Objectives	Foundations	Computation	Prediction	Time series	References

Forecasting in the Bayesian way

Andreas E. Murr Department of Politics & International Studies University of Warwick a.murr@warwick.ac.uk

Coventry, 20 March 2017

Objectives	Foundations	Computation	Prediction	Time series	References
Object	ives				

- Introduce basic ideas of Bayesian inference.
- Highlight its advantages and disadvantages.
- Illustrate the process of Bayesian prediction and forecasting.
- Show how to estimate models and interpret their results.

Objectives	Foundations	Computation	Prediction	Time series	References
Definit	tions				

Probability

Frequentist: Long-run frequency of event.

Bayesian: Degree of belief.

Statistical inference

Draw conclusions from observed data y about unobserved parameters θ or a new observation \tilde{y} .

Bayesian inference

Draw conclusions in terms of probability statements.

Condition on the observed value of y: $p(\theta|y)$ or $p(\tilde{y}|y)$.

Objectives	Foundations	Computation	Prediction	Time series	References
Examp	le: A bias	ed coin?			

Set up a probability model (parametric or non-parametric):

$$p(y| heta) = \mathsf{Bin}(y|n, heta) = \binom{n}{y} heta^y (1- heta)^{n-y}.$$

Specify prior:

$$p(\theta) = \mathsf{Beta}(\alpha, \beta)$$

Summarise posterior distribution:

$$p(\theta|y, n) = \text{Beta}(y + \alpha, n - y + \beta)$$

Objectives	Foundations	Computation	Prediction	Time series	References
Examp	le: A bias	ed coin?			

Objectives	Foundations	Computation	Prediction	Time series	References
Bayes'	rule				

According to Bayes' rule:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
(1)
$$p(\theta|y) \propto p(\theta)p(y|\theta)$$
(2)

'Bayesian mantra'

The posterior distribution $p(\theta|y)$ is proportional to the prior distribution $p(\theta)$ times the likelihood $p(y|\theta)$.

Requirement of Bayesian statistics:

Express prior belief about the parameter in the form of a probability distribution.

Objectives	Foundations	Computation	Prediction	Time series	References
Similar	rities and	differences	to frequ	entist app	proach

Both approaches:

- Begin with a probability model (data generating process).
- Relate observed data y with a set of unknown parameters θ .
- Include fixed, known covariates x.
- Denote probability model as $p(y|\theta, x)$ or $p(y|\theta)$.

Objectives	Foundations	Computation	Prediction	Time series	References
Similar	rities and	differences	s to frequ	entist app	proach

	Frequentist	Bayesian
Parameters (unknown)	Fixed	Random
Data (known)	Random	Fixed
Probability Model	$L(\theta y)$	$L(\theta y)p(\theta)$

Treating unknowns as random and knows as fixed has several advantages.

Objectives	Foundations	Computation	Prediction	Time series	References
Confid	ence				

Which of these is the correct interpretation of a 95% confidence interval?

- An interval that has a 95% chance of containing the true value of the parameter.
- An interval that over 95% of replications contains the true value of the parameter, on average.

Objectives	Foundations	Computation	Prediction	Time series	References
Intuitive	interpreta	ation of fir	ndings		

Frequentist approach:

- 95% confidence interval for θ is [1.5, 2.4].
- If we were to repeatedly draw from our population, 95% of our confidence intervals would contain the population parameter.
- But we do not know whether the present confidence interval contains the population parameter.

Bayesian approach:

- 95% credible interval for θ is [1.5, 2.4].
- After observing the data, there is a 95% chance that the parameter falls between 1.5 and 2.4.

Objectives	Foundations	Computation	Prediction	Time series	References
Advan	tages and	disadvant	ages		

Advantages

- Intuitive interpretation of findings.
- Easy computation of quantities of interest.
- Incorporation of prior information.
- Fitting of realistic (complex) models.
- Handling of missing values.
- Inference with small samples.
- ...

Disadvantages

- Elicit and defend subjective information.
- Show that results do not depend on which prior is used.
- Computing the posterior distribution can be challenging.

Objectives	Foundations	Computation	Prediction	Time series	References
Monte	Carlo me	thod			

- Analytically summarising posterior distributions is often impossible or too cumbersome.
- Use Monte Carlo methods.
- (General method used also by frequentist approach.)

Monte Carlo principle

Anything we want to know about a random variable θ can be learned by sampling many times from $p(\theta)$, the density of θ .

Objectives	Foundations	Computation	Prediction	Time series	References
Example	: Comp	ute poster	ior expec	ted value	

Analytical:

 $E(\theta|y) = \int \theta p(\theta|y) d\theta.$

Computational:

- Produce random sequence of *T* draws θ⁽¹⁾, θ⁽²⁾, ..., θ^(T) from p(θ|y).
- $E(\theta|y) \approx \frac{1}{T} \sum_{t=1}^{T} \theta^t$.

Objectives	Foundations	Computation	Prediction	Time series	References
Markov	chain	Monte Carlo			

- Bayesian inference relies typically on Markov chain Monte Carlo.
- (MCMC can also be used by the frequentist approach, but this is not widespread yet.)
- The sequence of draws $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(T)}$ are dependent.
- Each draw θ^(t+1) depends only on the previous draw θ^(t) (Markov chain).
- Construct algorithms so that the Markov chain converges to the target distribution.
- The two most common algorithms are
 - the Gibbs sampling algorithm and
 - the Metropolis-Hastings algorithm.
- Gibbs is a special case of Metropolis-Hastings.

Objectives	Foundations	Computation	Prediction	Time series	References
Compu	itation				

These and other algorithms allow us to sample from

- multidimensional distributions (e.g., Gibbs), and
- any distribution irrespective its shape (e.g., Metropolis). Many extensions, such as:
 - Metropolis-Hastings.
 - Metropolis-within-Gibbs.

Always run diagnostic tests, such as:

- Are traceplots stationary?
- Do chains with different starting values converge?

Objectives	Foundations	Computation	Prediction	Time series	References
Software	e				

- In R, use JAGS, rjags, coda, and superdiag.
- Example: Linear regression model with semi-conjugate priors

```
model {
    # likelihood
    for (i in 1:N){
        y[i] ~ dnorm(mu[i], tau)
        mu[i] ~ alpha + beta*x[i]
    }
    # prior
    alpha ~ dnorm(0, 0.001)
    beta ~ dnorm(0, 0.001)
    tau ~ dgamma(0.001, 0.001)
}
```

• The number of models you can estimate is pretty much unlimited.

Objectives	Foundations	Computation	Prediction	Time series	References
Predict	tion				

Why?

- To impute missing or censored data.
- To predict replicate datasets in order to check adequacy of model.
- To know what happens in the future.

Bayesian prediction

Bayesians want the appropriate posterior predictive distribution for \tilde{y} to account for all sources of uncertainty.

Objectives	Foundations	Computation	Prediction	Time series	References

Sources of uncertainty:

- Uncertainty about $E(\tilde{Y})$,
- sampling variability of \tilde{Y} around its expectation,
- uncertainty about the size of this variability, and
- the correlations between these components.

Estimation

- *Frequentist*: Easy to get point prediction, harder to get predictive distribution.
- *Bayesian*: Trivial to get predictive distribution using MCMC.

Objectives	Foundations	Computation	Prediction	Time series	References
Softwa	re				

- No need to explicitly include the quantities to be predicted in the model description.
- Expand the data set by including missing data indicated as NA.
- For instance, instead of data=list("x"=c(8,1,3), "y"=c(2,4,7))

write

data=list("x"=c(8,1,3,2),"y"=c(2,4,7,NA))

This computes the predictive distribution of $\tilde{y}|x=2$.

Time Series ('Bayesian forecasting')

Time series

Data arising in sequence over time.

Observations are likely to be dependent.

Forecasting

Extrapolating series into the short-, medium, or long-term future.

Use dependency through time: e.g., $\tilde{y}_{t+1} = \hat{\alpha} + \hat{\beta}y_t$.

Use know future values of input: e.g., $\tilde{y}_{t+1} = \hat{\alpha} + \hat{\beta} x_{t+1}$.

observed series = trend + seasonal effects + regression term + irregular effects.

Objectives	Foundations	Computation	Prediction	Time series	References
Dynam	ic Linear	Models			

Regression coefficients and variance of irregular effects may vary over time.

Consider the usual linear regression model

 $y_t = \mathbf{X}_t \beta + \epsilon_t$ ('observation model')

but with changing coefficient vector β_t such that

$$\beta_t = \mathbf{M}_t \beta_{t-1} + \omega_t$$
 ('state model')

where \mathbf{M}_t is a transition matrix.

 ϵ_t and ω_t can have time-dependent variances \mathbf{V}_t and \mathbf{W}_t .

Objectives	Foundations	Computation	Prediction	Time series	References

Some common simplifications:

- Assume V_t and W_t are constant over time (V and W).
- Assume state parameters vary independently of each other, so matrix W_t reduces to a vector W_t.
- Assume that \mathbf{M}_t is known and fixed in time (e.g., $\mathbf{M}_t = \mathbf{I}$ the identity matrix so $\beta_t = \beta_{t-1} + \omega_t$).

Objectives	Foundations	Computation	Prediction	Time series	References
Softwar	e				

```
Dynamic linear regression model where y_t = x_t \beta + \epsilon_t and
\beta_t = \beta_{t-1} + \omega_t with constant V and W in JAGS:
model{
  # observation model
  for (t in 1:T){
    y[t] ~ dnorm(mu[t], V.inv)
    mu[t] <- x[t]*beta[t]</pre>
  }
  # state model
  for (t in 2:T){
    beta[t] ~ dnorm(beta[t-1], W.inv)
  }
  # settings for t=1
  beta[1] ~ dnorm(10,0.01)
  # priors
  . . .
```

Objectives	Foundations	Computation	Prediction	Time series	References
Conclu	isions				

Bayesian methods allow you

- to answer questions like "What is the probability that ...",
- to easily make predictions based on your model, and
- to fit "models with many parameters and complicated multilayered probability specifications".

The software for estimating Bayesian methods is free and relatively easy to use.

Objectives	Foundations	Computation	Prediction	Time series	References
Refere	nces				

- Bayesian Analysis for the Social Sciences (Simon Jackman, Wiley)
- Bayesian Data Analysis (Andrew Gelman et al., Chapman & Hall/CRC)
- Bayesian Methods (Jeff Gill, Chapman & Hall/CRC)
- Data Analysis Using Regression and Multilevel/Hierarchical Models (Andrew Gelman and Jennifer Hill, CUP)
- The Theory That Would Not Die (Sharon McGrayne, Yale)

Objectives	Foundations	Computation	Prediction	Time series	References
Motiva	tion				

What is the probability that ...

• ... Andrew Jackson was the eighth president of the United States?

Frequentist statistics cannot make probability statements about single-events.

 ... austerity measures improve the economy (t = 60, n = 50)?
 Erroquentics statistics struggles to make inferences if the

Frequentist statistics struggles to make inferences if the sample is the population.

• ... defeat in war leads to revolution in Latin America (n = 76)?

Frequentist statistics is too conservative if the sample size is small.

Objectives	Foundations	Computation	Prediction	Time series	References
Gibbs s	sampling				

Use a sequence of draws from conditional distributions to characterise the joint target distribution.

- Define target distribution: $p(\theta_1, \theta_2, ..., \theta_K | y)$.
- 2 Set starting values: $\theta_2^{(0)}, ..., \theta_K^{(0)}$.
- **③** Repeat for t = 1, ..., T iterations:

Draw
$$\theta_1^{(t)}$$
 from $p(\theta_1|\theta_2^{(t-1)}, ..., \theta_K^{(t-1)}, y)$
Draw $\theta_2^{(t)}$ from $p(\theta_2|\theta_1^{(t)}, \theta_3^{(t-1)}, ..., \theta_K^{(t-1)}, y)$
 \vdots \vdots \vdots \vdots
Draw $\theta_K^{(t)}$ from $p(\theta_K|\theta_1^{(t)}, \theta_2^{(t)}, ..., \theta_{K-1}^{(t)}, y)$

Objectives	Foundations	Computation	Prediction	Time series	References
Example	: Bivari	ate normal	distribut	tion	

Simulate from bivariate normal distribution with zero mean and unit variance for the marginals:

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathsf{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right)$$

Suppose we do not know how to directly sample from this joint distribution.

However, we know that

$$\begin{aligned} x|y &\sim \mathsf{N}(\rho y, 1 - \rho^2) \\ y|x &\sim \mathsf{N}(\rho x, 1 - \rho^2) \end{aligned} \tag{3}$$

Which is the Gibbs sampler, so we can indirectly sample from the joint distribution.

```
    Objectives
    Foundations
    Computation
    Prediction
    Time series
    References

    Example:
    Bivariate normal distribution
```

```
In R we could do this as follows:
```

```
Gibbs <- function(n, rho, x0=0, y0=0){
  draws <- matrix(ncol=2, nrow=n)</pre>
  x < -x0
  y <- y0
  draws[1,] <- c(x, y)
  for (i \text{ in } 2:n)
    x <- rnorm(1, rho * y, sqrt(1 - rho^2))
    y <- rnorm(1, rho * x, sqrt(1 - rho^2))</pre>
    draws[i,] <- c(x, y)
  }
  draws
}
```

Objectives	Foundations	Computation	Prediction	Time series	References
	Les Dissert		بريوا توجيب المري		

Objectives	Foundations	Computation	Prediction	Time series	References
Metrop	olis				

Use a sequence of draws from a distribution from which we know how to sample to characterise a distribution from which we do not know how to sample.

- Define target distribution: $p(\theta|y)$.
- 2 Set starting value: $\theta^{(0)}$.

Set

- **③** Repeat for t = 1, ..., T iterations:
 - Sample a proposal θ^* from jumping distribution.
 - O Calculate the ratio

$$r = \frac{\rho(\theta^*|y)}{\rho(\theta^{(t-1)}|y)}.$$
 (5)

$$heta^{(t)} = egin{cases} heta^* ext{ with probability } \min(r,1) \ heta^{(t-1)} ext{ otherwise.} \end{cases}$$

Simulating from a normal with zero mean and unit variance using a uniform proposal distribution.

- Start the chain at x = 0.
- At each iteration propose an innovation y ~ Unif(-α, α), leading to a candidate x + y.
- Calculate the acceptance probability min $\left(\frac{N(x+y)}{N(x)}, 1\right)$.
- Accept candidate if acceptance probability > than a random draw from Unif(0, 1), reject otherwise.

```
    Objectives
    Foundations
    Computation
    Prediction
    Time series
    References

    Example:
    Indirectly sample from N(0, 1)
```

```
In R we could do this as follows:
Metropolis <- function(n, alpha, x0=0){
  draws <- rep(NA, n)
  x < -x0
  draws[1] < -x
  for (i in 2:n) {
    inno <- runif(1, -alpha, alpha)</pre>
    cand <-x + inno
    apro <- min(1, dnorm(cand)/dnorm(x))</pre>
    u \leftarrow runif(1)
    if (u < apro)
      x < - cand
      draws[i] <- x
  }
  draws
}
```

Objectives	Foundations	Computation	Prediction	Time series	References
Example	. Indira	stly comply	from N	$(0 \ 1)$	

Example: Indirectly sample from N(0, 1)

