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Skeletal tracer kinetics model
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aji

I II III
a05 0.612 0.612 0.612
a12 0.908 0.524 0.671
a14 0.567 1.518 0.012
a15 0.388 0.388 0.388
a21 0.246 1.291 1.337
a23 0.020 0.013 1.283
a32 0.602 0.042 0.131
a41 1.191 0.146 0.100
a51 0.024 0.024 0.024
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SIR Model

SIR infectious disease model:

S I
y(t ,p) = kY (t ,p)µN

µ µ+ γ

λ

Proportion of prevalence measured: y(t ,p) = kY (t ,p)

Model equations:

Ẋ = µN − µX −
β

N
XY

Ẏ =
β

N
XY − (µ+ γ)Y

y = kY
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Structural identifiability

input outputsystem?

Given postulated state-space models for a given biological or
biomedical process:

Structural Identifiability

Are the unknown parameters uniquely determined by the
input-output behaviour?
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Structural identifiability

input outputsystem

Given postulated state-space model, are the unknown
parameters uniquely determined by the output (ie, perfect,
continuous, noise-free data)?

Necessary theoretical prerequisite to:

experiment design

system identification

parameter estimation
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Formal definition

Consider following general parameterised state-space model:

ẋ(t ,p) = f (x(t ,p),u(t),p), x(0,p) = x0(p),

y(t ,p) = h(x(t ,p),p),

where p is the r -dimensional vector of unknown parameters , and is
assumed to lie in a set of feasible vectors: p ∈ Ω.

n dimensional vector q(t ,p) is state vector, such that q0(p) is the
initial state (may depend on the unknown parameters)

m dimensional vector u(t) is input/control vector (our influence on
system); what inputs are available depends on experiment to be
performed, so u(·) ∈ U , a set of admissible inputs (might be empty).

y(t ,p) is the l-dimensional output/observation vector (what we can
measure in the system). In the following we make explicit that output
y depends on p ∈ Ω and u ∈ U by writing y(t ,p;u).
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Parameter identifiability

For generic p ∈ Ω, the parameter pi is said to be locally
identifiable if there exists a neighbourhood of vectors around p,
N (p), such that if p ∈ N (p) ⊆ Ω and:

for every input u ∈ U and t ≥ 0, y(t ,p;u) = y(t ,p;u)

then pi = pi .

In particular, if the neighbourhood N (p) = Ω can be used in the
previous definition, then the parameter pi is globally/uniquely
identifiable.

If the parameter pi is not locally identifiable , i.e., there is no
suitable neighbourhood N (p), then it is said to be
unidentifiable.
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Structural identifiability

Structurally globally/uniquely identifiable

A parameterised state space model is structurally
globally/uniquely identifiable (SGI) if all of the unknown
parameters pi are globally/uniquely identifiable.

Structurally locally identifiable

A state space model is structurally locally identifiable (SLI) if all
of the unknown parameters pi are locally identifiable and at
least one of these parameters is not globally identifiable.

Unidentifiable

A state space model is unidentifiable if at least one of the
unknown parameters pi is unidentifiable.
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Remarks

Necessary condition for parameter estimation
Essential for parameters with practical significance
Prerequisite to experiment design

Identifiability does not guarantee
Good fit to experimental data
Good fit only with unique vector of parameters

Unidentifiable implies infinite number of parameter vectors will
give same fit (even for perfect data)
Many techniques for linear systems

Laplace transform or transfer function
Taylor series of output
Similarity transformation (exhaustive modelling)

Taylor series and similarity transformation approaches are
applicable for nonlinear systems
Differential algebra

Rational systems with differentiable inputs/outputs
Heavily dependent on symbolic computation
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Laplace Transform Approach
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General linear system

ẋ(t ,p) = A(p)x(t ,p) + B(p)u(t), x(0,p) = x0(p),

y(t ,p) = C(p)x(t ,p),

where
A(p) is an n × n matrix of rate constants

B(p) is an n × m input matrix

C(p) is an l × n output matrix

Assume that x0 = 0 (not essential) & take Laplace transforms:

sQ(s) = A(p)Q(s) + B(p)U(s)

Y (s) = C(p)Q(s)

= C(p) (sIn − A(p))−1 B(p)U(s)
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Laplace Transform Approach

This gives relationship between LTs of input & output:

Y (s) = G(s)U(s),

where the matrix

G(s) = C(p) (sIn − A(p))−1 B(p)

is the transfer (function) matrix

Measurements for G(s) assumed known

Coefficients of powers of s in numerators & denominators
uniquely determined by input-output relationship
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Example: 1 Compartment

1

b1u(t)

a01y = c1q1

Input: impulse: b1u(t) = b1n0δ(t); b1 unknown, n0 known

Output: y = c1q1, where c1 unknown.

System equations:

Transfer function: G(s) =
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Example: 1 Compartment

1

b1u(t)

a01y = c1q1

Input: impulse: b1u(t) = b1n0δ(t); b1 unknown, n0 known

Output: y = c1q1, where c1 unknown.

System equations:
q̇1 = −a01q1 + b1u(t), q1(0) = 0,

y = c1q1

Transfer function: G(s) = C(p) (sIn − A(p))−1 B(p) =
b1c1
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So b1c1 and a01 globally identifiable
But b1 and c1 unidentifiable
So model is unidentifiable unless b1 or c1 known (then SGI)
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Example: 2 Compartments

1 2

I = bu(t)

a01

y = c1x1
a12

Model is:
[

ẋ1

ẋ2

]

=

[

−a01 a12

0 −a12

] [

x1

x2

]

+

[

0
b

]

u(t)

y =
[

c 0
]

[

x1

x2

]

Transfer function:

G(s) =
[

c 0
]

[

s + a01 −a12

0 s + a12

]−1 [
0
b

]

=
bca12

(s + a01)(s + a12)
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Locally identifiable example

Transfer function:

G(s) =
bca12

(s + a01)(s + a12)

and so the following are unique:

bca12, a01 + a12 and a01a12

Yields two possible solutions for a01 and a21

If b (or c) known then two possible solutions for c (or b) hence
locally identifiable

If neither b nor c known then unidentifiable

If both b and c known then globally identifiable
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Taylor series approach
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Generally applied when there is a single input (eg, 0 or impulse)

Outputs yi(t ,p) expanded as Taylor series about t = 0:

yi(t ,p) = yi(0,p)+ ẏi(0,p)t + ÿi(0,p)
t2

2!
+ · · ·+y (k)

i (0,p)
tk

k !
+ . . .

where
y (k)

i (0,p) =
dkyi

dtk











t=0

(k = 1, 2, . . . ).

Taylor series coefficients y (k)
i (0,p) unique for particular output

Approach reduces to determining solutions for p that give:

yi(0,p), y (k)
i (0,p) (1 ≤ i ≤ l , k ≥ 1).

Notice that we have a possibly infinite list of coefficients:

y1(0,p), . . . , yl(0,p), ẏ1(0,p), . . . , ẏl(0,p), ÿ1(0,p), . . . , ÿl(0,p), . . .

For linear systems: at most 2n − 1 independent equations
needed
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Example: 1 Compartment

1
a01

Input: impulse in I.C.s: q1(0) = b1n0; b1 unknown, n0 known.

Output: y = c1q1, where c1 unknown.

System equations:

First coefficient: y(0,p) =

Second coefficient: ẏ(0,p) =
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Example: 2 Compartments

1 2

a01

y = c1q1

a21

a12

Input: bolus intravenous injection of drug (unknown amount)

Output: concentration of drug in the plasma

System equations:

q̇1(t ,p) =

q̇2(t ,p) =

y(t ,p) =
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Second coefficient:
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Second coefficient: a01 + a21 unique

Third coefficient: a12a21 unique

Fourth coefficient: a12 unique

So a21 and then a01 unique
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ẏ1(0,p) = −b1c1 (a01 + a21)

y (2)
1 (0,p) = b1c1
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)

y (3)
1 (0,p) = b1c1

(
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(
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Same result as before

MJ Chappell University of Warwick July 2016 Structural identifiability 24/49



Motivation
Structural identifiability

Techniques for nonlinear models

Laplace transform approach
Taylor series approach
Similarity transformation/exhaustive modelling approach

Similarity transformation/exhaustive modelling approach
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Generates set of all possible linear models: (A(p),B(p),C(p))

with same I/O behaviour as given one: (A(p),B(p),C(p))

Consider the model given by

q̇(t ,p) = A(p)q(t ,p) + B(p)u(t), q(0,p) = q0(p),

y(t ,p) = C(p)q(t ,p),
(1)

and suppose that following are satisfied:

Controllability rank condition:

rank
(

B(p) A(p)B(p) . . . A(p)n−1B(p)
)

= n

Observability rank condition: rank











C(p)
C(p)A(p)

...
C(p)A(p)n−1











= n

If both are satisfied model is minimal.
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Then there exists invertible n × n matrix T such that, if z = T q:
ż(t) = T q̇(t ,p) =

= z(0) = Tq0(p),

y(t ,p) = C(p)q(t ,p) =

has identical input-output behaviour.

Therefore, if p ∈ Ω gives rise to a model:
q̇(t ,p) = A(p)q(t ,p) + B(p)u(t), q(0,p) = q0(p),

y(t ,p) = C(p)q(t ,p),

with identical input-output behaviour as the initial one (1), then
A(p) =

B(p) =

C(p) =

for some invertible n × n matrix T .
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Sometimes easier to deal with:

A(p)T = TA(p), (2)

B(p) = TB(p), (3)

C(p)T = C(p). (4)

If only solution is T = In then p = p and the system is SGI

If T can take any of a finite set (with more than 1 element)
of possibilities, then the system is SLI

Otherwise, (T can take any of a infinite set of possibilities)
then the system is unidentifiable

MJ Chappell University of Warwick July 2016 Structural identifiability 28/49



Motivation
Structural identifiability

Techniques for nonlinear models

Laplace transform approach
Taylor series approach
Similarity transformation/exhaustive modelling approach

Example: Two-compartment model.

1 2

I = b1u(t)

a01

y = c1q1

a21

a12

System equations:

q̇(t ,p) = A(p)q(t ,p) + B(p)u(t), q(0,p) = 0

y(t ,p) = C(p)q(t ,p)

where

A(p) = , B(p) = , C(p) =
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)

, B(p) = , C(p) =
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=
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=
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(

−b1
b1

(a01 + a21) t22a12
b1
b1

a21 −a12t22

)

=

(

−b1
b1

(a01 + a21)
b1
b1

a12

a21t22 −a12t22

)

(2,2) component:

so (1,2) component:

(2,1) component:

(1,1) component:

So:
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Observable normal form

Techniques for nonlinear models:

generally more difficult to apply

can be less systematic

do not always yield full information concerning identifiability

must be careful about what inputs there are to the system

Dealing with state space models of form:

ẋ(t ,p) = f (x(t ,p),p,u(t)), x(0,p) = x0(p),

y(t ,p) = h(x(t ,p),p),
(5)

where

p ∈ Ω is an r dimensional (parameter) vector

x(t ,p) is an n dimensional (state) vector

u(t) is an m dimensional (input) vector

y(t ,p) is an l dimensional (output) vector
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This approach for linear models also works for nonlinear ones:

yi(t ,p) = yi(0,p)+ ẏi(0,p)t + ÿi(0,p)
t2

2!
+ · · ·+y (k)

i (0,p)
tk

k !
+ . . .

where y (k)
i (0,p) =

dkyi

dtk











t=0

(k = 1, 2, . . . ).

Taylor series coefficients y (k)
i (0,p) unique for particular output

Notice that we have a possibly infinite list of coefficients:

yi(0,p), ẏi(0,p), ÿi(0,p), . . . i = 1, . . . , l

& upper bound on number of coefficients needed more difficult

If model is autonomous, single output (m = 1), upper bound is:
Transfer coefficients all polynomial: n + r
If any coefficient rational: n + r + 1

Quite difficult to use TSA to prove model is unidentifiable
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Example: 1 compartment

1

b1u(t)

y = c1x1 Vm

Km + x1

Model equations:

ẋ1 = −
Vmx1

Km + x1
, x1(0) = b1

y = c1x1

First coefficient: y(0,p) = b1c1

Second coefficient: ẏ(0,p) = −
c1Vmb1

Km + b1

Third coefficient: y (2)(t ,p) =
d
dt

(

−
c1Vmx1

Km + x1

)
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Example: 1 compartment

1

b1u(t)

y = c1x1 Vm

Km + x1

Model equations:

ẋ1 = −
Vmx1

Km + x1
, x1(0) = b1

y = c1x1

First coefficient: y(0,p) = b1c1

Second coefficient: ẏ(0,p) = −
c1Vmb1

Km + b1

Third coefficient: y (2)(t ,p) =
d
dt

(

−
c1Vmx1

Km + x1

)

Use symbolic tools such as MATHEMATICA, MAPLE
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Example: One compartment with Langmuir elimination:

1

b1u(t)

y = c1q1
α(β − q1)

Model equations:

First coefficient: y(0,p) =

Second coefficient: ẏ(0,p) =

Third coefficient: y (2)(t ,p) =
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y = c1q1
α(β − q1)

Model equations:

q̇1 = −αq1(β − q1), q1(0) = 1

y = c1q1

First coefficient: y(0,p) = c1
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y = c1q1
α(β − q1)

Model equations:

q̇1 = −αq1(β − q1), q1(0) = 1

y = c1q1

First coefficient: y(0,p) = c1

Second coefficient: ẏ(0,p) = − c1α(β − 1)

Third coefficient: y (2)(t ,p) =
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Example: One compartment with Langmuir elimination:

1

b1u(t)

y = c1q1
α(β − q1)

Model equations:

q̇1 = −αq1(β − q1), q1(0) = 1

y = c1q1

First coefficient: y(0,p) = c1

Second coefficient: ẏ(0,p) = − c1α(β − 1)

Third coefficient: y (2)(t ,p) = − c1α (βq̇1 − 2q1q̇1)

MJ Chappell University of Warwick July 2016 Structural identifiability 38/49



Motivation
Structural identifiability

Techniques for nonlinear models

Taylor series approach
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Example: One compartment with Langmuir elimination:

1

b1u(t)

y = c1q1
α(β − q1)

Model equations:

q̇1 = −αq1(β − q1), q1(0) = 1

y = c1q1

First coefficient: y(0,p) = c1

Second coefficient: ẏ(0,p) = − c1α(β − 1)

Third coefficient: y (2)(t ,p) = − c1α (βq̇1 − 2q1q̇1)

=⇒ y (2)(0,p) = c1α
2(β − 1) (β − 2)
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y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient:

Second coefficient:

Third coefficient:
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y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient: c1 unique (globally identifiable)

Second coefficient:

Third coefficient:
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y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)
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y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient: c1 unique (globally identifiable)

Second coefficient: α(β − 1) unique

Third coefficient: α (β − 1)− α unique

MJ Chappell University of Warwick July 2016 Structural identifiability 39/49



Motivation
Structural identifiability

Techniques for nonlinear models

Taylor series approach
Observable normal form

y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient: c1 unique (globally identifiable)

Second coefficient: α(β − 1) unique
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y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient: c1 unique (globally identifiable)

Second coefficient: α(β − 1) unique

Third coefficient: α unique (globally identifiable)

And so β globally identifiable
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Taylor series approach
Observable normal form

y(0,p) = c1

ẏ(0,p) = −c1α(β − 1)

y (2)(0,p) = c1α
2(β − 1) (β − 2)

First coefficient: c1 unique (globally identifiable)

Second coefficient: α(β − 1) unique

Third coefficient: α unique (globally identifiable)

And so β globally identifiable

All parameters globally identifiable so model is SGI
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Now for something a little more advanced . . .
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Observable normal form approach

Single output, no (or single) input

For generic parameter vector p:
Check an observability criterion

Define µ1(x ,p) = h(x ,p) and

µi+1(x ,p) =
∂µi

∂x
(x ,p)f (x ,p) i = 1, . . . ,n − 1

Define Hp(x) = (µ1(x ,p), . . . , µn(x ,p))
T

Rank of
∂Hp

∂x
(x0(p)) is n

So Hp(·) diffeomorphism on neighbourhood of x0(p)
Hence is a coordinate transformation . . .
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Previous approach

Coordinate transformation between models that are
indistinguishable via available output

Hp (λ(x)) = Hp(x)

Σ(p) Σ(p)

Σ̂(p) Σ̂(p)

λ

Hp Hp

id
Determine S(p) set of all parameters p
s.t.

λ(x0(p)) = x0(p)

f (λ(x(t)),p) =
∂λ

∂x
(x(t))f (x(t),p)

h(λ(x(t)),p) = h(x(t),p)

(x(t) = x(t ,p))
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Observability normal form

System Σ̂ is the observability normal form, z = Hp(x):

ż1 = z2

...

żn−1 = zn

żn = µn+1(H−1
p (z),p)

y = z1

Last equation gives input-output equation for system and so, for
all p ∈ S(p), have

µn+1(H−1
p (z(t)),p) = µn+1(H

−1
p (z(t)),p) ∀t ≥ 0
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Using output equation

Now rewrite output equation in form:

φ0(z(t), żn(t)) +
m
∑

i=1

σi(p)φi(z(t), żn(t)) = 0

where φi(z(t), żn(t)) are linearly independent

Then if p ∈ S(p)

m
∑

i=1

(σi(p)− σi(p))φi(z(t), żn(t)) = 0

and so
σi(p) = σi(p) i = 1, . . . ,m
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Example

Consider two-compartment model:

1 2y = x1

p = {p1, p2, p3, p4}

I(t) = Dδ(t)

p3

p4 + x1

p1

p2

µ1(x ,p) = x1

µ2(x ,p) = −p1x1 + p2x2 −
p3x1

p4 + x1
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Example: Observability normal form

Observability condition met provided p2 6= 0 (ie, for all p) so can
transform into:

ż1(t ,p) = z2(t ,p)

ż2(t ,p) = −(p1 + p2)z2(t ,p)−
p2p3z1(t ,p)
p4 + z1(t ,p)

−
p3p4z2(t ,p)

(p4 + z1(t ,p))2

where

z1(0,p) = D and z2(0,p) = −p2D −
p3D

p4 + D
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Example: Output equation

Output equation:

z2
1 ż2 + p2

4ż2 + 2p4z1ż2 + p2p3p4z1 + p2p3z2
1

+
(

p3p4 + p2
4(p1 + p2)

)

z2 + 2p4(p1 + p2)z1z2

+ (p1 + p2)z
2
1z2 = φ0(z , żn) +

∑7
i=1 σi(p)φi(z , żn) = 0

Linear independence of terms guaranteed by checking the
Wronskian, or can use constructive algebra methods (in
MAPLE):
F := Vector([-p[1]*x[1]+p[2]*x[2]-p[3]*x[1]/(p[4]+x[1]),
p[1]*x[1]-p[2]*x[2]]);
H := x[1];
io := iorel(F,H)

Code modified from Evans et al Automatica 49:48-57, 2013, which was
based on PhD by Forsman (1991) Constructive Commutative Algebra in
Nonlinear Control Theory

MJ Chappell University of Warwick July 2016 Structural identifiability 47/49



Motivation
Structural identifiability

Techniques for nonlinear models

Taylor series approach
Observable normal form

Example: Identifiability

σi(p) = σi(p) i = 1, . . . , 7

for any p ∈ S(p).

σ2(p) = p4 =⇒ p4 = p4

σ4(p) = p2p3 =⇒ p2p3 = p2p3

σ7(p) = p1 + p2 =⇒ p1 + p2 = p1 + p2

σ5(p) = p3p4 + p2
4(p1 + p2) =⇒ p3 = p3

Solving these shows that p = p, ie S(p) = {p}

Therefore model is structurally globally identifiable
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Summary

Structural identifiability is an important step in modelling
process

Theoretical prerequisite to experiment design, system
identification, and parameter estimation
Techniques involve generation, manipulation & solution of
nonlinear algebraic equations

Observability normal form highly appropriate for both
analyses

Previously unsolved example (for identifiability) now solved!
Some computational difficulties remain
Generates input-output relations

Structural indistinguishability similarly important
More general framework but exact
Generally pairwise comparison of schemes
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