y € X"

» ed,, (x,y) = minimum number of insertions/deletions/
substitutions to transform x into y

/-, Applications:
@ * bioinformatics

* natural language processing

edy,(

Crucially: A classic dynamic programming

» Computing ed,,(x,y):
0(n?) time [Wagner-Fischer'74]

x[i] = ylJj]
:":."‘-";f"'-f D(L,]) = min D(i _ 1']') +1
; D(i,j—1)+1

Faster Algorithms?

» Computing ed,,(x,y):
0(n?) time [Wagner-Fischer'74]
0(n*/log?n) [MP'80]

Better in special cases (small ed, average case, smoothed, etc):

[U83,LV85,M86,GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPS
V00,MS00,CM02,BCF08,AK08, K’19...]

FGC:n?7°M) Jikely best possible!
assuming Strong Exponential Time Hypothesis [BI'| 5, AHWW’16,...]
» Approximation in near-linear time!

log!/€ n factor in n**9(€) time [BEKMRRS’03, BJKK’04, BES'06,
AO’09,AKO’10]

0(1) factor in O(n'781) quantum time [BEGHS’18]
0(1) factor in 0(n'¢18) time [CDGKS’ 18]
0.(1) factor & +n'=7(€) additive in O(n'*€) time [KS'20, BR’20]

Main result

l Can compute ed(x,y) with O.(1) approx.in n'*€ time I

» Approach setup:

ed,, (x,y) & an optimal alignment i: [n] — [n] U {1}
Xi, Yj :substrings starting at i /j of length w (think w = n1-9)

edy (Xiryn(i))
w

Then });;

~ edn(x,y)

Goal: find near-optimal matching between X;’s and Y;’s,

using calls to edW(Xl-, Y]) (possibly recursive)

Past approaches

Goal: find near-optimal matching between X;’s and Y;’s, 1
using calls to edW(Xl-, Y])

X;:interval of]

Why should help? [BEGHS’ 18, CDGKS’18] length w

» Naive compute-all: n” calls to ed,, => time n“w?

Finding actual : (n/w)°® time (~standard DP)

» ldea 0: enough to consider i be multiple of w
Issue: j = m(i) may not be w-multiple
Can round j to 0w, at the cost of additive on error

Reduces to ~ (n/w)? calls => time =~ n®
X1 Xw XZW

Reducing # of calls to ed,, (Xi, Y])

Goal: find near-optimal matching between X;’s and Y;’s,
using calls to edW(Xi, Y])

» Idea I: use triangle inequality to deduce ed,, (X, Y;

If X; is“close” to X; ,...X; andY]“close” to V] ,..Y; =>soare all of
them up to factor 2

Reduces # of ed,, computations from m? to ~2m (if ideal) !
» ldea 2:for m(iw) = j, most likely ((i + Dw) = j + w
» +ldea 1,2 [CDGKS’I8]: (n/w)'® computations of ed,,!
Total time: (n/w)1® - w? w)o® p
» [KS'20, BR20]: (n/w)'*€ computations of ed,, Or ~w!® if }

recursing on ed,,

Extra n'=/(€) error term
E.g., allows to ignore a n=/(€) fraction of matches X;, Yo

Xl Xw XZW

X

y

Our high-level approach

» For each w = 1,n¢,n%¢, ...n,
» build a distance oracle D,, for the metric (T,,, ed,, (:,"))

where I,

Hammlng

A-A-b-—A

= all 2n substrings of length w

-

Oracle D,:for I,] € X,

edW(I, D <D,(])

~

D, (1,]) = ed,,(I,]) where it “matters”

D,,(1,]) call takes 0*(1) time

n(Xl’ Yl)

l New goal: given D, /e, compute Dy, in n1+0(€) time l

edy(1,)) < aly(1,]) = edy(1,])
2 components: aly,(I,]) uses 07 (1) time & Dy, /e calls

» |.Alignment algo: oracle al,, (I,])

» 2. Matching algo: building D,,, from al,,

A=

. s
Matching Distance oracle

algorithm data structure /\

Gy,
4)
Distance G, (shortest path):for I,] € I, | Oe(1) factor approx.
e edy,(,) <G, () Any distance oracle OK,
+ G,(I,)) 3 al,(I,]) where it “matters” || as long as metric output
Mt N

E.g., [Thorup-Zwick’05] not metric output
But [Matousek’96]: embed into £% where
d = n® = 0*(1) for approximation O(1/¢€)

Matching Algorithm | 9w (===

» Enough to build graph G for one scale c:
Edge (I,]) implies al(l,]) < 0.(c) G,
For any alignment , for i € [n]:
If al(Xl-, Yn(i)) < ¢, there is a 2-hop path in G

Can miss~" e < number of pairs where al(Xl-, Yn(i)) > C
." ‘;\?\.\{\Cai\o“' L cails to al
2\G S L Neighborhood Assumption: w
* Either al(l,]) < c Instead of triangle
« Oral(l,])»c inequality

le, T,, composed of equivalence classes

Main loop

I.lteratively partition ,, into finer parts

Instept =1..1/¢, produce Il; Fix part P € I1;_;:
~ At parts of size ~ n/At,for 1 = n€ |* Size 1-n/2’
* About A anchors inside

» Construction in step ¢ + Each should capture n/At

Sample A* anchors € I, (each will produce a partin II;)
For each anchor A, compare to all in [1;_; (A) using al oracle

Obtain set E(A) :all “equivalent” substrings (at distance < c)
n/At
|E(A)]

Each such I € E is given credit ¢p,(I) =

AAB AD C CE

\\[777" \ [/

A C AAB D

Partition via proximit

» Proximal extension of I € E(A):
Distribute ¢, (1) to “nearby” J’s
R intervals | € P,_;(I) to left/right
Defines 1 4(J)

» New partition I1; of I,,:
Consider vectors Y(J) € iR’lt

part P € II,_q:

Size A -n/At

About A anchors inside
Each should capture n/A*
I € E(A) is given credit

_ n/at

Issues:
|) Value of R?
2) Need to group

Partition using (weighted) minhash h: 2121 [AY]: non-proximal sparse

J assigned to part h(y()))

substrings together
y

Pr[X; and Yy (;) separated] =~ ||{(X;) — ¢(Yn(i))||1 ~ “local error”

Intervals partitioned according to their proximity

Repeat for R = n€ forl=1..

Each level [“takes care” of intervals I of density E(/) = O* (

n/At)

nel

Use thresholded 1 4(]): zeroed-out if too small (to ensure no big parts)

Remove partitioned intervals from subsequent levels

4)
Perfect Neighborhood Assumption:

 Eith I(1,]) <
A sample of the rest |. Olr Z;(Czl > c i

» Beyond “Perfect Neighborhood Assumption’:

Challenge: can’t use usual ideas to reduce to PNA
E.g., if choose a random cut-off point c:
constant probability to separate X; from Y ;) => like ed = n
Or FRT-like metric decomposition: Pr pair together ~ n™¢ not enough
Need a “for all” guarantee instead of “for each”
Smooth out everything: “matching quantities” => up to n°(©)
Eg, use fractional partitions (colorings): interval (logically) split b/w “parts”
New challenges to keep palettes sufficiently sparse
Replace Jaccard (w-minhash) with “distortion resilient £,
ddr(p,q) = X;p; - I[p; > F - q;] for F = n%©
» Alignment Algorithm al,,:

Challenge 1: D, /¢ arbitrary metric

al,,

Challenge 2: output of al,, needs to be a metric

l aly,(1,]) uses 07(1) time and D, /e calls

Finale

l Can compute ed(x, y) with O.(1) approx.in n'*€ time I

Approximation ~doubly-exponential in 1/¢

» Open questions:
poly(1/€) approximation!?

Natural because using “dimension reduction” methods for metrics,
where standard to have 2/¢ approx. vs n¢ dimension

Best runtime for 3 + € approximation!?

E.g., ~ n!> natural: bottleneck is dynamic programming on substrings

Current best: =~ n1¢ [A’18, RSSS’19, GRS'20]
< 3 approximation (beyond triangle ineq)? [RSSS’19]

Many other edit distance problems:
Text indexing [CDK’19,A’18], embedding/cutting modulus/NNS

