Structural identifiability: An Introduction

Mike Chappell & Neil Evans

m.j.chappell@warwick.ac.uk

AMR Summer School, University of Warwick, July 2016

イロト イポト イヨト イヨト

Outline

Motivation

- Skeletal tracer kinetics
- Infectious disease modelling
- 2 Structural identifiability
 - Laplace transform approach
 - Taylor series approach
 - Similarity transformation/exhaustive modelling approach

3 Techniques for nonlinear models

- Taylor series approach
- Observable normal form

▲ @ ▶ ▲ ⊇ ▶

Skeletal tracer kinetics

Skeletal tracer kinetics model

	(a ₁₁	a ₁₂	0	a ₁₄	a15
	a ₂₁	a ₂₂	a ₂₃	0	0
A =	Ō	a ₃₂	$-a_{23}$	0	0
	a ₄₁	0	0	-a ₁₄	0
	a_{51}	0	0	0	a55/

		II	111
a 05	0.612	0.612	0.612
a 12	0.908	0.524	0.671
a 14	0.567	1.518	0.012
a 15	0.388	0.388	0.388
a 21	0.246	1.291	1.337
a 23	0.020	0.013	1.283
a 32	0.602	0.042	0.131
a 41	1.191	0.146	0.100
a 51	0.024	0.024	0.024

3

Skeletal tracer kinetics Infectious disease modelling

Model simulations

ヘロト 人間 とくほとく ほとう

ъ

Skeletal tracer kinetics Infectious disease modelling

Model simulations

MJ Chappell

Skeletal tracer kinetics Infectious disease modelling

SIR Model

SIR infectious disease model:

Proportion of prevalence measured: $y(t, \mathbf{p}) = k \mathbf{Y}(t, \mathbf{p})$ Model equations:

$$\dot{\mathbf{X}} = \mu \mathbf{N} - \mu \mathbf{X} - \frac{\beta}{N} \mathbf{X} \mathbf{Y}$$
$$\dot{\mathbf{Y}} = \frac{\beta}{N} \mathbf{X} \mathbf{Y} - (\mu + \gamma) \mathbf{Y}$$
$$\mathbf{y} = \mathbf{k} \mathbf{Y}$$

イロト イボト イヨト イヨト

Skeletal tracer kinetics Infectious disease modelling

SIR model

э

イロト 不得 トイヨト イヨト

Skeletal tracer kinetics Infectious disease modelling

SIR model

$$\mu = 0.0125, \gamma = 12$$

 $N = 20000$
 $\beta = 50, k = 0.25$
 $X(0) = 4800$
 $Y(0) = 40$

э

イロト 不得 トイヨト イヨト

Skeletal tracer kinetics Infectious disease modelling

SIR model

Skeletal tracer kinetics Infectious disease modelling

SIR model

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

Structural identifiability

Given postulated state-space models for a given biological or biomedical process:

Structural Identifiability Are the unknown parameters uniquely determined by the input-output behaviour?

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

< □ > < □ > < □ > < □ >

Structural identifiability

Given postulated state-space model, are the unknown parameters uniquely determined by the output (ie, perfect, continuous, noise-free data)?

Necessary theoretical prerequisite to:

- experiment design
- system identification
- parameter estimation

Formal definition

Consider following general parameterised state-space model:

$$\dot{\mathbf{x}}(t, \mathbf{p}) = \mathbf{f}(\mathbf{x}(t, \mathbf{p}), \mathbf{u}(t), \mathbf{p}), \quad \mathbf{x}(0, \mathbf{p}) = \mathbf{x}_0(\mathbf{p}),$$

 $\mathbf{y}(t, \mathbf{p}) = \mathbf{h}(\mathbf{x}(t, \mathbf{p}), \mathbf{p}),$

where p is the *r*-dimensional vector of unknown parameters, and is assumed to lie in a set of feasible vectors: $p \in \Omega$.

n dimensional vector q(t, p) is state vector, such that $q_0(p)$ is the initial state (may depend on the unknown parameters)

m dimensional vector $\boldsymbol{u}(t)$ is input/control vector (our influence on system); what inputs are available depends on experiment to be performed, so $\boldsymbol{u}(\cdot) \in \mathcal{U}$, a set of admissible inputs (might be empty).

y(t, p) is the *l*-dimensional output/observation vector (what we can measure in the system). In the following we make explicit that output y depends on $p \in \Omega$ and $u \in U$ by writing y(t, p; u).

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Parameter identifiability

For generic $\boldsymbol{p} \in \Omega$, the parameter p_i is said to be locally identifiable if there exists a neighbourhood of vectors around \boldsymbol{p} , $\mathcal{N}(\boldsymbol{p})$, such that if $\overline{\boldsymbol{p}} \in \mathcal{N}(\boldsymbol{p}) \subseteq \Omega$ and:

for every input $\boldsymbol{u} \in \mathcal{U}$ and $t \ge 0$, $\boldsymbol{y}(t, \boldsymbol{p}; \boldsymbol{u}) = \boldsymbol{y}(t, \overline{\boldsymbol{p}}; \boldsymbol{u})$

then $\overline{p}_i = p_i$.

In particular, if the neighbourhood $\mathcal{N}(\mathbf{p}) = \Omega$ can be used in the previous definition, then the parameter p_i is globally/uniquely identifiable.

If the parameter p_i is **not locally identifiable**, i.e., there is no suitable neighbourhood $\mathcal{N}(\boldsymbol{p})$, then it is said to be unidentifiable.

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Structural identifiability

Structurally globally/uniquely identifiable

A parameterised state space model is structurally globally/uniquely identifiable (SGI) if all of the unknown parameters p_i are globally/uniquely identifiable.

Structurally locally identifiable

A state space model is structurally locally identifiable (**SLI**) if all of the unknown parameters p_i are locally identifiable and at least one of these parameters is **not** globally identifiable.

Unidentifiable

A state space model is unidentifiable if at least one of the unknown parameters p_i is unidentifiable.

MJ Chappell

 Motivation
 Laplace transform approach

 Structural identifiability
 Taylor series approach

 Techniques for nonlinear models
 Similarity transformation/exhaustive modelling approach

Remarks

- Necessary condition for parameter estimation
 - Essential for parameters with practical significance
 - Prerequisite to experiment design
- Identifiability does not guarantee
 - Good fit to experimental data
 - Good fit only with unique vector of parameters
- Unidentifiable implies infinite number of parameter vectors will give same fit (even for perfect data)
- Many techniques for linear systems
 - Laplace transform or transfer function
 - Taylor series of output
 - Similarity transformation (exhaustive modelling)
- Taylor series and similarity transformation approaches are applicable for nonlinear systems
- Differential algebra
 - Rational systems with differentiable inputs/outputs
 - Heavily dependent on symbolic computation

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

Laplace Transform Approach

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

General linear system

$$\begin{split} \dot{\boldsymbol{x}}(t,\boldsymbol{\rho}) &= \boldsymbol{A}(\boldsymbol{\rho})\boldsymbol{x}(t,\boldsymbol{\rho}) + \boldsymbol{B}(\boldsymbol{\rho})\boldsymbol{u}(t), \quad \boldsymbol{x}(0,\boldsymbol{\rho}) = \boldsymbol{x}_0(\boldsymbol{\rho}), \\ \boldsymbol{y}(t,\boldsymbol{\rho}) &= \boldsymbol{C}(\boldsymbol{\rho})\boldsymbol{x}(t,\boldsymbol{\rho}), \end{split}$$

where

A(p) is an $n \times n$ matrix of rate constants B(p) is an $n \times m$ input matrix C(p) is an $I \times n$ output matrix

Assume that $\mathbf{x}_0 = 0$ (not essential) & take Laplace transforms:

$$\begin{split} s \boldsymbol{Q}(s) &= \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{Q}(s) + \boldsymbol{B}(\boldsymbol{p}) \boldsymbol{U}(s) \\ \boldsymbol{Y}(s) &= \boldsymbol{C}(\boldsymbol{p}) \boldsymbol{Q}(s) \\ &= \boldsymbol{C}(\boldsymbol{p}) \left(s \boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p}) \right)^{-1} \boldsymbol{B}(\boldsymbol{p}) \boldsymbol{U}(s) \end{split}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Laplace Transform Approach

This gives relationship between LTs of input & output:

$$\mathbf{Y}(s) = \mathbf{G}(s)\mathbf{U}(s),$$

where the matrix

$$\boldsymbol{G}(\boldsymbol{s}) = \boldsymbol{C}(\boldsymbol{p}) \left(\boldsymbol{s}\boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p})\right)^{-1} \boldsymbol{B}(\boldsymbol{p})$$

is the transfer (function) matrix

- Measurements for **G**(s) assumed known
- Coefficients of powers of s in numerators & denominators uniquely determined by input-output relationship

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 不得 とくほ とくほとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

Transfer function: G(s) =

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 不得 とくほ とくほとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$

Transfer function: G(s) =

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 人間 とくほとう ほとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$

Transfer function: $\mathbf{G}(s) = \mathbf{C}(\mathbf{p}) (s\mathbf{I}_n - \mathbf{A}(\mathbf{p}))^{-1} \mathbf{B}(\mathbf{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 不得 とくほ とくほとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$
Transfer function: $\boldsymbol{G}(s) = \boldsymbol{C}(\boldsymbol{p}) (s\boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p}))^{-1} \boldsymbol{B}(\boldsymbol{p}) = rac{b_1c_1}{s + a_{01}}$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 人間 とくほとくほとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$

Transfer function: $\boldsymbol{G}(s) = \boldsymbol{C}(\boldsymbol{p}) (s\boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p}))^{-1} \boldsymbol{B}(\boldsymbol{p}) = \frac{\boldsymbol{D}_1 \boldsymbol{C}_1}{s + \boldsymbol{a}_{01}}$

• So b_1c_1 and a_{01} globally identifiable

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 とうき とうとう

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$

Transfer function: $\boldsymbol{G}(s) = \boldsymbol{C}(\boldsymbol{p}) (s\boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p}))^{-1} \boldsymbol{B}(\boldsymbol{p}) = \frac{D_1 C_1}{s + a_{21}}$

- So b_1c_1 and a_{01} globally identifiable
- But b₁ and c₁ unidentifiable

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Example: 1 Compartment

Input: impulse: $b_1 u(t) = b_1 n_0 \delta(t)$; b_1 unknown, n_0 known Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1 + b_1u(t), \qquad q_1(0) = 0,$$

 $y = c_1q_1$

Transfer function: $\boldsymbol{G}(s) = \boldsymbol{C}(\boldsymbol{p}) (s\boldsymbol{I}_n - \boldsymbol{A}(\boldsymbol{p}))^{-1} \boldsymbol{B}(\boldsymbol{p}) = \frac{D_1 C_1}{s + a_{21}}$

- So b_1c_1 and a_{01} globally identifiable
- But b₁ and c₁ unidentifiable
- So model is unidentifiable unless b₁ or c₁ known (then SGI)

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Example: 2 Compartments

Model is:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -a_{01} & a_{12} \\ 0 & -a_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} c & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Transfer function:

$$G(s) = \begin{bmatrix} c & 0 \end{bmatrix} \begin{bmatrix} s + a_{01} & -a_{12} \\ 0 & s + a_{12} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ b \end{bmatrix} = \frac{bca_{12}}{(s + a_{01})(s + a_{12})}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

Locally identifiable example

Transfer function:

$$G(s) = \frac{bca_{12}}{(s + a_{01})(s + a_{12})}$$

and so the following are unique:

 bca_{12} , $a_{01} + a_{12}$ and $a_{01}a_{12}$

- Yields two possible solutions for a₀₁ and a₂₁
- If b (or c) known then two possible solutions for c (or b) hence locally identifiable
- If neither *b* nor *c* known then unidentifiable
- If both *b* and *c* known then globally identifiable

 Motivation
 Laplace transform approach

 Structural identifiability
 Taylor series approach

 Techniques for nonlinear models
 Similarity transformation/exhaustive modelling approach

Taylor series approach

イロン イロン イヨン イヨン

 Motivation
 Laplace transform approach

 Structural identifiability
 Taylor series approach

 Techniques for nonlinear models
 Similarity transformation/exhaustive modelling approach

Generally applied when there is a single input (eg, 0 or impulse) Outputs $y_i(t, \mathbf{p})$ expanded as Taylor series about t = 0:

$$y_i(t, \boldsymbol{\rho}) = y_i(0, \boldsymbol{\rho}) + \dot{y}_i(0, \boldsymbol{\rho})t + \ddot{y}_i(0, \boldsymbol{\rho})\frac{t^2}{2!} + \cdots + y_i^{(k)}(0, \boldsymbol{\rho})\frac{t^k}{k!} + \cdots$$

where

$$y_i^{(k)}(0, \boldsymbol{p}) = \left. rac{\mathsf{d}^k y_i}{\mathsf{d} t^k} \right|_{t=0} \qquad (k=1,2,\dots).$$

Taylor series coefficients $y_i^{(k)}(0, \mathbf{p})$ unique for particular output Approach reduces to determining solutions for \mathbf{p} that give:

$$y_i(0, p), \quad y_i^{(k)}(0, p) \qquad (1 \le i \le l, k \ge 1).$$

Notice that we have a possibly infinite list of coefficients:

 $y_1(0, \boldsymbol{p}), \dots, y_l(0, \boldsymbol{p}), \dot{y}_1(0, \boldsymbol{p}), \dots, \dot{y}_l(0, \boldsymbol{p}), \ddot{y}_1(0, \boldsymbol{p}), \dots, \ddot{y}_l(0, \boldsymbol{p}), \dots$ For linear systems: at most 2n - 1 independent equations

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト イヨト

Example: 1 Compartment

$$1 \xrightarrow{a_{01}}$$

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

First coefficient: $y(0, \mathbf{p}) =$ Second coefficient: $\dot{y}(0, \mathbf{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト イヨト

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

First coefficient: $y(0, \mathbf{p}) =$ Second coefficient: $\dot{y}(0, \mathbf{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) =$

Second coefficient: $\dot{y}(0, \mathbf{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト イヨト

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \mathbf{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト ヘ回ト ヘヨト ヘヨト

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \boldsymbol{p}) = -a_{01}b_1c_1n_0$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロン 人間 とくほとく ほとう

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \boldsymbol{p}) = -a_{01}b_1c_1n_0$

• So $b_1c_1 \& b_1c_1a_{01}$ unique
Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 人間 とくき とくきとう

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \mathbf{p}) = -a_{01}b_1c_1n_0$

So b₁c₁ & b₁c₁a₀₁ unique (ie b₁c₁ & a₀₁ globally identifiable)

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 とくほと くほとう

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \mathbf{p}) = -a_{01}b_1c_1n_0$

- So b₁c₁ & b₁c₁a₀₁ unique (ie b₁c₁ & a₀₁ globally identifiable)
- But b_1 and c_1 unidentifiable

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

Example: 1 Compartment

Input: impulse in I.C.s: $q_1(0) = b_1 n_0$; b_1 unknown, n_0 known.

Output: $y = c_1 q_1$, where c_1 unknown.

System equations:

$$\dot{q}_1 = -a_{01}q_1, \qquad q_1(0) = b_1n_0,$$

 $y = c_1q_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1 n_0$

Second coefficient: $\dot{y}(0, \boldsymbol{p}) = -a_{01}b_1c_1n_0$

- So b₁c₁ & b₁c₁a₀₁ unique (ie b₁c₁ & a₀₁ globally identifiable)
- But b_1 and c_1 unidentifiable
- So model unidentifiable unless b₁ &/or c₂ known (then SGI) ²²

MJ Chappell

University of Warwick

July 2016

Structural identifiability

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

Example: 2 Compartments

Input: bolus intravenous injection of drug (unknown amount) Output: concentration of drug in the plasma System equations:

 $\dot{q}_1(t, oldsymbol{p}) = \dot{q}_2(t, oldsymbol{p}) = y(t, oldsymbol{p}) =$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イ押ト イヨト イヨト

Example: 2 Compartments

Input: bolus intravenous injection of drug (unknown amount) Output: concentration of drug in the plasma System equations:

$$\dot{q}_1(t, \mathbf{p}) = -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12}q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \ \dot{q}_2(t, \mathbf{p}) = y(t, \mathbf{p}) =$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イ押ト イヨト イヨト

Example: 2 Compartments

Input: bolus intravenous injection of drug (unknown amount) Output: concentration of drug in the plasma System equations:

$$\begin{aligned} \dot{q}_1(t, \boldsymbol{p}) &= -(a_{01} + a_{21}) \, q_1(t, \boldsymbol{p}) + a_{12} q_2(t, \boldsymbol{p}), \qquad q_1(0, \boldsymbol{p}) = b_1 \\ \dot{q}_2(t, \boldsymbol{p}) &= a_{21} q_1(t, \boldsymbol{p}) - a_{12} q_2(t, \boldsymbol{p}), \qquad q_2(0, \boldsymbol{p}) = 0 \\ y(t, \boldsymbol{p}) &= \end{aligned}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イ押ト イヨト イヨト

Example: 2 Compartments

Input: bolus intravenous injection of drug (unknown amount) Output: concentration of drug in the plasma System equations:

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12}q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21}q_1(t, \mathbf{p}) - a_{12}q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1q_1(t, \mathbf{p}) \end{aligned}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient:

Second coefficient:

Third coefficient:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient:

Third coefficient:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト イヨト

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient: $\dot{y}_1(0, \mathbf{p}) = -c_1 (a_{01} + a_{21}) b_1$ Third coefficient:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 不得 とくほ とくほとう

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient: $\dot{y}_1(0, \mathbf{p}) = -c_1 (a_{01} + a_{21}) b_1$ Third coefficient: $y_1^{(2)}(t, \mathbf{p}) = c_1 (-(a_{01} + a_{21}) \dot{q}_1(t, \mathbf{p}) + a_{12} \dot{q}_2(t, \mathbf{p}))$

ヘロト 不得 とくほ とくほとう

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient: $\dot{y}_1(0, \mathbf{p}) = -c_1 (a_{01} + a_{21}) b_1$ Third coefficient: $y_1^{(2)}(t, \mathbf{p}) = c_1 (-(a_{01} + a_{21}) \dot{q}_1(t, \mathbf{p}) + a_{12} \dot{q}_2(t, \mathbf{p}))$ $\implies y_1^{(2)}(0, \mathbf{p}) = c_1 ((a_{01} + a_{21})^2 b_1 + a_{12} a_{21} b_1)$

イロト 不得 トイヨト 不良 ト

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) \, q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient: $\dot{y}_1(0, \mathbf{p}) = -c_1 (a_{01} + a_{21}) b_1$ Third coefficient: $y_1^{(2)}(t, \mathbf{p}) = c_1 (-(a_{01} + a_{21}) \dot{q}_1(t, \mathbf{p}) + a_{12} \dot{q}_2(t, \mathbf{p}))$ $\implies y_1^{(2)}(0, \mathbf{p}) = c_1 ((a_{01} + a_{21})^2 b_1 + a_{12} a_{21} b_1)$

Fourth coefficient: $y_1^{(3)}(t, \mathbf{p}) = c_1 \left((a_{01} + a_{21})^2 \dot{q}_1 - a_{12} (a_{01} + a_{21}) \dot{q}_2 + a_{12} a_{21} \dot{q}_1 - a_{12}^2 \dot{q}_2 \right)$

$$\begin{aligned} \dot{q}_1(t, \mathbf{p}) &= -(a_{01} + a_{21}) q_1(t, \mathbf{p}) + a_{12} q_2(t, \mathbf{p}), \qquad q_1(0, \mathbf{p}) = b_1 \\ \dot{q}_2(t, \mathbf{p}) &= a_{21} q_1(t, \mathbf{p}) - a_{12} q_2(t, \mathbf{p}), \qquad q_2(0, \mathbf{p}) = 0 \\ y(t, \mathbf{p}) &= c_1 q_1(t, \mathbf{p}) \end{aligned}$$

First coefficient: $y_1(0, \mathbf{p}) = c_1 b_1$ Second coefficient: $\dot{y}_1(0, \mathbf{p}) = -c_1 (a_{01} + a_{21}) b_1$ Third coefficient: $y_1^{(2)}(t, \mathbf{p}) = c_1 (-(a_{01} + a_{21}) \dot{q}_1(t, \mathbf{p}) + a_{12} \dot{q}_2(t, \mathbf{p}))$ $\implies y_1^{(2)}(0, \mathbf{p}) = c_1 ((a_{01} + a_{21})^2 b_1 + a_{12} a_{21} b_1)$

Fourth coefficient:
$$y_1^{(3)}(t, \mathbf{p}) =$$

 $c_1\left((a_{01} + a_{21})^2 \dot{q}_1 - a_{12}(a_{01} + a_{21}) \dot{q}_2 + a_{12}a_{21}\dot{q}_1 - a_{12}^2\dot{q}_2\right)$
 $\Rightarrow y_1^{(3)}(0, \mathbf{p}) = b_1c_1\left[(a_{01} + a_{21})\left[-(a_{01} + a_{21})^2 - 2a_{12}a_{21}\right] - a_{12}^2a_{21}\right]$
MJ Chappell University of Warwick July 2016 Structural identifiability 23/49

$$\begin{aligned} y_1(0, \boldsymbol{p}) &= c_1 b_1 \\ \dot{y}_1(0, \boldsymbol{p}) &= -b_1 c_1 \left(a_{01} + a_{21} \right) \\ y_1^{(2)}(0, \boldsymbol{p}) &= b_1 c_1 \left(\left(a_{01} + a_{21} \right)^2 + a_{12} a_{21} \right) \\ y_1^{(3)}(0, \boldsymbol{p}) &= b_1 c_1 \left(\left(a_{01} + a_{21} \right) \left(- \left(a_{01} + a_{21} \right)^2 - 2 a_{12} a_{21} \right) - a_{12}^2 a_{21} \right) \end{aligned}$$

- First coefficient:
- Second coefficient:
- Third coefficient:
- Fourth coefficient:

< ロ > < 同 > < 回 > < 回 > <</p>

э

$$\begin{aligned} y_1(0, \boldsymbol{p}) &= c_1 b_1 \\ \dot{y}_1(0, \boldsymbol{p}) &= -b_1 c_1 \left(a_{01} + a_{21} \right) \\ y_1^{(2)}(0, \boldsymbol{p}) &= b_1 c_1 \left(\left(a_{01} + a_{21} \right)^2 + a_{12} a_{21} \right) \\ y_1^{(3)}(0, \boldsymbol{p}) &= b_1 c_1 \left(\left(a_{01} + a_{21} \right) \left(- \left(a_{01} + a_{21} \right)^2 - 2 a_{12} a_{21} \right) - a_{12}^2 a_{21} \right) \end{aligned}$$

- First coefficient: b_1c_1 unique
- Second coefficient:
- Third coefficient:
- Fourth coefficient:

< ロ > < 同 > < 回 > < 回 > <</p>

ъ

$$y_{1}(0, \boldsymbol{p}) = c_{1}b_{1}$$

$$\dot{y}_{1}(0, \boldsymbol{p}) = -b_{1}c_{1}(a_{01} + a_{21})$$

$$y_{1}^{(2)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})^{2} + a_{12}a_{21}\right)$$

$$y_{1}^{(3)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})\left(-(a_{01} + a_{21})^{2} - 2a_{12}a_{21}\right) - a_{12}^{2}a_{21}\right)$$

- First coefficient: b_1c_1 unique
- Second coefficient: $a_{01} + a_{21}$ unique
- Third coefficient:
- Fourth coefficient:

$$y_{1}(0, \boldsymbol{p}) = c_{1}b_{1}$$

$$\dot{y}_{1}(0, \boldsymbol{p}) = -b_{1}c_{1}(a_{01} + a_{21})$$

$$y_{1}^{(2)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})^{2} + a_{12}a_{21}\right)$$

$$y_{1}^{(3)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})\left(-(a_{01} + a_{21})^{2} - 2a_{12}a_{21}\right) - a_{12}^{2}a_{21}\right)$$

- First coefficient: b_1c_1 unique
- Second coefficient: $a_{01} + a_{21}$ unique
- Third coefficient: *a*₁₂*a*₂₁ unique
- Fourth coefficient:

$$y_{1}(0, \boldsymbol{p}) = c_{1}b_{1}$$

$$\dot{y}_{1}(0, \boldsymbol{p}) = -b_{1}c_{1}(a_{01} + a_{21})$$

$$y_{1}^{(2)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})^{2} + a_{12}a_{21}\right)$$

$$y_{1}^{(3)}(0, \boldsymbol{p}) = b_{1}c_{1}\left((a_{01} + a_{21})\left(-(a_{01} + a_{21})^{2} - 2a_{12}a_{21}\right) - a_{12}^{2}a_{21}\right)$$

- First coefficient: *b*₁*c*₁ unique
- Second coefficient: $a_{01} + a_{21}$ unique
- Third coefficient: *a*₁₂*a*₂₁ unique
- Fourth coefficient: *a*₁₂ unique

$$y_{1}(0, \mathbf{p}) = c_{1}b_{1}$$

$$\dot{y}_{1}(0, \mathbf{p}) = -b_{1}c_{1}(a_{01} + a_{21})$$

$$y_{1}^{(2)}(0, \mathbf{p}) = b_{1}c_{1}\left((a_{01} + a_{21})^{2} + a_{12}a_{21}\right)$$

$$y_{1}^{(3)}(0, \mathbf{p}) = b_{1}c_{1}\left((a_{01} + a_{21})\left(-(a_{01} + a_{21})^{2} - 2a_{12}a_{21}\right) - a_{12}^{2}a_{21}\right)$$

- First coefficient: *b*₁*c*₁ unique
- Second coefficient: $a_{01} + a_{21}$ unique
- Third coefficient: *a*₁₂*a*₂₁ unique
- Fourth coefficient: *a*₁₂ unique
- So *a*₂₁ and then *a*₀₁ unique

・ 同 ト ・ ヨ ト ・ ヨ ト

$$y_{1}(0, \mathbf{p}) = c_{1}b_{1}$$

$$\dot{y}_{1}(0, \mathbf{p}) = -b_{1}c_{1}(a_{01} + a_{21})$$

$$y_{1}^{(2)}(0, \mathbf{p}) = b_{1}c_{1}\left((a_{01} + a_{21})^{2} + a_{12}a_{21}\right)$$

$$y_{1}^{(3)}(0, \mathbf{p}) = b_{1}c_{1}\left((a_{01} + a_{21})\left(-(a_{01} + a_{21})^{2} - 2a_{12}a_{21}\right) - a_{12}^{2}a_{21}\right)$$

- First coefficient: *b*₁*c*₁ unique
- Second coefficient: $a_{01} + a_{21}$ unique
- Third coefficient: *a*₁₂*a*₂₁ unique
- Fourth coefficient: *a*₁₂ unique
- So a_{21} and then a_{01} unique
- Same result as before

Similarity transformation/exhaustive modelling approach

Generates set of all possible linear models: $(\mathbf{A}(\overline{\mathbf{p}}), \mathbf{B}(\overline{\mathbf{p}}), \mathbf{C}(\overline{\mathbf{p}}))$ with same I/O behaviour as given one: $(\mathbf{A}(\mathbf{p}), \mathbf{B}(\mathbf{p}), \mathbf{C}(\mathbf{p}))$

Consider the model given by

$$\dot{\boldsymbol{q}}(t,\boldsymbol{p}) = \boldsymbol{A}(\boldsymbol{p})\boldsymbol{q}(t,\boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})\boldsymbol{u}(t), \quad \boldsymbol{q}(0,\boldsymbol{p}) = \boldsymbol{q}_0(\boldsymbol{p}),$$

$$\boldsymbol{y}(t,\boldsymbol{p}) = \boldsymbol{C}(\boldsymbol{p})\boldsymbol{q}(t,\boldsymbol{p}),$$
(1)

and suppose that following are satisfied:

Controllability rank condition.

 $\mathsf{rank}ig(m{B}(m{p}) \ \ m{A}(m{p})m{B}(m{p}) \ \ \dots \ \ m{A}(m{p})^{n-1}m{B}(m{p})ig) = n$

Observability rank condition: rank

$$\mathsf{k}\begin{pmatrix} \mathbf{C}(\mathbf{p})\\ \mathbf{C}(\mathbf{p})\mathbf{A}(\mathbf{p})\\ \vdots\\ \mathbf{C}(\mathbf{p})\mathbf{A}(\mathbf{p})^{n-1} \end{pmatrix} = n$$

イロト イポト イヨト イヨト

If both are satisfied model is minimal.

Then there exists invertible $n \times n$ matrix **T** such that, if $\mathbf{z} = \mathbf{T}\mathbf{q}$: $\dot{\mathbf{z}}(t) = \mathbf{T}\dot{\mathbf{q}}(t, \mathbf{p}) =$

$$\boldsymbol{z}(0) = \boldsymbol{T} \boldsymbol{q}_0(\boldsymbol{p}),$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

 $oldsymbol{y}(t,oldsymbol{p})=oldsymbol{C}(oldsymbol{p})oldsymbol{q}(t,oldsymbol{p})=$

has identical input-output behaviour.

Therefore, if $\overline{\boldsymbol{p}} \in \Omega$ gives rise to a model: $\dot{\boldsymbol{q}}(t, \overline{\boldsymbol{p}}) = \boldsymbol{A}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}) + \boldsymbol{B}(\overline{\boldsymbol{p}})\boldsymbol{u}(t), \quad \boldsymbol{q}(0, \overline{\boldsymbol{p}}) = \boldsymbol{q}_0(\overline{\boldsymbol{p}}),$ $\boldsymbol{y}(t, \overline{\boldsymbol{p}}) = \boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}),$

with identical input-output behaviour as the initial one (1), then

$$egin{aligned} m{A}(\overline{m{p}}) &= \ m{B}(\overline{m{p}}) &= \ m{C}(\overline{m{p}}) &= \ m{C}(\overline{m{p}$$

for some invertible $n \times n$ matrix **T**.

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= z(0) = Tq_0(p),$

 $oldsymbol{y}(t,oldsymbol{p})=oldsymbol{C}(oldsymbol{p})oldsymbol{q}(t,oldsymbol{p})=$

has identical input-output behaviour.

Therefore, if $\overline{\boldsymbol{p}} \in \Omega$ gives rise to a model: $\dot{\boldsymbol{q}}(t, \overline{\boldsymbol{p}}) = \boldsymbol{A}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}) + \boldsymbol{B}(\overline{\boldsymbol{p}})\boldsymbol{u}(t), \quad \boldsymbol{q}(0, \overline{\boldsymbol{p}}) = \boldsymbol{q}_0(\overline{\boldsymbol{p}}),$ $\boldsymbol{y}(t, \overline{\boldsymbol{p}}) = \boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}),$

with identical input-output behaviour as the initial one (1), then

$$oldsymbol{A}(\overline{oldsymbol{p}})=oldsymbol{B}(\overline{oldsymbol{p}})=oldsymbol{C}(\overline{oldsymbol{p}})=oldsymbol{C}(\overline{oldsymbol{p}})=oldsymbol{A}(\overline{oldsymbol{p$$

for some invertible $n \times n$ matrix **T**.

・ロト ・ 理 ト ・ ヨ ト ・

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= TA(p)T^{-1}z(t) + TB(p)u(t), \quad z(0) = Tq_0(p),$

 $oldsymbol{y}(t,oldsymbol{p})=oldsymbol{C}(oldsymbol{p})oldsymbol{q}(t,oldsymbol{p})=$

has identical input-output behaviour.

Therefore, if $\overline{\boldsymbol{p}} \in \Omega$ gives rise to a model: $\dot{\boldsymbol{q}}(t, \overline{\boldsymbol{p}}) = \boldsymbol{A}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}) + \boldsymbol{B}(\overline{\boldsymbol{p}})\boldsymbol{u}(t), \quad \boldsymbol{q}(0, \overline{\boldsymbol{p}}) = \boldsymbol{q}_0(\overline{\boldsymbol{p}}),$ $\boldsymbol{y}(t, \overline{\boldsymbol{p}}) = \boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}),$

with identical input-output behaviour as the initial one (1), then

$$oldsymbol{A}(\overline{oldsymbol{p}})=oldsymbol{B}(\overline{oldsymbol{p}})=oldsymbol{C}(\overline{oldsymbol{p}})=oldsymbol{C}(\overline{oldsymbol{p}})=oldsymbol{A}(\overline{oldsymbol{p$$

for some invertible $n \times n$ matrix *T*.

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= TA(p)T^{-1}z(t) + TB(p)u(t), \quad z(0) = Tq_0(p),$ $y(t, p) = C(p)q(t, p) = C(p)T^{-1}z(t).$

has identical input-output behaviour.

Therefore, if $\overline{\boldsymbol{p}} \in \Omega$ gives rise to a model: $\dot{\boldsymbol{q}}(t, \overline{\boldsymbol{p}}) = \boldsymbol{A}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}) + \boldsymbol{B}(\overline{\boldsymbol{p}})\boldsymbol{u}(t), \quad \boldsymbol{q}(0, \overline{\boldsymbol{p}}) = \boldsymbol{q}_0(\overline{\boldsymbol{p}}),$ $\boldsymbol{y}(t, \overline{\boldsymbol{p}}) = \boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{q}(t, \overline{\boldsymbol{p}}),$

with identical input-output behaviour as the initial one (1), then

$$egin{aligned} m{A}(\overline{m{p}}) &= \ m{B}(\overline{m{p}}) &= \ m{C}(\overline{m{p}}) &= \ m{C}(\overline{m{p}$$

for some invertible $n \times n$ matrix **T**.

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= TA(p)T^{-1}z(t) + TB(p)u(t), \quad z(0) = Tq_0(p),$ $y(t, p) = C(p)q(t, p) = C(p)T^{-1}z(t).$

has identical input-output behaviour.

Therefore, if $\overline{p} \in \Omega$ gives rise to a model: $\dot{q}(t, \overline{p}) = A(\overline{p})q(t, \overline{p}) + B(\overline{p})u(t), \quad q(0, \overline{p}) = q_0(\overline{p}),$ $y(t, \overline{p}) = C(\overline{p})q(t, \overline{p}),$

with identical input-output behaviour as the initial one (1), then

$$egin{aligned} m{A}(m{ar{p}}) &= m{T}m{A}(m{p})m{T}^{-1}, \ m{B}(m{ar{p}}) &= \ m{C}(m{ar{p}}) &= \end{aligned}$$

for some invertible $n \times n$ matrix **T**.

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= TA(p)T^{-1}z(t) + TB(p)u(t), \quad z(0) = Tq_0(p),$ $y(t, p) = C(p)q(t, p) = C(p)T^{-1}z(t).$

has identical input-output behaviour.

Therefore, if $\overline{p} \in \Omega$ gives rise to a model: $\dot{q}(t, \overline{p}) = A(\overline{p})q(t, \overline{p}) + B(\overline{p})u(t), \quad q(0, \overline{p}) = q_0(\overline{p}),$ $y(t, \overline{p}) = C(\overline{p})q(t, \overline{p}),$

with identical input-output behaviour as the initial one (1), then

$$egin{aligned} m{A}(m{ar{p}}) &= m{T}m{A}(m{p})m{T}^{-1}, \ m{B}(m{ar{p}}) &= m{T}m{B}(m{p}), \ m{C}(m{ar{p}}) &= \end{aligned}$$

for some invertible $n \times n$ matrix **T**.

Then there exists invertible $n \times n$ matrix T such that, if z = Tq: $\dot{z}(t) = T\dot{q}(t, p) = TA(p)q(t, p) + TB(p)u(t)$ $= TA(p)T^{-1}z(t) + TB(p)u(t), \quad z(0) = Tq_0(p),$ $y(t, p) = C(p)q(t, p) = C(p)T^{-1}z(t).$

has identical input-output behaviour.

Therefore, if $\overline{p} \in \Omega$ gives rise to a model: $\dot{q}(t, \overline{p}) = A(\overline{p})q(t, \overline{p}) + B(\overline{p})u(t), \quad q(0, \overline{p}) = q_0(\overline{p}),$ $y(t, \overline{p}) = C(\overline{p})q(t, \overline{p}),$

with identical input-output behaviour as the initial one (1), then

$$\begin{split} \boldsymbol{A}(\overline{\boldsymbol{p}}) &= \boldsymbol{T}\boldsymbol{A}(\boldsymbol{p})\boldsymbol{T}^{-1}, \\ \boldsymbol{B}(\overline{\boldsymbol{p}}) &= \boldsymbol{T}\boldsymbol{B}(\boldsymbol{p}), \\ \boldsymbol{C}(\overline{\boldsymbol{p}}) &= \boldsymbol{C}(\boldsymbol{p})\boldsymbol{T}^{-1}, \end{split}$$

for some invertible $n \times n$ matrix **T**.

Sometimes easier to deal with:

$$\boldsymbol{A}(\overline{\boldsymbol{\rho}})\boldsymbol{T} = \boldsymbol{T}\boldsymbol{A}(\boldsymbol{\rho}), \tag{2}$$

$$\boldsymbol{B}(\overline{\boldsymbol{\rho}}) = \boldsymbol{T}\boldsymbol{B}(\boldsymbol{\rho}), \tag{3}$$

$$C(\overline{\rho})T = C(\rho).$$
 (4)

- If only solution is $T = I_n$ then $\overline{p} = p$ and the system is SGI
- If *T* can take any of a finite set (with more than 1 element) of possibilities, then the system is SLI
- Otherwise, (*T* can take any of a infinite set of possibilities) then the system is unidentifiable

Example: Two-compartment model.

System equations:

$$\dot{\boldsymbol{q}}(t, \boldsymbol{p}) = \boldsymbol{A}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})u(t), \qquad \boldsymbol{q}(0, \boldsymbol{p}) = \boldsymbol{0}$$

 $\boldsymbol{y}(t, \boldsymbol{p}) = \boldsymbol{C}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p})$

where

$$oldsymbol{A}(oldsymbol{
ho})=$$
, $oldsymbol{B}(oldsymbol{
ho})=$, $oldsymbol{C}(oldsymbol{
ho})=$

Example: Two-compartment model.

System equations:

$$\dot{\boldsymbol{q}}(t, \boldsymbol{p}) = \boldsymbol{A}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})u(t), \qquad \boldsymbol{q}(0, \boldsymbol{p}) = \boldsymbol{0}$$

 $y(t, \boldsymbol{p}) = \boldsymbol{C}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p})$

where

$$m{A}(m{p}) = egin{pmatrix} -(a_{01}+a_{21}) & a_{12} \ a_{21} & -a_{12} \end{pmatrix}, \ m{B}(m{p}) = \ , \ m{C}(m{p}) = \ m{C}$$

Example: Two-compartment model.

System equations:

$$\dot{\boldsymbol{q}}(t, \boldsymbol{p}) = \boldsymbol{A}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p}) + \boldsymbol{B}(\boldsymbol{p})u(t), \qquad \boldsymbol{q}(0, \boldsymbol{p}) = \boldsymbol{0}$$

 $y(t, \boldsymbol{p}) = \boldsymbol{C}(\boldsymbol{p})\boldsymbol{q}(t, \boldsymbol{p})$

where

$$m{A}(m{p}) = egin{pmatrix} -(a_{01}+a_{21}) & a_{12} \ a_{21} & -a_{12} \end{pmatrix}, \ m{B}(m{p}) = egin{pmatrix} b_1 \ 0 \end{pmatrix}, \ m{C}(m{p}) =$$

Example: Two-compartment model.

System equations:

$$\dot{q}(t, p) = A(p)q(t, p) + B(p)u(t), \qquad q(0, p) = 0$$

 $y(t, p) = C(p)q(t, p)$

where

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -\begin{pmatrix} a_{01} + a_{21} \end{pmatrix} & a_{12} \\ a_{21} & -a_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} b_1 \\ 0 \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} c_1 & 0 \end{pmatrix}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ 0 \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & 0 \end{pmatrix}$$

Controllability:

$$\left[oldsymbol{B}(oldsymbol{
ho}) \, oldsymbol{A}(oldsymbol{
ho}) oldsymbol{B}(oldsymbol{
ho})
ight] = \left|
ight.$$

Observability:

$$egin{bmatrix} m{C}(m{p})\ m{C}(m{p})m{A}(m{p}) \end{bmatrix} = egin{bmatrix} m{O}\ m{O$$

Equation (3):

 $B(\overline{p}) = TB(p)$

and so
Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$oldsymbol{A}(oldsymbol{p}) = egin{pmatrix} -(a_{01}+a_{21}) & a_{12} \ a_{21} & -a_{12} \end{pmatrix}, \ oldsymbol{B}(oldsymbol{p}) = egin{pmatrix} b_1 \ 0 \end{pmatrix}, \ oldsymbol{C}(oldsymbol{p}) = egin{pmatrix} c_1 & 0 \ 0 \end{pmatrix}$$

Controllability:

$$egin{bmatrix} m{b}_1 \ m{m{p}} \ m{p} \$$

Observability:

$$egin{bmatrix} m{C}(m{p}) \ m{C}(m{p})m{A}(m{p}) \end{bmatrix} = egin{bmatrix} m{O} \ m$$

Equation (3):

 $B(\overline{p}) = TB(p)$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$oldsymbol{A}(oldsymbol{p}) = egin{pmatrix} -(a_{01}+a_{21}) & a_{12} \ a_{21} & -a_{12} \end{pmatrix}, \ oldsymbol{B}(oldsymbol{p}) = egin{pmatrix} b_1 \ 0 \end{pmatrix}, \ oldsymbol{C}(oldsymbol{p}) = egin{pmatrix} c_1 & 0 \ 0 \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$

Observability:

$$egin{bmatrix} m{C}(m{p}) \ m{C}(m{p})m{A}(m{p}) \end{bmatrix} =$$

Equation (3):

 $B(\overline{p}) = TB(p)$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{\rho}) \\ \boldsymbol{C}(\boldsymbol{\rho}) \boldsymbol{A}(\boldsymbol{\rho}) \end{bmatrix} = \begin{bmatrix} \end{array}$$

Equation (3):

 $B(\overline{p}) = TB(p)$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p}) \boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \end{bmatrix}$$

Equation (3):

 $B(\overline{p}) = TB(p)$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$

Equation (3):

 $B(\overline{p}) = TB(p)$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$
rank 2

Equation (3):

$$B(\overline{p}) = TB(p)$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$
rank 2

So model is minimal

Equation (3):

$$m{B}(\overline{m{p}}) = m{T}m{B}(m{p})$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$
rank 2

So model is minimal

Equation (3):

$$\boldsymbol{B}(\overline{\boldsymbol{\rho}}) = \begin{pmatrix} \overline{b}_1 \\ 0 \end{pmatrix} = \boldsymbol{T}\boldsymbol{B}(\boldsymbol{\rho}) = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} b_1 \\ 0 \end{pmatrix}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$
rank 2

So model is minimal

Equation (3):

$$\boldsymbol{B}(\overline{\boldsymbol{\rho}}) = \begin{pmatrix} \overline{b}_1 \\ 0 \end{pmatrix} = \boldsymbol{T} \boldsymbol{B}(\boldsymbol{\rho}) = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} b_1 \\ 0 \end{pmatrix} = \begin{pmatrix} t_{11}b_1 \\ t_{21}b_1 \end{pmatrix}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 (a_{01} + a_{21}) & c_1 a_{12} \end{bmatrix}$$
rank 2

So model is minimal

Equation (3):

$$\boldsymbol{B}(\overline{\boldsymbol{\rho}}) = \begin{pmatrix} \overline{b}_1 \\ 0 \end{pmatrix} = \boldsymbol{T} \boldsymbol{B}(\boldsymbol{\rho}) = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} b_1 \\ 0 \end{pmatrix} = \begin{pmatrix} t_{11} b_1 \\ t_{21} b_1 \end{pmatrix}$$

and so $t_{21} = 0$ and

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} -(\boldsymbol{a}_{01} + \boldsymbol{a}_{21}) & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & -\boldsymbol{a}_{12} \end{pmatrix}, \ \boldsymbol{B}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{b}_1 \\ \boldsymbol{0} \end{pmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{pmatrix} \boldsymbol{c}_1 & \boldsymbol{0} \end{pmatrix}$$

Controllability:

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{p}) \ \boldsymbol{A}(\boldsymbol{p}) \boldsymbol{B}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} b_1 & -b_1 \left(a_{01} + a_{21} \right) \\ 0 & b_1 a_{21} \end{bmatrix}$$
rank 2

Observability:

$$\begin{bmatrix} \boldsymbol{C}(\boldsymbol{p}) \\ \boldsymbol{C}(\boldsymbol{p})\boldsymbol{A}(\boldsymbol{p}) \end{bmatrix} = \begin{bmatrix} c_1 & 0 \\ -c_1 \left(a_{01} + a_{21} \right) & c_1 a_{12} \end{bmatrix}$$
rank 2

So model is minimal

Equation (3):

$$\boldsymbol{B}(\overline{\boldsymbol{\rho}}) = \begin{pmatrix} \overline{b}_1 \\ 0 \end{pmatrix} = \boldsymbol{T} \boldsymbol{B}(\boldsymbol{\rho}) = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} b_1 \\ 0 \end{pmatrix} = \begin{pmatrix} t_{11}b_1 \\ t_{21}b_1 \end{pmatrix}$$

and so $t_{21} = 0$ and $t_{11} = \overline{b}_1/b_1$

イロト イポト イヨト イヨト

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{c}_1 & 0 \end{pmatrix} \begin{pmatrix} \overline{b}_1/b_1 & t_{12} \\ 0 & t_{22} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so

Equation (2):

=

 $A(\overline{p})T =$

$$= TA(p) =$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1/b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so

Equation (2):

=

 $A(\overline{p})T =$

$$= TA(p) =$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

ヘロト 不得 とくほ とくほとう

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1\overline{c}_1/b_1 & \overline{c}_1t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and

Equation (2):

=

 $A(\overline{p})T =$

$$= TA(p) =$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01}+a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1/b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1 / b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and $\overline{b}_1 \overline{c}_1 = b_1 c_1$

Equation (2):

=

 $A(\overline{p})T =$

$$= TA(p) =$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト 不良 ト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1 / b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and $\overline{b}_1 \overline{c}_1 = b_1 c_1$

Equation (2):

=

$$\begin{split} \boldsymbol{A}(\boldsymbol{\overline{p}})\boldsymbol{T} &= \begin{pmatrix} -\left(\overline{a}_{01} + \overline{a}_{21}\right) & \overline{a}_{12} \\ \overline{a}_{21} & -\overline{a}_{12} \end{pmatrix} \begin{pmatrix} \overline{b}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \\ &= \boldsymbol{T}\boldsymbol{A}(\boldsymbol{p}) = \end{split}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト 不得 トイヨト 不良 ト

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1 / b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and $\overline{b}_1 \overline{c}_1 = b_1 c_1$

Equation (2):

=

$$\begin{aligned} \boldsymbol{A}(\overline{\boldsymbol{p}})\boldsymbol{T} &= \begin{pmatrix} -\left(\overline{a}_{01} + \overline{a}_{21}\right) & \overline{a}_{12} \\ \overline{a}_{21} & -\overline{a}_{12} \end{pmatrix} \begin{pmatrix} \overline{b}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \\ &= \boldsymbol{T}\boldsymbol{A}(\boldsymbol{p}) = \begin{pmatrix} \overline{b}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \begin{pmatrix} -\left(a_{01} + a_{21}\right) & a_{12} \\ a_{21} & -a_{12} \end{pmatrix} \end{aligned}$$

MJ Chappell

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1 / b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1 / b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and $\overline{b}_1 \overline{c}_1 = b_1 c_1$

Equation (2):

$$\begin{aligned} \mathbf{A}(\mathbf{\bar{p}})\mathbf{T} &= \begin{pmatrix} -(\mathbf{\bar{a}}_{01} + \mathbf{\bar{a}}_{21}) & \mathbf{\bar{a}}_{12} \\ \mathbf{\bar{a}}_{21} & -\mathbf{\bar{a}}_{12} \end{pmatrix} \begin{pmatrix} \mathbf{\bar{b}}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \\ &= \mathbf{T}\mathbf{A}(\mathbf{p}) = \begin{pmatrix} \mathbf{\bar{b}}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \begin{pmatrix} -(a_{01} + a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{pmatrix} \\ &= \begin{bmatrix} -\frac{\mathbf{\bar{b}}_1}{\mathbf{\bar{b}}_1} (\mathbf{\bar{a}}_{01} + \mathbf{\bar{a}}_{21}) & t_{22} \mathbf{\bar{a}}_{12} \\ \frac{\mathbf{\bar{b}}_1}{\mathbf{\bar{a}}} \mathbf{\bar{a}}_{21} & -\mathbf{\bar{a}}_{12} t_{22} \end{bmatrix} = \end{aligned}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

$$\boldsymbol{A}(\boldsymbol{p}) = \begin{bmatrix} -(a_{01}+a_{21}) & a_{12} \\ a_{21} & -a_{12} \end{bmatrix}, \ \boldsymbol{C}(\boldsymbol{p}) = \begin{bmatrix} c_1 \ 0 \end{bmatrix}, \ \boldsymbol{T} = \begin{bmatrix} \overline{b}_1/b_1 & t_{12} \\ 0 & t_{22} \end{bmatrix}$$

Equation (4):

$$\boldsymbol{C}(\overline{\boldsymbol{p}})\boldsymbol{T} = \begin{pmatrix} \overline{b}_1 \overline{c}_1 / b_1 & \overline{c}_1 t_{12} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \end{pmatrix} = \boldsymbol{C}(\boldsymbol{p})$$

and so $t_{12} = 0$ and $\overline{b}_1 \overline{c}_1 = b_1 c_1$

Equation (2):

$$\begin{aligned} \mathbf{A}(\mathbf{\bar{p}})\mathbf{T} &= \begin{pmatrix} -\left(\overline{a}_{01} + \overline{a}_{21}\right) & \overline{a}_{12} \\ \overline{a}_{21} & -\overline{a}_{12} \end{pmatrix} \begin{pmatrix} \overline{b}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \\ &= \mathbf{T}\mathbf{A}(\mathbf{p}) = \begin{pmatrix} \overline{b}_1/b_1 & 0 \\ 0 & t_{22} \end{pmatrix} \begin{pmatrix} -\left(a_{01} + a_{21}\right) & a_{12} \\ a_{21} & -a_{12} \end{pmatrix} \\ &= \begin{bmatrix} -\frac{\overline{b}_1}{b_1}\left(\overline{a}_{01} + \overline{a}_{21}\right) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_1}{b_1}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{bmatrix} = \begin{bmatrix} -\frac{\overline{b}_1}{b_1}\left(a_{01} + a_{21}\right) & \frac{\overline{b}_1}{b_1}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{bmatrix} \end{aligned}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\bar{b}_1}{b_1} (\bar{a}_{01} + \bar{a}_{21}) & t_{22}\bar{a}_{12} \\ \frac{\bar{b}_1}{b_1}\bar{a}_{21} & -\bar{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\bar{b}_1}{b_1} (a_{01} + a_{21}) & \frac{\bar{b}_1}{b_1} a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

so (1,2) component:

(2,1) component:

(1,1) component:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(\overline{a}_{01}+\overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(a_{01}+a_{21}) & \frac{\overline{b}_{1}}{b_{1}}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

(2,1) component:

(1,1) component:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(\overline{a}_{01}+\overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(a_{01}+a_{21}) & \frac{\overline{b}_{1}}{b_{1}}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

(1,1) component:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(\overline{a}_{01}+\overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(a_{01}+a_{21}) & \frac{\overline{b}_{1}}{b_{1}}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

$$a_{21} = a_{21}$$

(1,1) component:

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロン イロン イヨン イヨン

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}} (\overline{a}_{01} + \overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}} \overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}} (a_{01} + a_{21}) & \frac{\overline{b}_{1}}{b_{1}} a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

$$\overline{a}_{21} = a_{21}$$

(1,1) component:

$$\overline{a}_{01} = a_{01}$$

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}} (\overline{a}_{01} + \overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}} (a_{01} + a_{21}) & \frac{\overline{b}_{1}}{b_{1}} a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

$$\overline{a}_{21} = a_{21}$$

(1,1) component:

So:

• a_{01} , a_{12} and a_{21} all globally identifiable

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

< □ > < 同 > < 三 > <

-

$$\begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(\overline{a}_{01}+\overline{a}_{21}) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_{1}}{b_{1}}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_{1}}{b_{1}}(a_{01}+a_{21}) & \frac{\overline{b}_{1}}{b_{1}}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

$$\overline{a}_{21} = a_{21}$$

(1,1) component:

$$\overline{a}_{01} = a_{01}$$

- a_{01} , a_{12} and a_{21} all globally identifiable
- combination b_1c_1 globally identifiable

Laplace transform approach Taylor series approach Similarity transformation/exhaustive modelling approach

イロト イポト イヨト イヨト

$$\begin{pmatrix} -\frac{\overline{b}_1}{b_1} \left(\overline{a}_{01} + \overline{a}_{21}\right) & t_{22}\overline{a}_{12} \\ \frac{\overline{b}_1}{b_1}\overline{a}_{21} & -\overline{a}_{12}t_{22} \end{pmatrix} = \begin{pmatrix} -\frac{\overline{b}_1}{b_1} \left(a_{01} + a_{21}\right) & \frac{\overline{b}_1}{b_1}a_{12} \\ a_{21}t_{22} & -a_{12}t_{22} \end{pmatrix}$$

(2,2) component:

$$\overline{a}_{12} = a_{12}$$

so (1,2) component:

$$t_{22} = \overline{b}_1/b_1$$

(2,1) component:

$$\overline{a}_{21} = a_{21}$$

(1,1) component:

$$\overline{a}_{01} = a_{01}$$

- a_{01} , a_{12} and a_{21} all globally identifiable
- combination b_1c_1 globally identifiable
- individual b₁ and c₁ unidentifiable

Techniques for nonlinear models

イロン イロン イヨン イヨン

Techniques for nonlinear models:

- generally more difficult to apply
- can be less systematic
- do not always yield full information concerning identifiability
- must be careful about what inputs there are to the system Dealing with state space models of form:

$$\dot{\mathbf{x}}(t,\mathbf{p}) = \mathbf{f}(\mathbf{x}(t,\mathbf{p}),\mathbf{p},\mathbf{u}(t)), \quad \mathbf{x}(0,\mathbf{p}) = \mathbf{x}_0(\mathbf{p}), \mathbf{y}(t,\mathbf{p}) = \mathbf{h}(\mathbf{x}(t,\mathbf{p}),\mathbf{p}),$$
(5)

where

- $\boldsymbol{p} \in \Omega$ is an *r* dimensional (parameter) vector
- **x**(*t*, **p**) is an *n* dimensional (state) vector
- **u**(t) is an *m* dimensional (input) vector
- **y**(*t*, **p**) is an *l* dimensional (output) vector

Taylor series approach Observable normal form

Taylor series approach

イロン イロン イヨン イヨン

This approach for linear models also works for nonlinear ones:

$$y_i(t, \mathbf{p}) = y_i(0, \mathbf{p}) + \dot{y}_i(0, \mathbf{p})t + \ddot{y}_i(0, \mathbf{p})\frac{t^2}{2!} + \dots + y_i^{(k)}(0, \mathbf{p})\frac{t^k}{k!} + \dots$$

where $y_i^{(k)}(0, \mathbf{p}) = \frac{d^k y_i}{dt^k} | \qquad (k = 1, 2, \dots).$

Taylor series coefficients $y_i^{(k)}(0, \mathbf{p})$ unique for particular output Notice that we have a possibly infinite list of coefficients:

t=0

$$y_i(0, \boldsymbol{p}), \dot{y}_i(0, \boldsymbol{p}), \ddot{y}_i(0, \boldsymbol{p}), \dots$$
 $i = 1, \dots, I$

& upper bound on number of coefficients needed more difficult

If model is autonomous, single output (m = 1), upper bound is:

- Transfer coefficients all polynomial: n + r
- If any coefficient rational: n + r + 1

Quite difficult to use TSA to prove model is unidentifiable

Taylor series approach Observable normal form

Example: 1 compartment

Model equations: $\dot{x}_1 = -\frac{V_m x_1}{K_m + x_1}, \quad x_1(0) = b_1$ $y = c_1 x_1$ $y = c_1 x_1$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1$

Second coefficient: $\dot{y}(0, \mathbf{p}) = -\frac{c_1 V_m b_1}{K_m + b_1}$

Third coefficient:
$$y^{(2)}(t, \boldsymbol{p}) = \frac{d}{dt} \left(-\frac{c_1 V_m x_1}{K_m + x_1} \right)$$

ヘロト 人間 とくほとくほとう

э

Taylor series approach Observable normal form

Model equations:

Example: 1 compartment

$$\begin{array}{c} \begin{array}{c} & & & \\ \downarrow \\ y = c_1 x_1 \\ 0 \end{array} \end{array} \xrightarrow{V_m} \\ 1 \end{array} \xrightarrow{V_m} \\ \hline \\ \chi_m + x_1 \end{array} \qquad \begin{array}{c} \dot{x}_1 = -\frac{V_m x_1}{K_m + x_1}, \\ y = c_1 x_1 \end{array} \xrightarrow{V_1(0)} \\ b_1 \\ (0) = b_1 \end{array}$$

First coefficient: $y(0, \mathbf{p}) = b_1 c_1$

Second coefficient: $\dot{y}(0, \boldsymbol{p}) = -\frac{c_1 V_m b_1}{K_m + b_1}$

Third coefficient:
$$y^{(2)}(t, \boldsymbol{p}) = rac{\mathsf{d}}{\mathsf{d}t} \left(-rac{c_1 V_m x_1}{K_m + x_1} \right)$$

Use symbolic tools such as MATHEMATICA, MAPLE

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

First coefficient: $y(0, \mathbf{p}) =$ Second coefficient: $\dot{y}(0, \mathbf{p}) =$ Third coefficient: $y^{(2)}(t, \mathbf{p}) =$

ヘロト 人間 とくほとく ほとう

Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

$$\dot{q}_1 = -lpha q_1(eta - q_1), \qquad q_1(0) = 1$$

 $y = c_1 q_1$

First coefficient: $y(0, \mathbf{p}) =$ Second coefficient: $\dot{y}(0, \mathbf{p}) =$ Third coefficient: $y^{(2)}(t, \mathbf{p}) =$

ヘロト 人間 とくほとく ほとう

Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

$$\dot{q}_1 = -lpha q_1(eta - q_1), \qquad q_1(0) = 1$$

 $y = c_1 q_1$

First coefficient: $y(0, \mathbf{p}) = c_1$ Second coefficient: $\dot{y}(0, \mathbf{p}) =$ Third coefficient: $y^{(2)}(t, \mathbf{p}) =$

ヘロト 人間 とくほとく ほとう
Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

$$\dot{q}_1 = -lpha q_1(eta - q_1), \qquad q_1(0) = 1$$

 $y = c_1 q_1$

First coefficient: $y(0, \mathbf{p}) = c_1$ Second coefficient: $\dot{y}(0, \mathbf{p}) = -c_1 \alpha(\beta - 1)$ Third coefficient: $y^{(2)}(t, \mathbf{p}) =$

MJ Chappell

ヘロト 人間 とく ヨン 人 ヨン

Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

$$\dot{q}_1 = -\alpha q_1 (\beta - q_1), \qquad q_1(0) = 1$$

 $y = c_1 q_1$

First coefficient: $y(0, \mathbf{p}) = c_1$ Second coefficient: $\dot{y}(0, \mathbf{p}) = -c_1 \alpha (\beta - 1)$ Third coefficient: $y^{(2)}(t, \mathbf{p}) = -c_1 \alpha (\beta \dot{q}_1 - 2q_1 \dot{q}_1)$

ヘロト 人間 とくほとくほとう

Taylor series approach Observable normal form

Example: One compartment with Langmuir elimination:

Model equations:

$$\dot{q}_1 = -lpha q_1(eta - q_1), \qquad q_1(0) = 1$$

 $y = c_1 q_1$

First coefficient: $y(0, \mathbf{p}) = c_1$ Second coefficient: $\dot{y}(0, \mathbf{p}) = -c_1 \alpha (\beta - 1)$ Third coefficient: $y^{(2)}(t, \mathbf{p}) = -c_1 \alpha (\beta \dot{q}_1 - 2q_1 \dot{q}_1)$ $\implies y^{(2)}(0, \mathbf{p}) = c_1 \alpha^2 (\beta - 1) (\beta - 2)$

ヘロト 人間 とくほとう ほとう

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient:
- Second coefficient:
- Third coefficient:

くロン 人間と 人造と 人造とい

э

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient:
- Third coefficient:

MJ Chappell

イロト 不得 トイヨト イヨト

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient:

MJ Chappell

ヘロト 不得 とくほ とくほとう

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: $\alpha^2(\beta 1)(\beta 2)$ unique

イロト 不得 トイヨト イヨト

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: $\alpha (\beta 2)$ unique

くロン 人間と 人造と 人造とい

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: $\alpha (\beta 1) \alpha$ unique

ヘロト 人間 とくほとく ほとう

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: α unique (globally identifiable)

< ロ > < 同 > < 回 > < 回 > :

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: α unique (globally identifiable)
- And so β globally identifiable

イロト イボト イヨト イヨト

$$egin{aligned} y(0,m{p}) &= c_1 \ \dot{y}(0,m{p}) &= -c_1 lpha(eta-1) \ y^{(2)}(0,m{p}) &= c_1 lpha^2(eta-1)\,(eta-2) \end{aligned}$$

- First coefficient: c₁ unique (globally identifiable)
- Second coefficient: $\alpha(\beta 1)$ unique
- Third coefficient: α unique (globally identifiable)
- And so β globally identifiable
- All parameters globally identifiable so model is SGI

イロト イポト イヨト イヨト

Now for something a little more advanced ...

イロト イポト イヨト イヨト

Observable normal form approach

Single output, no (or single) input

For generic parameter vector **p**:

- Check an observability criterion
 - Define $\mu_1(\boldsymbol{x}, \boldsymbol{p}) = h(\boldsymbol{x}, \boldsymbol{p})$ and

$$\mu_{i+1}(\boldsymbol{x},\boldsymbol{p}) = \frac{\partial \mu_i}{\partial \boldsymbol{x}}(\boldsymbol{x},\boldsymbol{p})\boldsymbol{f}(\boldsymbol{x},\boldsymbol{p}) \qquad i = 1,\ldots,n-1$$

• Define
$$\boldsymbol{H}_{\boldsymbol{p}}(\boldsymbol{x}) = (\mu_1(\boldsymbol{x}, \boldsymbol{p}), \dots, \mu_n(\boldsymbol{x}, \boldsymbol{p}))^T$$

• Rank of $\frac{\partial \boldsymbol{H}_{\boldsymbol{p}}}{\partial \boldsymbol{x}}(\boldsymbol{x}_0(\boldsymbol{p}))$ is n

So *H_p*(·) diffeomorphism on neighbourhood of *x*₀(*p*)
 Hence is a coordinate transformation ...

イロト イポト イヨト イヨト

Taylor series approach Observable normal form

Previous approach

 Coordinate transformation between models that are indistinguishable via available output

•
$$H_{p}(\lambda(x)) = H_{\overline{p}}(x)$$

 $\hat{\Sigma}(x)$ id $\hat{\Sigma}(x)$

Determine $S(\mathbf{p})$ set of all parameters $\overline{\mathbf{p}}$ s.t.

イロト イボト イヨト イヨト

$$\begin{array}{c|c} \Sigma(\boldsymbol{p}) & \longleftarrow & \Sigma(\boldsymbol{p}) \\ \hline H_{\boldsymbol{p}} \\ \hline \\ H_{\boldsymbol{p}} \\ \hline \\ \Sigma(\boldsymbol{p}) & \longleftarrow & \Sigma(\overline{\boldsymbol{p}}) \\ \hline \\ & & \lambda \end{array} \begin{array}{c} \lambda(\boldsymbol{x}_{0}(\overline{\boldsymbol{p}})) = \boldsymbol{x}_{0}(\boldsymbol{p}) \\ f(\lambda(\boldsymbol{x}(t)), \boldsymbol{p}) = \frac{\partial \lambda}{\partial \boldsymbol{x}}(\boldsymbol{x}(t))f(\boldsymbol{x}(t), \overline{\boldsymbol{p}}) \\ \hline \\ & & h(\lambda(\boldsymbol{x}(t)), \boldsymbol{p}) = h(\boldsymbol{x}(t), \overline{\boldsymbol{p}}) \\ (\boldsymbol{x}(t) = \boldsymbol{x}(t, \overline{\boldsymbol{p}})) \end{array}$$

Taylor series approach Observable normal form

Observability normal form

System $\hat{\Sigma}$ is the observability normal form, $\boldsymbol{z} = \boldsymbol{H}_{\boldsymbol{p}}(\boldsymbol{x})$:

$$\dot{z}_{1} = z_{2}$$

$$\vdots$$

$$\dot{z}_{n-1} = z_{n}$$

$$\dot{z}_{n} = \mu_{n+1}(\boldsymbol{H}_{\boldsymbol{p}}^{-1}(\boldsymbol{z}), \boldsymbol{p})$$

$$y = z_{1}$$

Last equation gives input-output equation for system and so, for all $\overline{p} \in S(p)$, have

$$\mu_{n+1}(\boldsymbol{H}_{\boldsymbol{\rho}}^{-1}(\boldsymbol{z}(t)),\boldsymbol{\rho}) = \mu_{n+1}(\boldsymbol{H}_{\overline{\boldsymbol{\rho}}}^{-1}(\boldsymbol{z}(t)),\overline{\boldsymbol{\rho}}) \qquad \forall t \geq 0$$

・ロット (雪) (日) (日)

Taylor series approach Observable normal form

Using output equation

Now rewrite output equation in form:

$$\phi_0(\boldsymbol{z}(t), \dot{\boldsymbol{z}}_n(t)) + \sum_{i=1}^m \sigma_i(\boldsymbol{p})\phi_i(\boldsymbol{z}(t), \dot{\boldsymbol{z}}_n(t)) = 0$$

where $\phi_i(\mathbf{z}(t), \dot{\mathbf{z}}_n(t))$ are linearly independent

Then if $\overline{\textbf{\textit{p}}} \in \mathcal{S}(\textbf{\textit{p}})$

$$\sum_{i=1}^{m} \left(\sigma_i(\boldsymbol{p}) - \sigma_i(\overline{\boldsymbol{p}}) \right) \phi_i(\boldsymbol{z}(t), \dot{\boldsymbol{z}}_n(t)) = 0$$

and so

$$\sigma_i(\boldsymbol{p}) = \sigma_i(\overline{\boldsymbol{p}}) \qquad i = 1, \dots, m$$

ヘロト ヘ回ト ヘヨト ヘヨト

Taylor series approach Observable normal form

Consider two-compartment model:

$$\mu_1(\mathbf{x}, \mathbf{p}) = x_1$$

 $\mu_2(\mathbf{x}, \mathbf{p}) = -p_1 x_1 + p_2 x_2 - \frac{p_3 x_1}{p_4 + x_1}$

MJ Chappell

Example

イロト イポト イヨト イヨト

Example: Observability normal form

Observability condition met provided $p_2 \neq 0$ (ie, for all **p**) so can transform into:

$$\dot{z}_1(t, \mathbf{p}) = z_2(t, \mathbf{p})$$

$$\dot{z}_2(t, \mathbf{p}) = -(p_1 + p_2)z_2(t, \mathbf{p}) - \frac{p_2 p_3 z_1(t, \mathbf{p})}{p_4 + z_1(t, \mathbf{p})} - \frac{p_3 p_4 z_2(t, \mathbf{p})}{(p_4 + z_1(t, \mathbf{p}))^2}$$

where

$$z_1(0, \mathbf{p}) = D$$
 and $z_2(0, \mathbf{p}) = -p_2 D - \frac{p_3 D}{p_4 + D}$

くロン 人間と 人造と 人造とい

Taylor series approach Observable normal form

Example: Output equation

Output equation:

$$\begin{aligned} z_1^2 \dot{z}_2 + p_4^2 \dot{z}_2 + 2p_4 z_1 \dot{z}_2 + p_2 p_3 p_4 z_1 + p_2 p_3 z_1^2 \\ &+ \left(p_3 p_4 + p_4^2 (p_1 + p_2) \right) z_2 + 2p_4 (p_1 + p_2) z_1 z_2 \\ &+ (p_1 + p_2) z_1^2 z_2 = \phi_0(\boldsymbol{z}, \dot{\boldsymbol{z}}_n) + \sum_{i=1}^7 \sigma_i(\boldsymbol{p}) \phi_i(\boldsymbol{z}, \dot{\boldsymbol{z}}_n) = 0 \end{aligned}$$

Linear independence of terms guaranteed by checking the Wronskian, or can use constructive algebra methods (in MAPLE):

```
F := Vector([-p[1]*x[1]+p[2]*x[2]-p[3]*x[1]/(p[4]+x[1]),
p[1]*x[1]-p[2]*x[2]]);
H := x[1];
io := iorel(F,H)
```

Code modified from Evans et al *Automatica* **49**:48-57, 2013, which was based on PhD by Forsman (1991) *Constructive Commutative Algebra in Nonlinear Control Theory*

Taylor series approach Observable normal form

Example: Identifiability

$$\sigma_i(\boldsymbol{p}) = \sigma_i(\overline{\boldsymbol{p}}) \qquad i = 1, \dots, 7$$

for any $\overline{\boldsymbol{p}} \in \mathcal{S}(\boldsymbol{p})$.

 $\begin{aligned} \sigma_2(\boldsymbol{p}) &= p_4 & \implies \quad \overline{p}_4 = p_4 \\ \sigma_4(\boldsymbol{p}) &= p_2 p_3 & \implies \quad \overline{p}_2 \overline{p}_3 = p_2 p_3 \\ \sigma_7(\boldsymbol{p}) &= p_1 + p_2 & \implies \quad \overline{p}_1 + \overline{p}_2 = p_1 + p_2 \\ \sigma_5(\boldsymbol{p}) &= p_3 p_4 + p_4^2(p_1 + p_2) & \implies \quad \overline{p}_3 = p_3 \end{aligned}$

Solving these shows that $\overline{\boldsymbol{p}} = \boldsymbol{p}$, ie $\mathcal{S}(\boldsymbol{p}) = \{\boldsymbol{p}\}$

Therefore model is structurally globally identifiable

ヘロト ヘ帰 ト ヘヨト ヘヨト

Summary

- Structural identifiability is an important step in modelling process
 - Theoretical prerequisite to experiment design, system identification, and parameter estimation
 - Techniques involve generation, manipulation & solution of nonlinear algebraic equations
- Observability normal form highly appropriate for both analyses
 - Previously unsolved example (for identifiability) now solved!
 - Some computational difficulties remain
 - Generates input-output relations
- Structural indistinguishability similarly important
 - More general framework *but* exact
 - Generally pairwise comparison of schemes