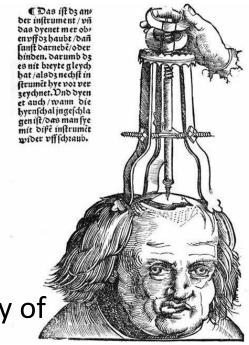
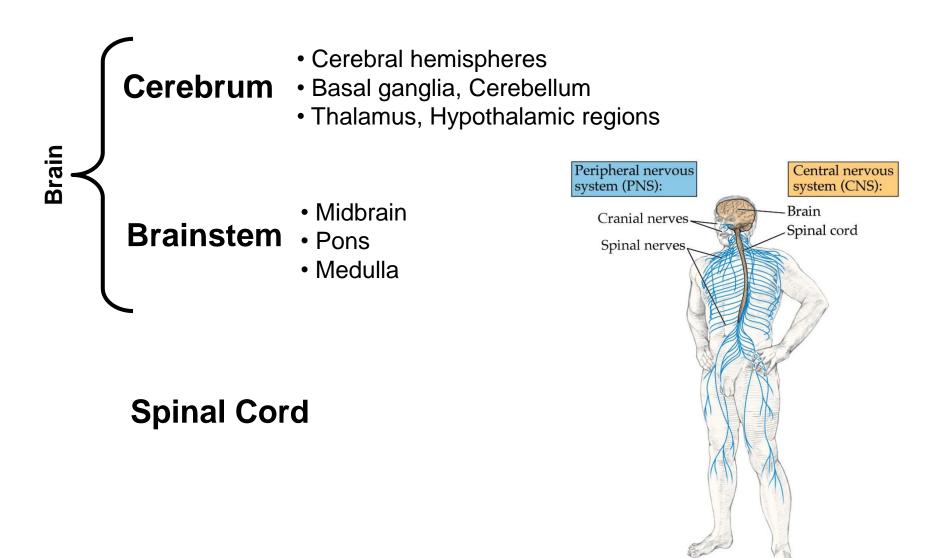
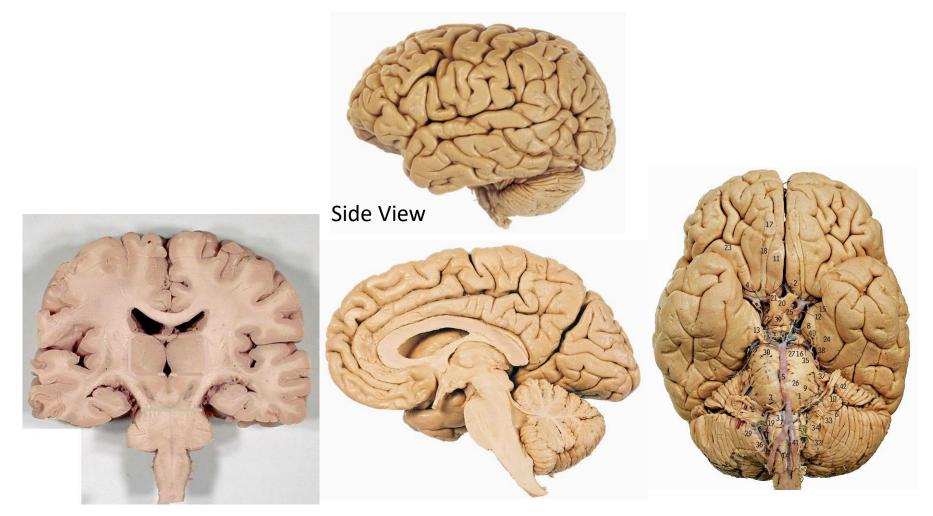

Neuroscience and Mental Health


Processing thought processing

Dawn Collins Warwick Medical School dawn.collins@warwick.ac.uk


Dysfunction of the nervous system

- Occurs for a number of reasons:
 - Damage by trauma or disease*
 - Neurons lose ability to produce transmitters
 - Neurons over- or under-produce transmitters
 - Neurons fail to recognise transmitters
 - Effector organs fails to respond
- Can manifest as:
 - Loss: of sensation or function
 - Gain: appearance of new feature
 - Change: alteration in behaviour/personality of perception



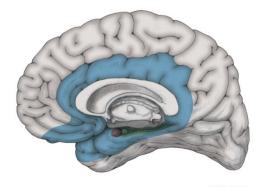
*If the cell body is intact, regeneration of neurons may occur.

The Central Nervous System

The Brain

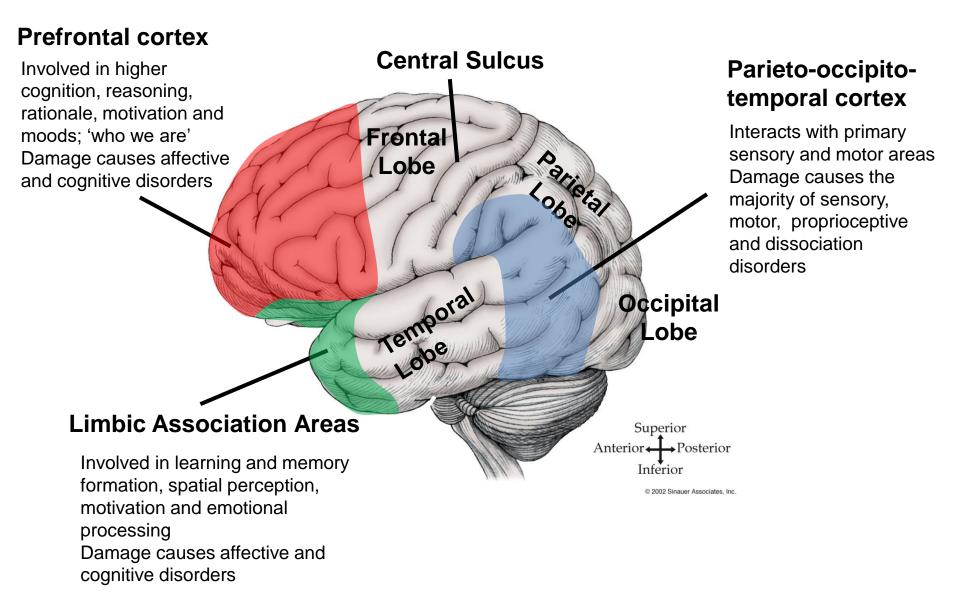
Coronal section

Sagittal section


View of base of brain

The Cerebral Lobes

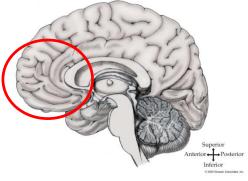
- Frontal Motor, higher cognition
- Parietal Sensory
- Occipital Vision
- Temporal Language
- Insula Emotional control

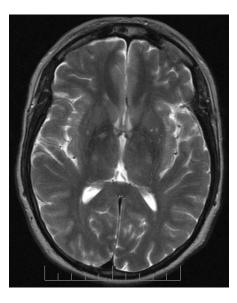

(Limbic system – Learning/Memory)

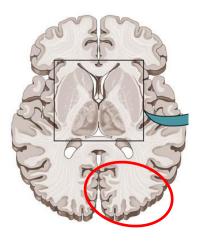
© 2002 Sinauer Associates, Inc.

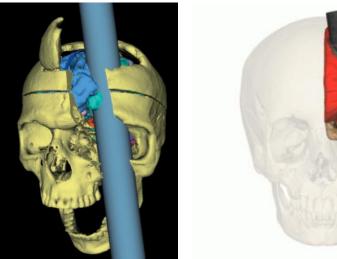
© 2002 Sinauer Associates, Inc.

The Cortical Association Areas



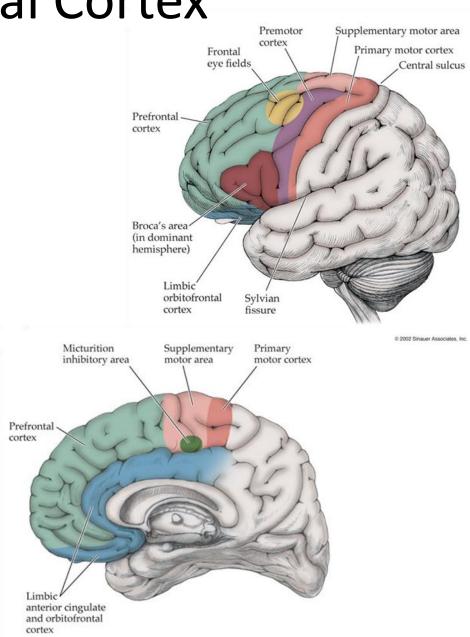

3D Images



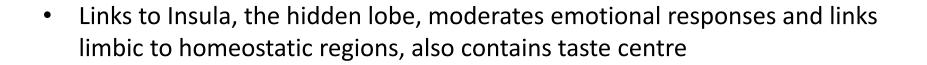


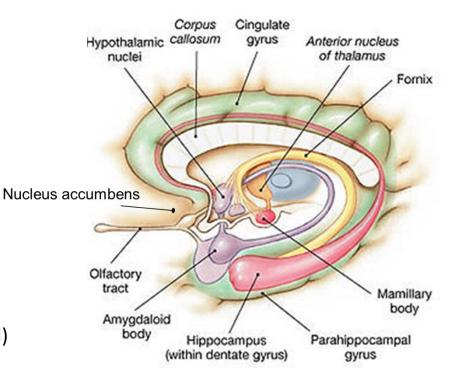
Prefrontal cortex and 'higher cognition'

Pre-frontal cortex refers to any region of the frontal lobe preceding the motor areas


- Main roles: integration and decision making
- Responsible for personality
- Famous case: Phineas Gage

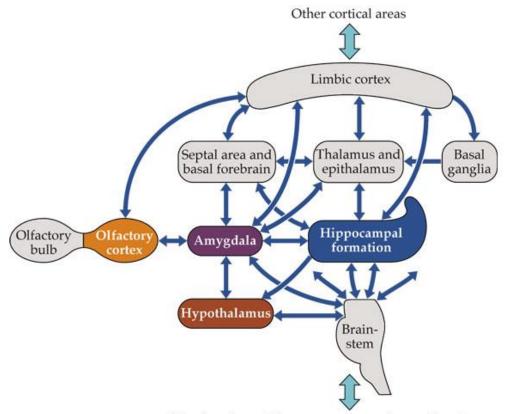
Prefrontal Cortex


- 'Higher control,' involved in:
 - Restraint behaviours
 - Concentration
 - Judgement
 - Foresight
 - Focus
 - Initiating behaviours
 - Motivation/Drive
 - Spontaneity
 - Personality
 - Curiosity
 - Ordering behaviour
 - Planning/Sequencing
 - Working memory
 - Abstract thought
 - Perspective

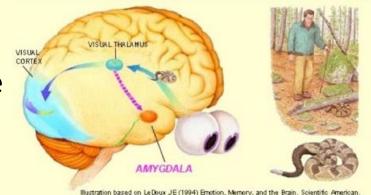


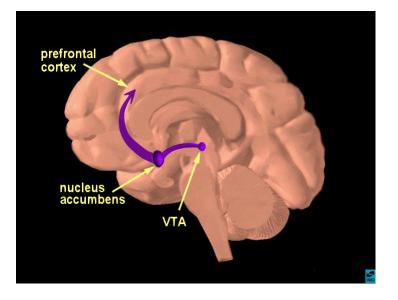
© 2002 Sinauer Associates, Inc.

Limbic system


- Group of deep cortical and subcortical structure, includes:
 - Hippocampus
 - Amygdala
 - Nucleus accumbens
 - Cingulate gyrus
 - Mammilary body
 - Thalamic and hypothalamic nuclei
 - Entorhinal and perirhinal cortices
- Involved in:
 - Memory
 - Learning
 - Perception (sensory, emotional and spatial)
 - Motivation

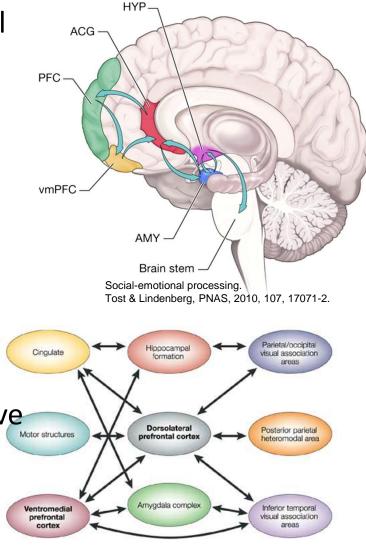
Circuitry within the limbic system


- Interplay within limbic system, and cortex aids integration relevant to:
 - Arousal
 - Learning
 - Memory
 - Emotions
 - Higher cognition



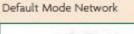
Spinal cord, cranial nerve, and neurohumoral pathways

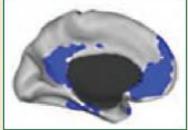
Reward and Fear


- Regions of the limbic system are implicated in positive and negative emotions
- Nucleus accumbens is linked to the reward pathways
- Amygdala linked to negative emotions
- The uncinate fasciculus links amygdala to PFC
- The insula sets the threshold of response
- Hippocampus put everything into context and remembers it

Regional Interactions

- Large tracts between and within frontal lobes and limbic system allow for intricate 'high level' processing
- Also link sensory, motor and basic biophysical information
- Insula sets emotional thresholds
- Changes in tract activity detected in psychotic episodes and major depressive disorders and bipolar disorders




Cerebral activity and attention

Large scale networks involved in control of attention and arousal

3 main attentional Circuits:

- Default mode network (non-specific, self-reference)
 - Medial temporal cortex
 - Medial prefrontal cortex
 - Posterior cingulate gyrus
- Dorsal attentional network (orienting and processing)
 - Dorsolateral prefrontal cortex
 - Posterior parietal cortex
 - Corpus striatum
- Ventral attentional network (engagement and activation)
 - Basolateral amygdala
 - Lateral and inferior frontal cortex
 - Temporoparietal cortex
 - Ventral striatum

Dorsal Attentional Network

Ventral Attentional Network

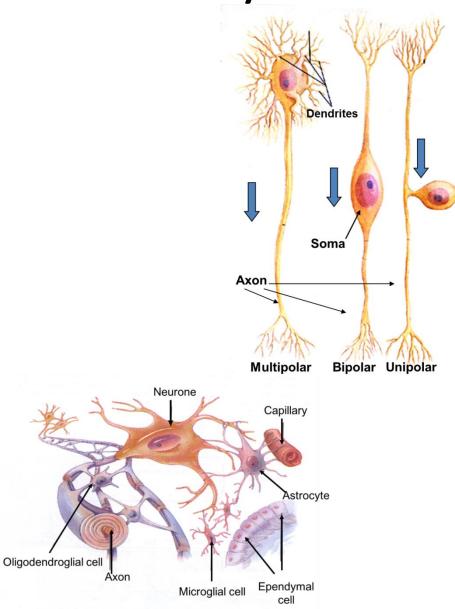
So why is neuroscience important?

We need to understand how the brain *functions* physiologically at a number of levels

- Cellular/subcellular
- Communication
- Coordination
- Patterns
- Behaviour

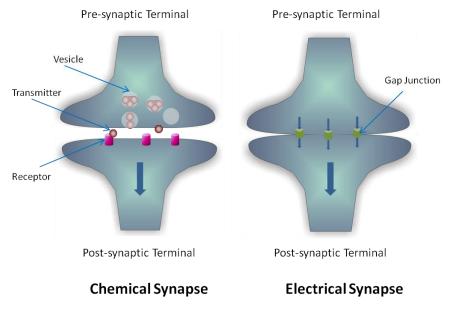
... To be able to apply this to disorders

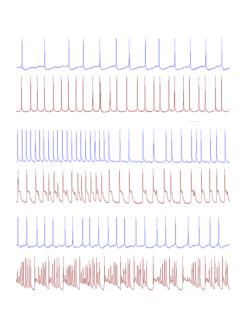
...To develop effective treatments with minimal side-effects


Cell Types in the nervous system

Neurons

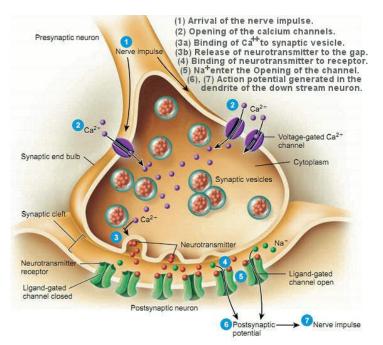
- Principal cells
- Interneurons


• Glia


- Astrocytes
- Ependymal cells
- Microglia
- Oligodendroglia
- Schwann cells

Synapses

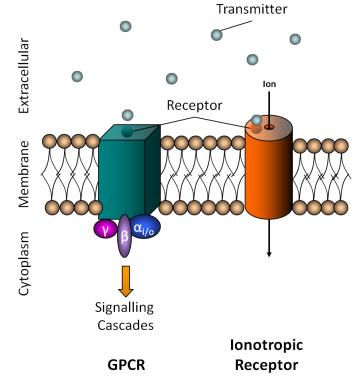
- Chemical
 - Vesicles releases from presynaptic terminal
 - Act on receptors in postsynaptic terminal
 - Major drug target
- Electrical
 - Gap junctions
 - Small molecules and current
 - 'low-pass filter'
 - Synchrony
 - Up-and-coming drug target



Transmitters

Neurotransmitters

- Used by neurons for rapid cell-cell communication
- Binds to receptor
- Excitatory propagates the signal onward
- Inhibitory blocks onward propagation
- Neuromodulators (and other modulatory substances):
 - Found in vesicles (or not), co-localised with NT
 - Act on receptors or membranes to indirectly alter neuronal activity
 - Changing sensitivity or kinetics of NT receptor
 - Also act on glial cells
- Most disorders linked to change in transmitter efficacy
- Some result from single transmitter alteration, usually more than one pathway will be affected

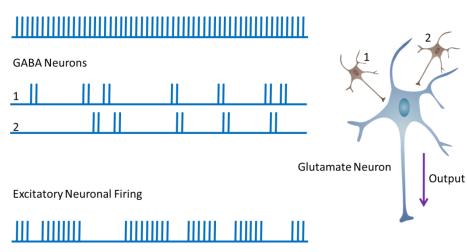

Туре	Name	Main Role
Neurotransmitter	Glutamate	Excitatory
	GABA	Inhibitory
	Aspartate	Excitatory
	Glycine	Inhibitory
	Acetylcholine	Neuro-muscular Junction
	Adrenaline	Stress/arousal
	Noradrenaline	Stress/arousal
	Dopamine	Motivation/Motor function
	5-HT (serotonin)	Homeostasis
	Histamine	Arousal
Neuromodulators	Neuropeptide Y	Appetite
	Substance P	Pain
	Vasopressin	Osmoregulation
	Somatostatin	Growth
	Anandamide	Endogenous Cannabinoid
Other	NO	Modulatory, not found in vesicl
transmitters	CO	Modulatory, not found in vesicle
	Adenosine	Modulatory, not found in vesicle
	ATP	Modulatory, not found in vesicle

Receptors in the nervous system

Ionotropic – linked to ion channels **Metabotropic** – G-protein linked (aka GPCR)

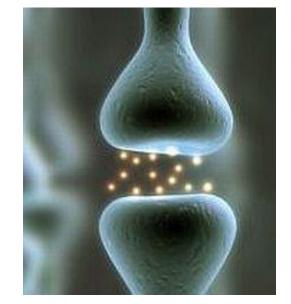
- Receptors transmitter specific
- Some transmitters act on both types
- Drugs generally targeted at one specific subtype of receptor
- Drugs targeted at receptors sometimes too strong, now developing subunit specific agonists
- Polyvalent, non-selective (or 'dirty' drugs) act on multiple sites
- Think about where else the drug could be acting, that's where you'll see problems occurring

Excitation and Inhibition


Major Excitatory transmitter - **Glutamate** Major Inhibitor transmitter – **GABA**

• Inhibition responsible for coding of activity

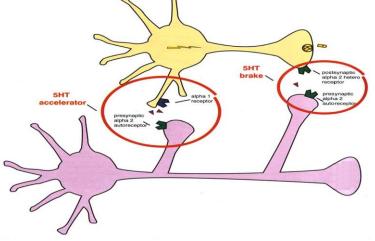
- Plasticity changes strength at neuronal level
- Synchrony gives strength at network level


Coding of Activity

- Excitatory neurons have regular firing in absence of inhibition
- Inhibitory input sculpts this to give patterns (coding)
- Coding carries the information and can be read, like morse code
- Some drugs that increase firing can lead to loss of coding, and psychological side effects Glutamate Neuron Firing

What mechanisms are involved in pathogenesis of neuronal and psychological disorders?

- Altered neuronal activity
- Altered synchrony
- Cellular changes
- Subcellular change
- Genetic composition

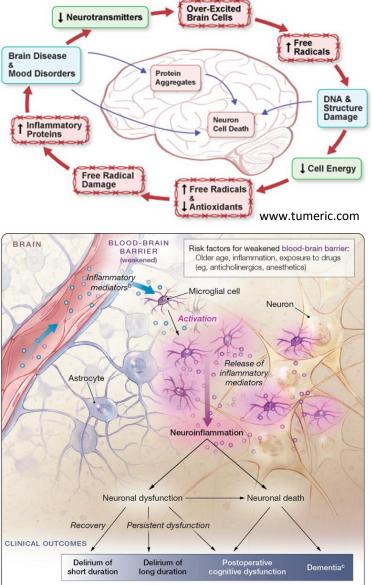


http://g.psychcentral.com/news/u/2010/09/neuron-mind-2.jpg

The aim is to restore balance!

Pathway Interactions

- Activation of one class of neuron often has knock-on effects on other pathways
 - NA levels can directly alter 5HT activity
 - 5HT levels can alter DA activity
 - DA levels can alter Ach Activity
 - Ach levels can alter GABA activity
 - And vice-versa for all!
- It's a tangled web indeed!



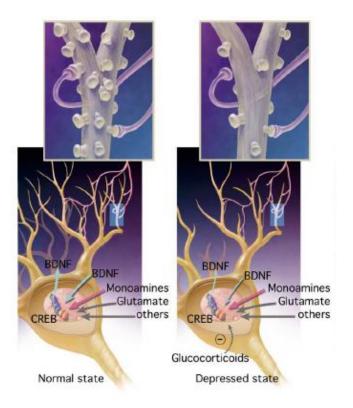
Inflammation

- Inflammatory mediators lead to:
 - Microglia activation
 - Cell dysfunction
 - Cell death

Leads to spectrums of disorders

Pasternak et al. (2016) 'In vivo imaging of neuroinflammation in Schizophrenia.' Schiz. Res., 173, 200-212

http://jama.jamanetwork.com/article.aspx?articleid=1172097

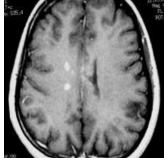

Neurogenesis

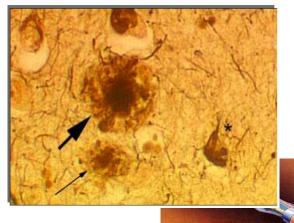
• Changes in arborisation

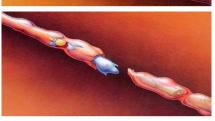
• Changes in synapse structure

• Altered receptor number

• Restored by drugs




Konarski et al (2008) Bipolar Disorders 10, 1–37


Neurodegeneration

- Cellular death of cell body (no regeneration possible
 - Parkinson's
 - Alzheimer's
 - ? Schizophrenia

- Neurofibrilliary Tangle (tau)
- Neuritic Plaque (β-amyloid)
- Diffuse Plaque
- Axonal dying back of axon proximal to cell body (some regeneration possible). Wallerian – distal degeneration of axon and myelin (generally trauma induced
 - Diabetic neuropathy
 - Nerve compression
- Myelin loss of oligodenrdroglial/schwann cells affecting conduction velocity
 - Multiple Sclerosis (central)
 - Guillain Barré (peripheral)

Stages of Wallerian Degeneration

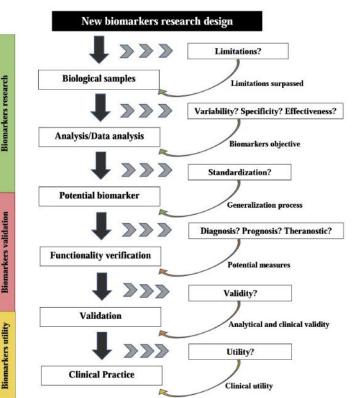

Scan from MS patient

How can you study Psychiatric disorders

Human Studies

- Animal Studies
 - Behaviour
 - Electrophysiology
 - In vivo
 - In vitro
 - Molecular

Cellular Research Techniques

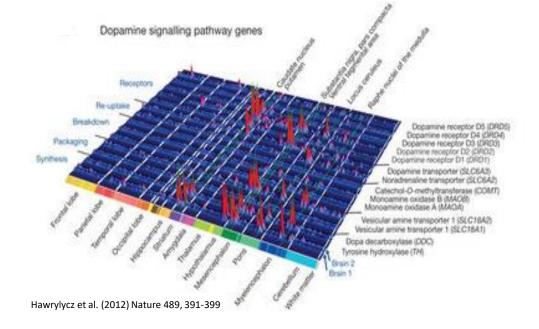

- In-vitro
 - Receptor expression
 - Receptor modification
 - Pharmacology
 - Genetic modification
 - Subcellular mechanisms
- Quick turnaround
- Controllable

Totally Unrealistic

Biomarkers

- Aims to identify potential markers than can indicate predisposition to disorders
 - Activity metabolic/neuronal
 - Genetic
 - Epigenetic
 - Protein

Rodrigues-Amorim et al. (2017) @Schizophrenia: a review of potential biomarkers.' J. Psych. Res., 93, 37-49.


Genetic Profiling

Genetic composition may lead to predisposition for disorders

May also affect likelihood of response to treatment

Examples include:

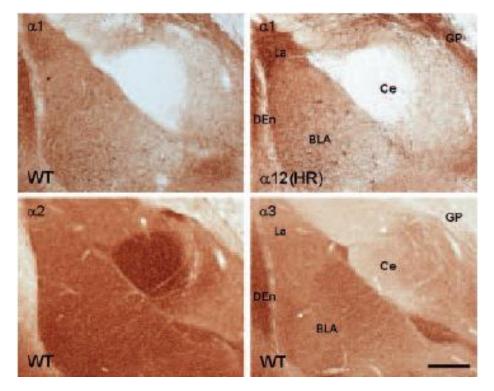
5HT receptor subtypes DA receptor subtypes GABA receptor subunit variations GAD enzymes [synthesizes GABA]

Inconclusive at present and can't account for environmental factors

Current Drug R&D Targets

Reprofiling

NeuroTransmitters

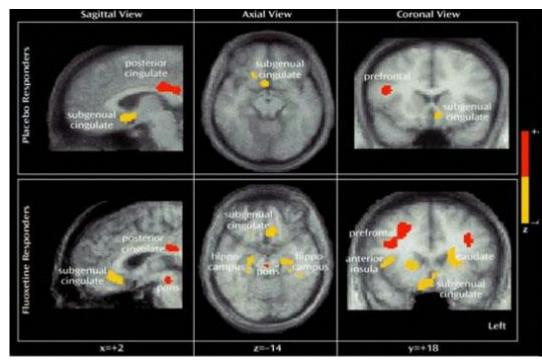

5HT Dopamine Noradrenaline Glutamate GABA

Neuromodulators

Cannabinoids Peptides

Subunit specific drugs

Benzodiazepines

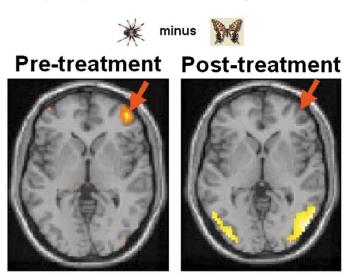


GABAA receptor subunit distribution in the amygdala. From: Marowsky et al (2004) European Journal of Neuroscience, 20, 1281–1289.

Placebo Effect

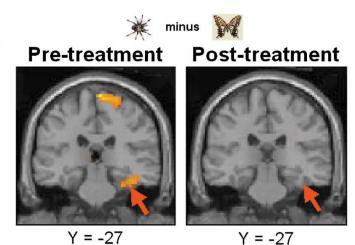
- 30% of patients respond to placebo
- Can change neuronal activity levels
- Different effects to ADs

• Works even if told!



Mayberg, et al (2002) The Functional Neuroanatomy of the Placebo Effect,. Am J Psychiatry ,159: 728-737.

What's psychotherapy doing?


- New learning?
- Overwriting/depressing old learning?
- Altering brain activity frequencies?
- Desensitizing?

Or just coping?

Z = -2

Z = -2

CBT treatment of phobias

Psychosis

- Broad range of mental disorders (ICD F20-29: Schizophrenia, schizotypal, delusional, and other non-mood psychotic disorders) with symptoms including:
 - hallucinations (seeing, hearing, smelling, tasting or feeling things that are not there)
 - delusions (false and unshakable beliefs)
 - Serious defects in judgement (reasoning, evaluating objectively)
 - Disturbed cognitive processing (thinking)
- Symptoms may be constant or intermittent depending on the underlying cause
- Sufferers inhabit a world of their own making
- Schizophrenia most common and most severe form (c.1%)

Hallucinations

Hallucinations are perceptions in the absence of external stimuli.

Common hallucinations include:

- Auditory hallucinations hearing voices/sounds
- Tactile/somatic/gustatory hallucinations feeling bodily sensations
- Visual hallucinations seeing patterns/images
- Olfactory hallucinations smelling a foul or pleasant odour

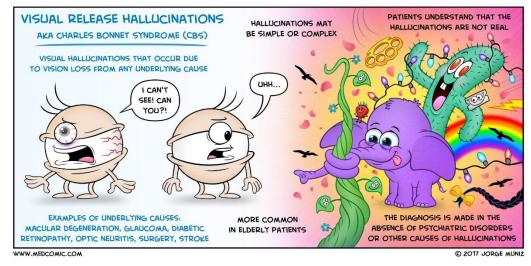
http://www.sleepcare.com/index.php/sleep-hallucinations/

Fuseli: The nightmare

Causes of Hallucinations

There are many causes of hallucinations, including:

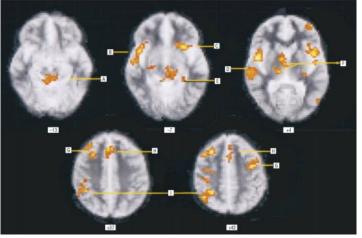
- Delirium
- Dementia e.g. Dementia with Lewy Bodies (DLB)
- Psychiatric disorders, e.g. Schizophrenia and psychosis
- Drugs, alcohol or medications
- Epilepsy focal seizures
- Narcolepsy
- Visual impairment Charles Bonnet syndrome


In some cases, hallucinations are normal:

- Part of the grief process
- Hypnagogic (falling asleep) and hypnopompic (waking) hallucinations

Charles Bonnet Syndrome

- Commonly seen in people with severe visual impairment
- Brain 'filling in' gaps
- Visual only
- Often animals and people
- Can be scary!
- Patient knows they are not real

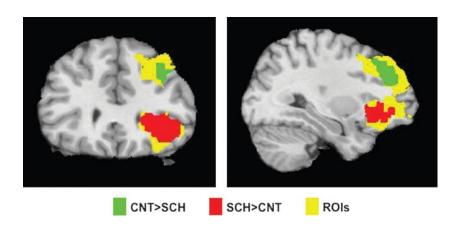


Cerebral Activity and Hallucinations

? Spontaneous activation of sensory centres

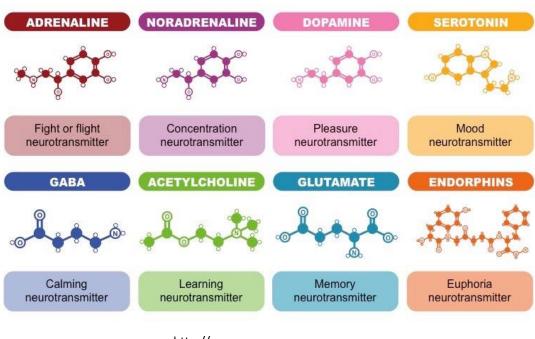
Activity in fMRI shows activity as if the hallucination is real

Hallucinatory activity overrides actual sensory input



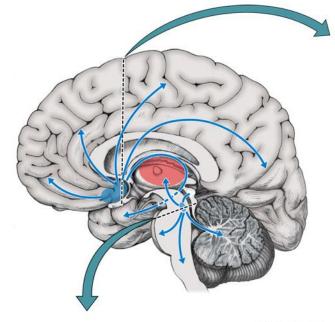
Auditory Hallucinations: Shergill et al. (2000) Arch. Gen. Psych., 57, 1033-1038

Temporary disconnect between cortical and thalamic regions


Circuit involved in Psychosis

- Prefrontal cortex dorsolateral and ventrolateral
- Anterior cingulate gyrus
- Basal ganglia striatum
- Hippocampus
- Cerebellum

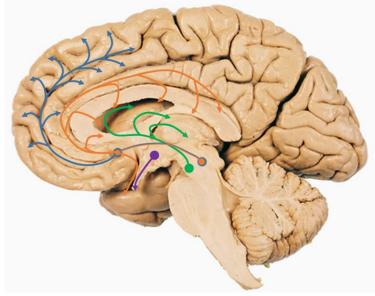
Transmitters involved in psychosis


- Two main transmitters:
 - Dopamine
 - Acetylcholine
- Others include:
 - Serotonin
 - Glutamate
 - Histamine
 - Noradrenaline

http://www.neuronanos.com

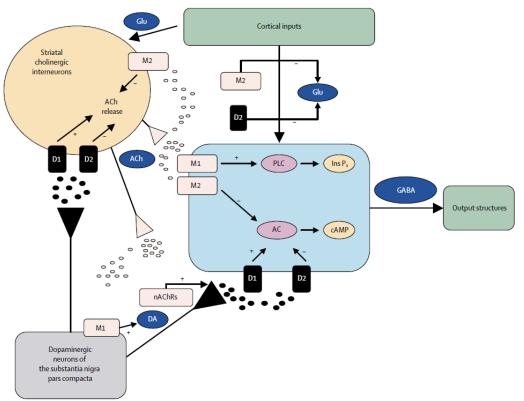
What role does Acetylcholine play in arousal?

- Peripherally controls ANS and muscle function (NMJ)
- Centrally involved in:
 - Alertness
 - Arousal
 - Attention
 - Sleep
 - Memory
 - Learning


© 2002 Sinauer Associates, Inc.

 Acetylcholine (ACh) modulates a number of transmitter pathways, including dopamine

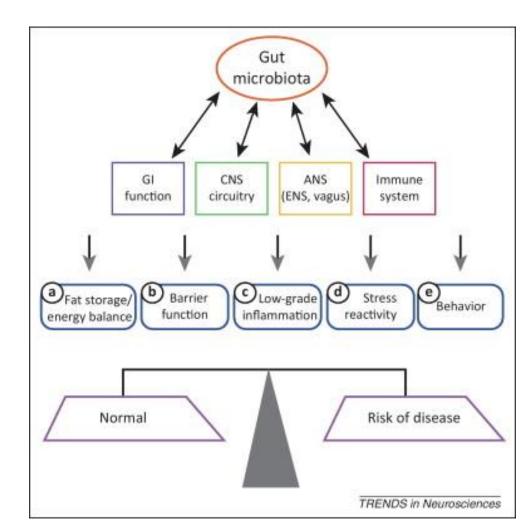
Dopamine Pathways


4 main pathways:

- Nigrostriatal movement
- Mesolimbic mood, memory
- Mesocortical mood, higher cognition
- **Tubero-hypophyseal** inhibits prolactin release

Link between DA and ACh

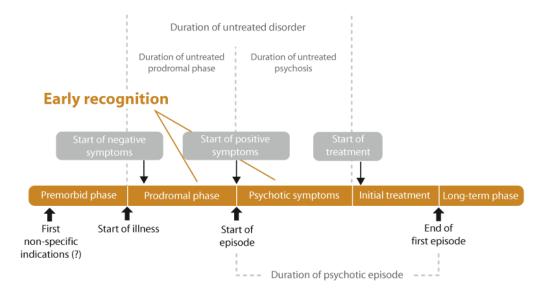
- ACh can modulate activity in dopamine pathways (and vice-versa)
- This will also have knockon effects on other monoamines, NA and 5HT
- ACh and DA neurons in striatum modulate PFC and are abundant in the hippocampus



And environmental factors?

- Gut-brain axis?
- Gut microbiome?
- Cannabis use
- Stress
- Combinations key!

Moore et al. (2007) 'Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review.' Lancet, 370, 319–28.


Severance et al. (2016), Autoimmune disease, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling.' Schiz. Res. 176, 23-35

Foster and McVey Neufeld (2013) 'Gut-brain axis: how the microbiome influences anxiety and depression.' Trends Neurosci., 36, 305-312

Stages of Psychosis


- **Prodrome**: early signs of impending onset of psychosis, e.g. changes in feelings, thoughts, disconnection
- Any person exhibiting prodromal stage will develop
 psychosis
 Phases of Psychotic Disorder

http://www.psychosis-bipolar.com/img/grafik_wp_10_gr.gif

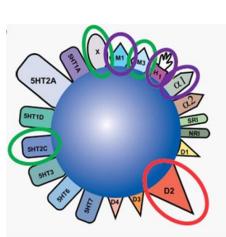
Treatment of Psychosis

- Prodromal
 - Referral
 - Specialist assessment
 - Interventions to prevent onset
 - Psychological interventions
 - CBT
 - Family intervention
 - Interventions to treat anxiety/stress/PTSD and/or alcohol/drug misuse
- First episode
 - Early intervention team
 - Psychological interventions
 - Pharmacological interventions oral antipsychotic, low dose trial 4-6wks
 - Regular monitoring
- Recurrent episodes
 - Psychological interventions
 - Pharmacological antipsychotics and/or mood stabilisers
 - Regular health monitoring
 - Support network self-help groups
- Acute episode
 - Crisis resolution team
 - Antipsychotics
 - Benzodiazepines (rapid tranquilisation only)

Antipsychotics

Various Binding Properties of Conventional Antipsychotics

D2


First and second generation Need therapeutic dose to reach 60% occupancy at D₂ for effective response

First Generation (aka classical/typical)

- Primarily potent D₂ antagonists
- Extrapyramidal effects high
- Low efficacy
- 30% non-responders

Second Generation (aka atypical)

- Primarily multiple actions 5HT₂ & D₂ & others
- Reduced extrapyramidal effects
- Better at treating negative symptoms
- Higher efficacy

Atypical antipsychotic

Drug	D,	D ₂	D ₃	D_4	α,	α2	н,	ACh	5-HT,	5-HT ₂	5-HT _{2A}
Clozapine	++	+	?	+	+++	+++	+++	++	+	++	+
Risperidone	+	+++	?	+	+++	+++	+	-	+	-	+++
Olanzapine	++	+++	+	+	++	+	+++	+	-	++	++
Quetiapine	+	++	+	-	+++	+	+++	-	-	+	+++
Aripiprazole	+	++++	?	?	-	-	-	-	++	?	+++
Ziprasidone	++	+++	++	?	++		+	-	++	?	+

D=dopamine; a=alpha-adrenergic; H=histamine; ACh=acetylcholine; 5-HT=S-hydroxytryptamine (serotonin); ++++=very high affinity; +++=high affinity; ++=moderate affinity; +=low affinity; -=negligible affinity; ?=unknown affinity.

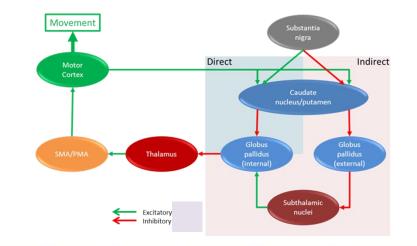
http://www.cnsspectrums.com/userdocs/ArticleImages/0805cns.acsupp02.gif

Side Effects

5 main groups of side-effects

- Extrapyramidal (EPS)
- Cardiovascular increased QT interval
- Metabolic weight gain/diabetes
- Hormonal increased plasma prolactin
- Other includes psychiatric

Extrapyramidal (~75% of cases):


– Parkinsonism symptoms

Also:

- Dystonias
- Akathisia
- Sedation
- Cardiovascular
- Prolactin elevation
- TARDIVE DYSKINESIA

2nd Generation

- Fewer EPS
- Cholinergic effects

	Extrapyramidal	Sedation	Weight gain	Hyperglycaemia	Anticholinergic	Orthostatic hypotension	
Atypical antipsyc	hotics						
Risperidone	••	o initially	00	••	•	initially	
Quetiapine	0*		00		••		
Olanzapine	Olanzapine 🔘					0	
Clozapine	0	•••	•••		•••	00	
Amisulpride	00.	0	0	0	•	0	
Aripiprazole	0	0	0	۲	•		
Ziprasidone	0	00	0	0	0	00	
Typical antipsych	otics						
Haloperidol		0	••	••	0	0	
Chlorpromazine	00						

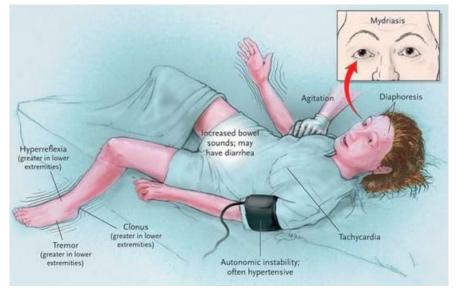
Approximate frequency of adverse effects: \bigcirc (<2%) = negligible or absent; \bigcirc (>2%) = infrequent; $\bigcirc \bigcirc$ (>10%) = moderately frequent; $\bigcirc \bigcirc \bigcirc$ (>30%) = frequent. * rarely a problem at usual therapeutic doses

http://www.bpac.org.nz/bpj/2011/november/images/antipsychotics-img2.jpg

Tardive Dyskinesia

Typical symptoms

Disabling involuntary movements: tongue protruding, choreiform movements, grimacing, twisting


In many cases IRREVERSIBLE

- Occurrence ~25% of Cases
- Increases with length of exposure
- Remits spontaneously in ~30%
- Anticholinergic use stopped immediately
- Vitamin E & B6, Benzodiazepines, β-blockers can help
- Switch to 2nd generation antipsychotic

Neuroleptic Malignant Syndrome

- Rare but potentially fatal side-effect
- Caused by over-activation of ANS/metabolic pathways:
 - Hyperthermia
 - Altered level of consciousness
 - Pallor
 - Sweating
 - Tachycardia
 - Fluctuating BP
 - Muscle rigidity
 - Urinary incontinence
- No effective treatment, try:
 - Stop antipsychotic use
 - Bromocriptine (dopamine agonist)
 - Dantrolene (muscle relaxant)

http://epomedicine.com/clinical-cases/neuroleptic-malignant-syndrome-nms-approach/

Benzodiazepines

Act on $GABA_A$ receptor (γ subunit) to increase activity Reduces neuronal transmission by enhancing inhibition

Commonly used benzos:

- Diazepam (valium)
- Midazolam (sedative)
- Lorazepam (status epilepticus)
- Flumazenil (antagonist)

Benzodiazepines

Positive Allosteric Modulators (coagonists) of GABA_A receptors

Benzodiazepines, e.g. Midazolam, bind to the γ -subunit of GABA_A receptors, working together with GABA to increase the opening of the channel allowing more chloride entry into the cell. This hyperpolarises the cell reducing the likelihood of action potential firing.

Summary

• Whilst we know a lot about the mechanisms underlying psychiatric disorders, treatments have not progressed as rapidly as the knowledge

No one research models encompasses all of the human symptoms

- Human studies can be difficult and often inconclusive
- Assuming everyone is different means we'll probably never know the whole truth