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Objectives

Introduce basic ideas of Bayesian inference.

Highlight its advantages and disadvantages.

Illustrate the process of Bayesian prediction and
forecasting.

Show how to estimate models and interpret their results.
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Definitions

Probability

Frequentist: Long-run frequency of event.

Bayesian: Degree of belief.

Statistical inference

Draw conclusions from observed data y about unobserved
parameters θ or a new observation ỹ .

Bayesian inference

Draw conclusions in terms of probability statements.

Condition on the observed value of y : p(θ|y) or p(ỹ |y).
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Example: A biased coin?

1 Set up a probability model (parametric or
non-parametric):

p(y |θ) = Bin(y |n, θ) =
(
n

y

)
θy (1− θ)n−y .

2 Specify prior:
p(θ) = Beta(α, β)

3 Summarise posterior distribution:

p(θ|y , n) = Beta(y + α, n − y + β)

4 (Evaluate model adequacy.)
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Example: A biased coin?
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Bayes’ rule

According to Bayes’ rule:

p(θ|y) = p(y |θ)p(θ)
p(y)

(1)

p(θ|y) ∝ p(θ)p(y |θ) (2)

‘Bayesian mantra’

The posterior distribution p(θ|y) is proportional to the prior
distribution p(θ) times the likelihood p(y |θ).

Requirement of Bayesian statistics:

Express prior belief about the parameter in the form of a
probability distribution.
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Similarities and differences to frequentist approach

Both approaches:

Begin with a probability model (data generating process).

Relate observed data y with a set of unknown parameters
θ.

Include fixed, known covariates x .

Denote probability model as p(y |θ, x) or p(y |θ).
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Similarities and differences to frequentist approach

Frequentist Bayesian

Parameters (unknown) Fixed Random
Data (known) Random Fixed
Probability Model L(θ|y) L(θ|y)p(θ)

Treating unknowns as random and knows as fixed has several
advantages.
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Confidence

Which of these is the correct
interpretation of a 95% con-
fidence interval?

An interval that has a
95% chance of
containing the true
value of the parameter.

An interval that over
95% of replications
contains the true value
of the parameter, on
average.
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Intuitive interpretation of findings

Frequentist approach:

95% confidence interval for θ is [1.5, 2.4].

If we were to repeatedly draw from our population, 95%
of our confidence intervals would contain the population
parameter.

But we do not know whether the present confidence
interval contains the population parameter.

Bayesian approach:

95% credible interval for θ is [1.5, 2.4].

After observing the data, there is a 95% chance that the
parameter falls between 1.5 and 2.4.
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Advantages and disadvantages

Advantages

Intuitive interpretation of findings.

Easy computation of quantities of interest.

Incorporation of prior information.

Fitting of realistic (complex) models.

Handling of missing values.

Inference with small samples.

...

Disadvantages

Elicit and defend subjective information.

Show that results do not depend on which prior is used.

Computing the posterior distribution can be challenging.
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Monte Carlo method

Analytically summarising posterior distributions is often
impossible or too cumbersome.

Use Monte Carlo methods.

(General method used also by frequentist approach.)

Monte Carlo principle

Anything we want to know about a random variable θ can be
learned by sampling many times from p(θ), the density of θ.
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Example: Compute posterior expected value

Analytical:

E (θ|y) =
∫
θp(θ|y)dθ.

Computational:

Produce random sequence of T draws θ(1), θ(2), ..., θ(T )

from p(θ|y).
E (θ|y) ≈ 1

T

∑T
t=1 θ

t .
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Markov chain Monte Carlo

Bayesian inference relies typically on Markov chain Monte
Carlo.

(MCMC can also be used by the frequentist approach,
but this is not widespread yet.)

The sequence of draws θ(1), θ(2), ..., θ(T ) are dependent.

Each draw θ(t+1) depends only on the previous draw θ(t)

(Markov chain).

Construct algorithms so that the Markov chain converges
to the target distribution.

The two most common algorithms are

the Gibbs sampling algorithm and
the Metropolis-Hastings algorithm.

Gibbs is a special case of Metropolis-Hastings.
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Computation

These and other algorithms allow us to sample from

multidimensional distributions (e.g., Gibbs), and

any distribution irrespective its shape (e.g., Metropolis).

Many extensions, such as:

Metropolis-Hastings.

Metropolis-within-Gibbs.

Always run diagnostic tests, such as:

Are traceplots stationary?

Do chains with different starting values converge?
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Software

In R, use JAGS, rjags, coda, and superdiag.

Example: Linear regression model with semi-conjugate
priors
model {

# likelihood

for (i in 1:N){

y[i] ~ dnorm(mu[i], tau)

mu[i] ~ alpha + beta*x[i]

}

# prior

alpha ~ dnorm(0, 0.001)

beta ~ dnorm(0, 0.001)

tau ~ dgamma(0.001, 0.001)

}

The number of models you can estimate is pretty much
unlimited.
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Prediction

Why?

To impute missing or censored data.

To predict replicate datasets in order to check adequacy
of model.

To know what happens in the future.

Bayesian prediction

Bayesians want the appropriate posterior predictive distribution
for ỹ to account for all sources of uncertainty.
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Sources of uncertainty:

Uncertainty about E (Ỹ ),

sampling variability of Ỹ around its expectation,

uncertainty about the size of this variability, and

the correlations between these components.

Estimation

Frequentist: Easy to get point prediction, harder to get
predictive distribution.

Bayesian: Trivial to get predictive distribution using
MCMC.
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Software

No need to explicitly include the quantities to be
predicted in the model description.

Expand the data set by including missing data indicated
as NA.

For instance, instead of
data=list("x"=c(8,1,3),"y"=c(2,4,7))

write
data=list("x"=c(8,1,3,2),"y"=c(2,4,7,NA))

This computes the predictive distribution of ỹ |x = 2.
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Time Series (’Bayesian forecasting’)

Time series

Data arising in sequence over time.

Observations are likely to be dependent.

Forecasting

Extrapolating series into the short-, medium, or long-term
future.

Use dependency through time: e.g., ỹt+1 = α̂ + β̂yt .

Use know future values of input: e.g., ỹt+1 = α̂+ β̂xt+1.
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Typical model

observed series = trend + seasonal effects + regression
term + irregular effects.
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Dynamic Linear Models

Regression coefficients and variance of irregular effects may
vary over time.
Consider the usual linear regression model

yt = Xtβ + ϵt (‘observation model’)

but with changing coefficient vector βt such that

βt = Mtβt−1 + ωt (‘state model’)

where Mt is a transition matrix.
ϵt and ωt can have time-dependent variances Vt and Wt .
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Some common simplifications:

Assume Vt and Wt are constant over time (V and W).

Assume state parameters vary independently of each
other, so matrix Wt reduces to a vector Wt .

Assume that Mt is known and fixed in time (e.g., Mt = I
the identity matrix so βt = βt−1 + ωt).
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Software

Dynamic linear regression model where yt = xtβ + ϵt and
βt = βt−1 + ωt with constant V and W in JAGS:
model{

# observation model

for (t in 1:T){

y[t] ~ dnorm(mu[t], V.inv)

mu[t] <- x[t]*beta[t]

}

# state model

for (t in 2:T){

beta[t] ~ dnorm(beta[t-1], W.inv)

}

# settings for t=1

beta[1] ~ dnorm(10,0.01)

# priors

...

}
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Conclusions

Bayesian methods allow you

to answer questions like “What is the probability that ...”,

to easily make predictions based on your model, and

to fit “models with many parameters and complicated
multilayered probability specifications”.

The software for estimating Bayesian methods is free and
relatively easy to use.
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Motivation

What is the probability that ...

... Andrew Jackson was the eighth president of the
United States?
Frequentist statistics cannot make probability statements
about single-events.

... austerity measures improve the economy
(t = 60, n = 50)?
Frequentist statistics struggles to make inferences if the
sample is the population.

... defeat in war leads to revolution in Latin America
(n = 76)?
Frequentist statistics is too conservative if the sample size
is small.
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Gibbs sampling

Use a sequence of draws from conditional distributions to
characterise the joint target distribution.

1 Define target distribution: p(θ1, θ2, ..., θK |y).
2 Set starting values: θ

(0)
2 , ..., θ

(0)
K .

3 Repeat for t = 1, ...,T iterations:

Draw θ
(t)
1 from p(θ1|θ(t−1)

2 , ..., θ
(t−1)
K , y)

Draw θ
(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , ..., θ

(t−1)
K , y)

...
...

...

Draw θ
(t)
K from p(θK |θ(t)1 , θ

(t)
2 , ..., θ

(t)
K−1, y)
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Example: Bivariate normal distribution

Simulate from bivariate normal distribution with zero mean
and unit variance for the marginals:(

x

y

)
∼ N

((
0

0

)
,

(
1 ρ
ρ 1

))
Suppose we do not know how to directly sample from this
joint distribution.
However, we know that

x |y ∼ N(ρy , 1− ρ2) (3)

y |x ∼ N(ρx , 1− ρ2) (4)

Which is the Gibbs sampler, so we can indirectly sample from
the joint distribution.
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Example: Bivariate normal distribution

In R we could do this as follows:

Gibbs <- function(n, rho, x0=0, y0=0){

draws <- matrix(ncol=2, nrow=n)

x <- x0

y <- y0

draws[1,] <- c(x, y)

for (i in 2:n){

x <- rnorm(1, rho * y, sqrt(1 - rho^2))

y <- rnorm(1, rho * x, sqrt(1 - rho^2))

draws[i,] <- c(x, y)

}

draws

}
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Example: Bivariate normal distribution
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Metropolis

Use a sequence of draws from a distribution from which we
know how to sample to characterise a distribution from which
we do not know how to sample.

1 Define target distribution: p(θ|y).
2 Set starting value: θ(0).
3 Repeat for t = 1, ...,T iterations:

1 Sample a proposal θ∗ from jumping distribution.
2 Calculate the ratio

r =
p(θ∗|y)

p(θ(t−1)|y)
. (5)

3 Set

θ(t) =

{
θ∗ with probability min(r , 1)

θ(t−1) otherwise.
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Example: Indirectly sample from N(0, 1)

Simulating from a normal with zero mean and unit variance
using a uniform proposal distribution.

Start the chain at x = 0.

At each iteration propose an innovation y ∼ Unif(−α, α),
leading to a candidate x + y .

Calculate the acceptance probability min
(

N(x+y)
N(x)

, 1
)
.

Accept candidate if acceptance probability > than a
random draw from Unif(0, 1), reject otherwise.
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Example: Indirectly sample from N(0, 1)

In R we could do this as follows:

Metropolis <- function(n, alpha, x0=0){

draws <- rep(NA, n)

x <- x0

draws[1] <- x

for (i in 2:n) {

inno <- runif(1, -alpha, alpha)

cand <- x + inno

apro <- min(1, dnorm(cand)/dnorm(x))

u <- runif(1)

if (u < apro)

x <- cand

draws[i] <- x

}

draws

}
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Example: Indirectly sample from N(0, 1)

Iteration

θ
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