HPC Doctoral Taught Centre: Autumn Academy

Preliminary Exercises by J.H. Davenport - J.H.Davenport@bath.ac.uk

17 July 2012

1 Matrices

Much of High-Performance Computing deals with regular mathematical structures, of which the most obvious kinds are vectors and matrices. Unfortunately there are not in everyone's mathematical background:

- the simplest (and cheapest) reference text that we have found that covers this seems to be: A Level Mathematics for Edexcel: Further Pure FP1 (ISBN 9780435519230);
- the Wikipedia page on Matrix (mathematics) and its linked pages are not bad (except that it uses [...] where I am using (...): I hope this doesn't confuse, but both notations are in use).

2 Exercises

All of you should be familiar with programming in some language. These exercises are to be carried out in whatever language you feel most comfortable with: we will show C/Fortran equivalents at the Academy itself. For those of you whose programming language of choice is MatLab, please use MatLab for or while statements, rather than the built-in MatLab features, and the same applies to other languages with built-in matrix manipulation.

I say "Write a function to" - the precise method will depend on your langauge: it might be a method, function, procedure or subroutine.

1. Write a function to add two $m \times n$ matrices together, i.e. input the matrices of $a_{i, j}$ and $b_{i, j}$, and output the matrix of $c_{i, j}$:

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right)+\left(\begin{array}{clc}
b_{1,1} & \ldots & b_{1, n} \\
\vdots & \ddots & \vdots \\
b_{m, 1} & \ldots & b_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1,1} & \ldots & c_{1, n} \\
\vdots & \ddots & \vdots \\
c_{m, 1} & \ldots & c_{m, n}
\end{array}\right),
$$

where $c_{i, j}=a_{i, j}+b_{i, j}$.
2. Write a function to multiply an $m \times n$ matrix by an n-vector, i.e. input the matrix of $a_{i, j}$ and the vector of c_{j} and output the vector of v_{j} :

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right) \times\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{m}
\end{array}\right)
$$

where $d_{i}=\sum_{j=1}^{n} a_{i, j} c_{j}$.
3. Write a function to multiply an $m \times n$ matrix by an $n \times p$ matrix, i.e. input the matrices of $a_{i, j}$ and $b_{i, j}$, and output the matrix of $c_{i, j}$:

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \ldots & a_{m, n}
\end{array}\right) \times\left(\begin{array}{ccc}
b_{1,1} & \ldots & b_{1, p} \\
\vdots & \ddots & \vdots \\
b_{n, 1} & \ldots & b_{n, p}
\end{array}\right)=\left(\begin{array}{ccc}
c_{1,1} & \ldots & c_{1, p} \\
\vdots & \ddots & \vdots \\
c_{m, 1} & \ldots & c_{m, p}
\end{array}\right)
$$

where $c_{i, k}=\sum_{j=1}^{n} a_{i, j} b_{j, k}$.
Note that, depending on the system you are using, you may or may not find it easier to re-use exercise 2 here.

4, harder Write a function to solve a set of linear equations, i.e. input the matrix of $a_{i, j}$ and the vector of c_{j} and output the vector of x_{j} :

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right) \times\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

where $d_{i}=\sum_{j=1}^{n} a_{i, j} c_{j}$. This is a process known as Gaussian elimination, and actually has many subtleties when translated into a numerical process, some of which will be discussed during the Academy.

