Sleep and Health

F.P. Cappuccio

MB BS, MD, MSc, DSc, FRCP, FFPH, FBHS, FAHA

Cephalon Professor of Cardiovascular Medicine & Epidemiology

> University of Warwick, "Sleep Health & Society Programme" Warwick Medical School Coventry, UK

> > www2.warwick.ac.uk/qo/sleep

Visit to the University of Wageningen and RIVM, NL 26th October 2015

What is 'sleep'?

How do we know when to sleep?

The 'body clock' or circadian pacemaker is situated in suprachiasmatic nucleus (SCN) of hypothalamus

It controls the timing of most 24-h behavioral and physiological rhythms including the sleep-wake cycle, alertness and performance rhythms, hormone production, temperature regulation, and

metabolism.

'circadian' means 'about a day' from the Latin circa = about and dies = day

Publication trends in the field of sleep research (Medline search 1945-2008 for *sleep*)

Cappuccio FP, Miller MA, Lockley SW. Sleep, Health and Society, Oxford University Press, 2010

Sleep, Health & Society Programme[©]

© Cappuccio FP & Miller MA.

How much sleep do we need?

Figure 1. Distribution of reported sleep duration in British men and women. Data are expressed as percentage of total number of observation for men (n = 941) and women (n = 1056) separately. 0–1 refers to sleep durations lasting up to and including 59 min, 1–2 refers to durations lasting between 1 h and 1 h 59 min, etc.

Sleep duration and self-rated health problems

Focusing on sleep deprivation (short sleep)

© Cappuccio FP & Miller MA.

Short duration of sleep and prevalence of obesity

Children and Adolescents (age 2-20 years)

Adults (age 15-102 years)

First author	Year	Country	Short sleep if lean	Short sleep if obese	Odds Ratio
Vioque	2000	Spain			3.35 (2.22 to 5.06)
Shigeta	2001	Japan			1.97 (1.03 to 3.77)
Kripke	2002	USA			1.52 (1.46 to 1.58)
Cournot	2004	France		┼╼╁╴	1.38 (0.97 to 1.96)
Hasler	2004	Switzerland		\rightarrow	10.8 (0.99 to 118.1)
Bjorkelund	2005	Sweden	_		1.52 (0.68 to 3.40)
Gangwisch 1	2005	USA		∤∎	1.84 (1.40 to 2.42)
Gangwisch 2	2005	USA			1.38 (1.07 to 1.78)
Gangwisch 3	2005	USA	_	- ←	0.95 (0.67 to 1.35)
Singh	2005	USA		│ _}∎	1.70 (1.27 to 2.28)
Moreno	2006	Brazil		.	1.22 (1.06 to 1.40)
Vahtera	2006	Finland			1.43 (1.35 to 1.52)
Watari (men)	2006	Japan			1.95 (1.20 to 3.19)
Watari (women)	2006	Japan	-	$+$ \rightarrow	2.97 (0.77 to 11.50)
Bjortvan	2007	Norway		∔ •──	1.88 (1.22 to 2.89)
Chaput (men)	2007	Canada			4.01 (1.73 to 9.33)
Chaput (women)	2007	Canada			2.64 (1.25 to 5.56)
Ко	2007	Hong Kong		-	1.30 (1.13 to 1.49)
Tuomilehto	2007	Finland		│- æ ∤	1.30 (1.05 to 1.61)
Fogelholm (men)	2007	Finland			1.46 (1.13 to 1.89)
Fogelholm (women)	2007	Finland			1.75 (1.36 to 2.26)
Stranges	2008	UK			2.01 (1.56 to 2.60)
Combined effect: p<	0.0001			6	1.55 (1.43 to 1.68)
Heterogeneity: Q=64. Begg's test: p=0.09	0, p<0.001	0.	.1 Odds Rat	1 10 tio (log scale)	

Is prolonged lack of sleep associated with obesity?

Bi-directional model of the sleep deprivation-obesity association¹

¹ Cappuccio FP & Miller MA. Br Med J 2011; 342: d3306

² Cappuccio FP et al. Sleep 2008; 31: 619-26

Effect of sleep duration on leptin and ghrelin levels

a) Mean (seM) leptin and serum plasma ghrelin levels in healthy individuals after 2 days with 4 h or 10 h sleep periods

b) Mean (seM) 24 h serum leptin profiles after 6 days of 4 h, 8 h and 12 h in bed in nine healthy, lean men, studied at bed rest who ate three identical carbohydrate-rich meals. At the end of these study periods, the participants slept an average of 3 h 48 min in the 4 h in bed group, 6 h 52 min in the 8 h in bed group, and 8 h 52 min in the 12 h in bed group.
All characteristics of the 24 h leptin profile increased from the 4 h to the 12 h bedtime condition. The bars represent sleep periods

IV GTT in healthy individuals when fully rested and after sleep manipulations

- a) results when fully rested and after 5 nights of 4 h in bed
- b) results during baseline sleep and after 3 nights of suppression of slow-wave sleep

Spiegel K et al. Nat Rev Endocrinol 2009;5:253-61

Prolonged sleep restriction with circadian disruption impairs glucose metabolism

- >5wks optimal sleep
- 3 weeks of sleep restriction (5.6h per 24h) +
- Circadian disruption (recurrent '28h' days)
- 9 days recovery
- Prolonged sleep restriction with concurrent circadian disruption decreased resting metabolic rate and increased post-prandial plasma glucose (from inadequate insulin secretion)

Annals of Internal Medicine

A New Challenge to Widely Held Views on the Role of Sleep

- RCT cross-over in 7 young adults
- 4 days of 4.5h or 8.5h in bed
- Adipocytes from subcutaneous fat on both periods
- In-vitro ability of insulin to increased levels of pAkt assessed (measure of cellular insulin sensitivity)
- Total body insulin sensitivity assessed by IVGTT
- During sleep restriction, both cellular and total body insulin sensitivity decreased by ~30%

Editorial

Sleep restriction and gene expression

- 26 participants
- 1 wk sleep restriction (5.7h per 24h)
- 1 wk control (8.5h per 24h)
- Whole-blood RNA at the end of each period
- Control for light, activity, food
- Transcriptome analysis revealed that 711 genes were up- or downregulated during sleep restriction
- Genes affected associated with circadian rhythms, sleep haemostasis, oxidative stress and metabolism.

Short sleep and metabolic consequences?

Rationale

- In <u>short-term</u>, <u>acute</u>, laboratory and cross-sectional observational studies disturbed or reduced sleep is associated with glucose intolerance, insulin resistance, reduced acute insulin response to glucose and a reduction in the disposition index, thus predisposing to type 2 diabetes.
- The causality of the association, the generalizability of the results and their extrapolation to <u>longer-term</u> effects of <u>sustained</u> sleep disturbances are studied in prospective population studies to establish a temporal sequence between exposure and outcome

Short duration of sleep and incidence of type-2 diabetes

Exposure:

Short sleep duration

Difficulty in initiating sleep

Difficulty in maintaining sleep

Author	Year	Country			Referenc	е	Shor
Ayas	2003	USA					
Biorkelund	2005	Sweden					
Mallon (men)	2005	Sweden					╞┼──■─
Mallon (women)	2005	Sweden					
Yaggi	2006	USA				_	
Gangwisch	2007	USA					
Hayashino	2007	Japan				-	
Beihl (white)	2009	USA					
Beihl (black)	2009	USA				-	
Combined effect: p=	0.024						\diamond
Heterogeneity: I ² =58% Publication bias: Egge	o, p=0.015 r's test p=0	D.14		0.1	Rel	ative Ris	l 1 k (log scale)
Author	Year	Country			None		D.I.S.
						_	
Nilsson	2004	Sweden					
Kawakami	2004	Japan					
Mallon (men)	2005	Sweden					_
Meisinger (men)	2005	Germany					
Meisinger (women)	2005	Germany					
Hayashino	2007	Japan				-	
Combined effect: p<0	0.0001						\sim
Heterogeneity: I ² =0%, Publication bias: Egge	p=0.50 r's test p=0).37	0.1		Relati	1 ve Risk (log scale)
Author	Vear	Country			Nono		DMS
Addior	Tear	country			None		D.IVI.3.
Kawakami	2004	Japan					
Mallon (men)	2005	Sweden					
Mallon (women)	2005	Sweden					
Meisinger (men)	2005	Germany					
Meisinger (women)	2005	Germany					
Hayashino	2007	Japan				-	
Combined effect: p<0	0.0001						\diamond
Heterogeneity: I2=22%	, p=0.27					1	
Publication bias: Egger	r's test p=0	.15	U. I		Relat	ı tive Risk	(log scale)
							/

Sleep duration and Hypertension

Sleep (h/d)	Men	Women						
	The Western New York Health Study ¹ (cross-sectional)							
	n=1,317	n=1,710						
<6	0.93 (0.62 – 1.41)	1.66 (1.09 - 2.53)						
6-8	1.0	1.0						
>8	1.39	0.69						
	Whitehall II Study ² (prospective; f-up 5 yrs)							
	n=2,686	n=1,005						
<u><</u> 5	0.96 (0.62 – 1.48)	1.94 (1.08 – 3.50)						
6	1.07 (0.86 – 1.34)	1.56 (1.07 – 2.27)						
7	1.0	1.0						
8	1.07 (0.80 – 1.42)	1.17 (0.74 – 1.86)						
9+	0.36 (0.11 – 1.19)	0.92 (0.26 – 3.27)						

¹ Stranges S et al. J Hypertens 2010;28:896-902

² Cappuccio FP et al. Hypertension 2007:50:694-701

Prospective association between sleep-disordered breathing and hypertension

(The Sleep Heart Health Study)

TABLE 2. AD	JUSTED ODDS RAT	IOS* OF INCIDEN	IT
HYPERTENSI	ON AT FOLLOW-UP	IN RELATION T	O BASELINE
APNEA-HYPC	OPNEA INDEX AMO	NG 2,470 SLEEP	HEART HEALTH
STUDY SUBJ	ECTS WITHOUT HY	PERTENSION AT	BASELINE

Baseline AHI	n	Model 1 [†]	Model 2 [‡]	Model 3§
0-4.9	1,511	_	_	
5-14.9	629	1.13 (0.90–1.43)	0.92 (0.72-1.17)	0.94 (0.73–1.22)
15-29.9	234	1.54 (1.12-2.11)	1.12 (0.80-1.56)	1.09 (0.77–1.54)
≥30	97	2.19 (1.39–3.44)	1.51 (0.93–2.47)	1.50 (0.91-2.46)

O'Connor GT et al. AJRCCM 2009; 179: 1159-64

Association between sleep and change in blood pressure in mid life: The CARDIA Sleep Study

Knutson KL et al. Arch Intern Med 2009; 169: 1055-61

Decreased Slow Wave Sleep increases the risk of hypertension in elderly men

Fung MM et al. Hypertension 2012; 169: 1055-61

Inflammation and Sleep

- Inflammatory markers are elevated in individuals undergoing short term sleep deprivation studies.
- Short sleep may lead to increased secretion of inflammatory cytokines, which in turn may lead to an increase in cardiovascular risk

Cross sectional relationship between hs-CRP and duration of sleep (hours) in women

	Coef. (95% CI)	Coef. (95% CI)	reference	Coef. (95% CI)	Coef. (95% CI)	p-value ⁺
	<=5 (n=56)	6 (n=269)	7 (n=578)	8 (n=303)	9+ (n=43)	
	1.55*	1.03		1.01	1.45*	
Model 1	(1.09, 2.21)	(0.87, 1.23)	1	(0.85, 1.19)	(1.01, 2.07)	0.004
	1.49*	0.95		0.93	1.27	
Model 2	(1.07, 2.09)	(0.81, 1.12)	1	(0.79, 1.09)	(0.91, 1.77)	0.03
	1.38	0.94		1.00	1.43*	
Model 3	(1.00, 1.92)	(0.80, 1.10)	1	(0.86, 1.17)	(1.03, 1.97)	0.02
	1.42*	0.95		1.00	1.35	
Model 4	(1.02, 1.96)	(0.82, 1.11)	1	(0.86, 1.16)	(0.99, 1.85)	0.04

Geometric mean ratio by category of sleep duration (<=5, 6, 7, 8, 9+) with 7hrs sleep as the reference. * P-values at 0.05 significance level for contrast between sleep categories and the reference (7 hours).†P-values for test of nonlinear trends

Model 1: adjusted for age and marital status; Model 2: Model 1 + BMI; Model 3: Model 2 + smoking; Model 4: Model 3 + Systolic blood pressure and Trigs

Incidence of Coronary Calcifications by sleep duration

Short sleep and incidence of C.H.D.

Short sleep and incidence of stroke

			Events	Participants		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Amagai 2004 (men)	0.2624	1.0088	34	4419	0.1%	1.30 [0.18, 9.39]	
Amagai 2004 (women)	1.16	0.6022	29	6906	0.4%	3.19 [0.98, 10.38]	
Chen 2008	0.131	0.0824	1166	93175	21.4%	1.14 [0.97, 1.34]	-
Hamazaki 2011 (men)	0.6098	1.061	30	2282	0.1%	1.84 [0.23, 14.72]	
lkehara 2009 (men)	0.4383	0.3311	1038	41489	1.3%	1.55 [0.81, 2.97]	
lkehara 2009 (women)	0.0677	0.2952	926	57145	1.7%	1.07 [0.60, 1.91]	
Kakizaki 2013	0.0488	0.1139	1165	49256	11.2%	1.05 [0.84, 1.31]	+-
Kim 2013 (men)	0.0198	0.1637	627	61936	5.4%	1.02 [0.74, 1.41]	
Kim 2013 (women)	0.1484	0.1409	632	73749	7.3%	1.16 [0.88, 1.53]	+
Kronholm 2011 (men)	0.0677	0.1679	1057	11373	5.2%	1.07 [0.77, 1.49]	
Kronholm 2011 (women)	0.1398	0.1424	1125	11917	7.2%	1.15 [0.87, 1.52]	+
Leng 2014 (men)	0.077	0.186	198	4444	4.2%	1.08 [0.75, 1.56]	_ +
Leng 2014 (women)	0.2231	0.1968	148	5248	3.8%	1.25 [0.85, 1.84]	+
Pan 2014 (men)	0.1222	0.1393	693	27954	7.5%	1.13 [0.86, 1.48]	+
Pan 2014 (women)	0.3148	0.1214	688	35303	9.9%	1.37 [1.08, 1.74]	
Qureshi 1997	0	0.1893	285	7844	4.1%	1.00 [0.69, 1.45]	
von Ruesten 2012	0.7227	0.2843	169	23620	1.8%	2.06 [1.18, 3.60]	
Westerlund 2013	0.0488	0.1387	1685	41192	7.6%	1.05 [0.80, 1.38]	+-
Total (95% CI)			11695	559252	100.0%	1.15 [1.07, 1.24]	•
Heterogeneity: Tau ² = 0.00;	Chi ² = 12.90, df =	17 (P = 0	0.74); l² =	= 0%			
Test for overall effect: Z = 3.	68 (P = 0.0002)						Reduced risk Increased risk

Cappuccio FP et al. Eur Heart J 2011; 32: 1484-92 updated in: Leng Y et al. Neurology 2015; 84: 1072-9

Cognitive function with age

Policy concerns:

MCI increasing with aging population

Factors delaying MCI and dementia by and large unknown

Is sleep important for cognitive wellbeing?

English Longitudinal Study of Aging (ELSA)

Cognitive function by sleep duration adjusted by sleep quality in younger and older people

Amnestic T-scores (memory)

Non-amnestic T-scores (non-memory)

Short duration of sleep and all-cause mortality

First author	Year	Sample size	Deaths	Short Sleep v Reference	REFERENCE	SHORT SLEEP	Relative Risk (95% Cl)
Tsubono	1993	4,318	207	<u><</u> 6 v 7-8h			1.26 (0.80 to 1.98)
Ruigomez (men)	1995	395	224	<7 x 7 9h			1.06 (0.61 to 1.84)
Ruigomez (women)	1995	594	224	v /-911</td <td></td> <td></td> <td>0.66 (0.37 to 1.16)</td>			0.66 (0.37 to 1.16)
Gale	1998	1,299	1,158	<u><</u> 7 v 9h			1.00 (0.54 to 1.84)
Kojima (men)	2000	2,438	147]	~7 · · 7 8 0h			1.93 (1.12 to 3.35)
Kojima (women)	2000	2,884	109 🤳	<7 v 7-8:911			0.90 (0.50 to 1.61)
Heslop (men)	2002	6,022	ך 2,303				1.00 (0.89 to 1.12)
Heslop (women)	2002	1,006	262 ∫	<7 v 7-8h			0.98 (0.70 to 1.37)
Kripke (men)	2002	480,841	45,200	5 y 7b			1.11 (1.04 to 1.17)
Kripke (women)	2002	636,095	32,440 ∫	5 0 711			1.07 (1.01 to 1.14)
Mallon (men)	2002	906	165	2C 7 h			1.11 (0.32 to 3.80)
Mallon (women)	2002	964	101 [∫]	<6 v /fi			1.00 (0.58 to 1.73)
Amagai (men)	2004	4,419	289]_	<6 v 7-7.9h			2.41 (1.34 to 4.34)
Amagai (women)	2004	6,906	206				0.70 (0.21 to 2.35)
Patel	2004	82,969	5,409	<u><</u> 5 v 7h		#	1.08 (0.96 to 1.22)
Ferrie	2007	9,871	566	<u><</u> 5 v 7h		┼╂■──	1.25 (0.93 to 1.67)
Hublin (men)	2007	9,529	1,850]	.7 . 7 01			1.26 (1.12 to 1.42)
Hublin (women)	2007	10,265	1,850 _	<7 v 7-8n			1.21 (1.05 to 1.39)
Lan (men)	2007	1,748	816 <u>]</u>	<7 v 7-7 9h		- #]-	0.98 (0.76 to 1.26)
Lan (women)	2007	1,331	522 J	() () /			1.14 (0.77 to 1.69)
Gangwisch (32-59)	2008	5,806	273]		•		0.67 (0.43 to 1.05)
Gangwisch (60-86)	2008	3,983	1,604	<u><</u> 3 v 711		I I IIII IIII IIII IIII IIII IIII III	1.27 (1.07 to 1.52)
Ikehara (men)	2009	41,489	8,548				1.28 (1.01 to 1.62)
Ikehara (women)	2009	57,145	5,992 🖯	<u><</u> 4 v 7h		↓ ∎_	1.28 (1.04 to 1.59)
Stone	2009	8,101	1,922	<6 v 6-8h		-++	1.02 (0.87 to 1.19)
Combined effect: P<0	.01	1,381,324	112,163			\$	1.12 (1.06 to 1.18)
Heterogeneity: I ² =39%	%; Q=39.4, p=0	0.02			0.1	1	10
Publication blas: Egge	er sitest: p=0.	/4			Relative Ri	isk (log scale)	

<u>All-Cause mortality</u> from Phase 3 by the change in sleep between Phase 1 and Phase 3

<u>CVD mortality</u> from Phase 3 by the change in sleep between Phase 1 and Phase 3

Summary

The association between short duration of sleep and cardiometabolic risk factors and outcomes may reflect causality as

- > The effect is <u>strong</u>: large relative risk
- It is <u>consistent</u>: confirmed in different populations for several end-points
- It shows a <u>temporal sequence</u>: short sleep preceding endpoints
- Dose response: it consistently shows a threshold effect
- <u>Biological plausibility</u>: there are several potential mechanisms involved

Conclusions

Short sleep duration

- > associated with increased risk of obesity both in adults and in children.
- prospective studies confirm a temporal sequence in infants, children and adolescents
- quantity and quality of sleep are significant predictors of type 2 diabetes
- it predicts hypertension, coronary heart disease, stroke and CVD
- > affects all-cause mortality via increases in cardiovascular deaths

Plausible mechanisms exist to explain the associations (metabolic, biochemical, cellular, genetic)

Unresolved issues

- Cause, consequence or symptom?
 - Residual confounding? Reverse causality?
 - Evidence from cross-sectional and case-control designs inappropriate
- Short vs long term effects?
- Life-time trajectories?
- Time in bed vs time asleep vs naps?
- Self-report vs direct sleep assessment?
- Sleep vs phase of sleep?
- Age- and Gender-effects?
- Genetic determinants?
- Reversibility of effect?
- More research
 - (i) to understand the mechanisms by which sleep disturbances are linked to chronic conditions of affluent societies
 - (ii) to establish the reversibility of its effects

Acknowledgments

We thank the following organizations for supporting the different aspects of the Sleep Health & Society Programme[©].

SLEEP, HEALTH & SOCIETY®

University of Warwick sleepresearch@warwick.ac.uk http://www2.warwick.ac.uk/go/sleep/

Leads: Warwick Team:

Students

R.C.P. U.C.L. Cambridge Harvard Medical School Boston University Monash Naples (Federico II) Avellino (CNR) Buffalo (SUNY)

FP Cappuccio & MA Miller E Peile, C Ji, S Stranges, N-B Kandala, FM Taggart, G Ward, A Bakewell, H Wright, S Williams, ST Lereya, N Tang, D Wolke H Boulton, A Currie, A Lowe, D Cooper, M Ahuja, J Hough, A O'Keeffe, G Smith, S Vanlint, J Wallace **R** Pounder MG Marmot, E Brunner, M Kumari, M Shipley, JE Ferrie, M Kivimaki Y Leng, C Brayne, K-T Khaw SW Lockley, CP Landrigan, JP Sullivan P McNamara, S Auerbach SW Rajaratnam P Strazzullo, L D'Elia G Barba⁺ J Dorn, R Donhaue, M Trevisan Cephalon Inc., Wingate Foundation, Whitehall II, URSS and RDF University of Warwick, NHS Workforce, Economic & Social Research Council