Induced Multiferroic behaviour in single crystals of Manganites

Geetha Balakrishnan Department of Physics

THE UNIVERSITY OF WARVICK

NPL, June 2009

C.V. Tomy

Martin Lees

investing in **your** future

European Regional Development Fund European Union

www.advantagewm.co.uk

WARWICK Superconductivity and Magnetism Group

Multiferroics

RMnO₃ – Most extensively studied Multiferroic class

Large high quality crystals are available –have been investigated earlier in GMR/CMR context

RMn₂O₅- Also well studied, although large crystals are not as easily available- flux grown crystals

Frustrated Magnets- Key indicators of multiferroic behaviour

Frustrated Magnets-Multiferroics

magnetic insulators with modulated magnetic structures (e.g. spiral) as candidates of new multi-ferroics.

Frustrated Magnets - Multiferroics

Delafossite CuFeO₂

Kagome Staircase Compounds Ni₃V₂O₈, Co₃V₂O₈

Extensive investigations of the magnetic properties by Warwick Group

Magnetic Frustration - CuFeO₂

Cu⁺ \rightarrow nonmagnetic Fe³⁺ (⁶S state) \rightarrow S = 5/2 Space group *R3m*

- quasi 2D
- double frustration

Low-temperature heat capacity of $CuFeO_2$ single crystal. The inset shows the temperature dependence of the magnetic entropy.

Crystal structure of CuFeO₂

O.A. Petrenko, G.Balakrishnan et al PRB 62 8983-8988 (2000)

CuFeO₂- Multiferroic properties

Finite polarisation appears only in the non collinear incommensurate magnetic phase

T.Kimura et al PRB 73 220401 (2006)

S. Mitsuda et al., JPSJ 69, 3513 (2000)

KAGOME staircase compounds

 $Co_3V_2O_8$

 $M_3V_2O_8$

 $Ni_3V_2O_8$

G. Balakrishnan et al, J. Phys. Condensed Matter 16 L347-L350 (2004)

$Co_3V_2O_8$

Powder neutron diffraction pattern of $Co_3V_2O_8$ as a function of temperature. The data were recorded on the GEM diffractometer (time-of-flight, medium resolution) at the ISIS pulsed neutron source.

N.R. Wilson, O.A. Petrenko and L.C. Chapon, Physical Review B 75 094432 (2007) N.R. Wilson, O.A. Petrenko and G. Balakrishnan, Journal Of Physics-Condensed Matter 19 145257 (2007).

Ni₃V₂O₈ Kagome – Magnetically driven Ferroelectric order

G.Lawes et al PRL 95 087205 (2005)

Development of ferroelectric order is coincident with an incommensurate magnetic phase.

Since ferroelectricity occurs only in the phase for which magnetic ordering breaks inversion symmetry, one can reversibly switch the polarization on and off using an external magnetic field.

FIG. 3 (color). Promotion and suppression of electric polarization by applying magnetic fields in NVO. Temperature and magnetic-field dependence of electric polarization along the baxis for **H** along the a [frames (a) and (b)] and c [frames (c) and (d)] axes.

Large single crystals can be obtained- Floating Zone technique*

La, Nd based Manganites investigated in the past La_{1-x}Sr/Ca_xMnO₃, Nd_{1-x}Pb/Sr_xMnO₃

*Using Optical Mirror furnaces

THE UNIVERSITY OF WARWICK

 $La_{0.6}Sr_{0.4}MnO_{3}$

RMn₂O₅

Difficulty obtaining large crystals

Crystals mostly obtained by the Flux Method

TbMn₂O₅ crystals grown by the flux method (B₂O₃-PbO-PbF₂-PbO₂ flux)

THE UNIVERSITY OF WARWICK

TbMn₂O₅- Crystals

Phase Diagram of RMnO₃- R Ionic radii

- •Multiferroic properties seen in $RMnO_3$ compounds with intermediate $\mathbf{r}_{\mathbf{R}}$
- •Decreasing $\mathbf{r}_{\mathbf{R}}$ enhances the competition in the FM interactions between NN Mn sites and AFM between NNN sites.
- •In Gd,Tb and Dy, this competition results in long wavelength AFM ordermagnetoelastically induced lattice modulations

Kimura et al PRB 71 224425 (2005)

Phase Diagram of RMnO₃ Mn-O-Mn bond angle Φ

Decrease of Φ suppresses layer type (A-type) AF order of the Mn spins.

Sinusoidal/cycloidal AF order appears at intermediate Φ (as in Tb, Dy)

Smaller Φ results in a ziz-zag type (E-type) AF order as in Ho

Goto et al PRL 92 257201 (2004)

Structure - RMnO₃

SmMnO₃

Substitution of Y at the Sm site to vary Φ to bring it into the region in the phase diagram where cycloidal magnetic order is observed in TbMnO₃ and DyMnO₃

- $Sm_{1-x}Y_{x}MnO_{3}$, for x = 0 to 0.6
- •Preliminary investigations on polycrystalline samples
- •Single crystals produced
- •Phase pure for x = 0 to 0.5
- •Bond angle Φ for the doped samples determined through single crystal X-ray diffraction measurements.

Sm_{1-x}Y_xMnO₃- M vs T

Two anomalies seen in the magnetisation data of polycrystalline powder samples.

The anomaly at ~20K is seen for x between 0.4 and 0.5, similar to that seen in TbMnO₃

Sm_{1-x}Y_xMnO₃ Dielectric properties

The magnetisation data shows two anomalies:

(a) at ~60K due to the Mn spins, similar to that seen in SmMnO₃
(b) An additional one at ~20K

The anomaly in the dielectric property is seen at the same temperature at which the second anomaly in the magnetisation is seen.

Sm_{1-x}Y_xMnO₃ Dielectric properties

THE UNIVERSITY OF WARWICK

Sm_{1-x}Y_xMnO₃ Crystals

- •Large single crystals were grown by the floating zone technique
- •Two Mirror as well as Four Mirror furnaces were used
- •Structural information was obtained using an X-ray Single Crystal Diffractometer
- •Oriented crystal pieces used for Magnetisation, Specific Heat, Dielectric and Polarisation measurements
- •Multiferroic behaviour starts to appear for a substitution level of x > 0.3 and is optimum for $x \sim 0.4$ to 0.5
- •Not phase pure for x > 0.5

SmMnO₃ Crystal

Crystal grown by the Floating Zone method

X-ray Laue along 'a'

Sm_{0.6}Y_{0.4}MnO₃ Crystal- Magnetic Susceptibility

Sm_{0.6}Y_{0.4}MnO₃ Crystals-Magnetisation

Specific Heat - Sm_{0.6}Y_{0.4}MnO₃- Crystal

Sm_{0.6}Y_{0.4}MnO₃ Crystals-Dielectric Properties

 $Sm_{_{0.6}}Y_{_{0.4}}MnO_{_{3}}$ - E//a

Sm_{0.6}Y_{0.4}MnO₃ - E//b

Polarisation

Field Dependence of the Polarisation

Field Dependence of the Polarisation

Sm_{0.6}Y_{0.4}MnO₃ Crystals-Magnetisation

Nd_{1-x}Y_xMnO₃

No anomalies seen in the dielectric properties for the Y substituted samples.

Polycrystalline samples for $Nd_{1-x}Y_{x}MnO_{3}$, x=0 to 0.5

Future Work

•Detailed magnetic structure to be investigated using neutrons. ¹⁴⁹Sm highly absorbing for neutrons, isotopic (¹⁵⁴Sm) samples to be used

•Proposal submitted to study the magnetic ordering using neutron powder diffraction (GEM-ISIS) and X-rays (Xmas beamline at the ESRF)

•Structure-property correlations in manganites and other related materials- including frustrated magnets

http://go.warwick.ac.uk/supermag g.balakrishnan@warwick.ac.uk