Stress state affects phase

Two fabrication methods induce radical change in crystallography

Stress state affects phase

Form	Bulk		Powder	
Phase	R3c	P4mm	R3c	P4mm
Phase fraction	0.876	0.124	0.084	0.916
Moment per Fe ³⁺ / μ_B	3.234 ± 0.02	0	0	0
(c-a)/a (P4mm) / %		3.1		18.9
Primitive unit cell volume / 10 ⁻³⁰ Å ³	62.74	63.24	62.50	65.88

Phase transformation ???

Form	Bulk		Powder	
Phase	R3c	P4mm	R3c	P4mm
Primitive unit cell volume / 10 ⁻³⁰ Å ³			62.50	65.88

Direct Measurements – PEARL

Powder sample placed within tungsten carbide gaskets

- Max diameter 4.3 mm
- Metallic lead sphere used as pressure marker
- Deuterated methanol/ethanol used as pressure medium

Experimental set-up

Gasket assembly loaded into Paris Edinburgh Cell

Experimental set-up

Pressure cell loaded into shield assembly and craned into neutron beamline

Direct Measurements - Results

Effect of pressure **PEARL**

Evidence that transforming phase turns on magnetic ordering at ca. 0.4 GPa

- R3c magnetic with Fe mag. ca. 3 $\,\mu_{B}^{}$ above 0.4 GPa

Why is tet. phase not magnetic??

Why is tet. phase not magnetic??

It is – but not at room temperature

• Neutron diffraction measurements at 4 K

Magnetic and nuclear structures

Conclusions

Upcoming experiments

In-situ hydrostatic pressure experiments – PEARL, ISIS, UK Reversibility Wider d-space range – better magnetic refinement Finer steps in applied pressure

Effect of electric field on magnetic ordering – HMI, Berlin Apply electric field in situ with polycrystalline materials