Sleep and Health

F.P. Cappuccio

MB BS, MD, MSc, DSc, FRCP, FFPH, FBHS, FAHA

Cephalon Professor of Cardiovascular Medicine \& Epidemiology

University of Warwick, "Sleep Health \& Society Programme" Warwick Medical School

Coventry, UK
www2.warwick.ac.uk/go/sleep

What is 'sleep'?

Thánatos (Death) and Hypnos (Sleep) as twin brothers, the sons of Nyx (Night) and Erebos (Darkness).

Hesiod, Theogony (c. 800 BC)

NIGHT-TIME AND SLEEP IN ASIA AND THE WEST
Exploring the dark side of ifie
Edited by Brigite Steger and Lodewik Brunt

SLEEP AND SOCIETY

Sleep, Health, and Society FROM AETIOLOGY TO PUBLIC HEALTH

Sleep represents the idea of death, making the struggle to remain conscious and the struggle to remain alive the same.

Homer, Odyssey (c.700BC)

Sleep (Somnus) as a kinsman to death Aeneid, Virgil (70-19BC)

Sleep that knits up the ravel's sleeve of care, The death of each day's life, sore labour's bath, Balm of hurt minds, great nature's second course, Chief nourisher in life's feast.

W Shakespeare, Macbeth, Act 2 Scene 2

How do we know when to sleep?

The 'body clock' or circadian pacemaker is situated in suprachiasmatic nucleus (SCN) of hypothalamus
It controls the timing of most 24-h behavioral and physiological rhythms including the sleep-wake cycle, alertness and performance rhythms, hormone production, temperature regulation, and metabolism.

Publication trends in the field of sleep research (Medline search 1945-2008 for *sleep*)

Sleep, Health \& Society Programme ${ }^{\circledR}$

Social \& Cultural determinants

e.g. age, gender, ethnicity, SES, medicalization, politics, media, industry

Public Health \& Policy

Occupational: e.g. shift work, EWTD Junior doctors
Environment: physical \& social Economics: e.g. cost-effectiveness, productivity

Pregnancy

e.g. Maternal and Foetal Outcomes

Research-Led Teaching e.g. SSM Sleep Medicine, PGRs

Sleep and Health in History

e.g. norms by time, culture, geography, religion, beliefs etc

Life Sciences

e.g. biomarkers, trajectories

Mental Health

e.g. Depression, Schizophrenia, Pain, Cognition,

Chronic Disease
e.g. CVD, CHD, Stroke, Diabetes, Obesity, Hypertension, High lipids

[^0]
How much sleep do we need?

Figure 1. Distribution of reported sleep duration in British men and women. Data are expressed as percentage of total number of observation for men $(n=941)$ and women ($n=1056$) separately. $0-1$ refers to sleep durations lasting up to and including 59 min , $1-2$ refers to durations lasting between 1 h and 1 h 59 min , etc.

Sleep duration (h)

Sleep duration and self-rated health problems

hours

Focusing on sleep deprivation (short sleep)

[^1]
Short duration of sleep and prevalence of obesity

Children and Adolescents
(age 2-20 years)

First author	Year	Country	Short sleep if lean	Short sleep if obese
Locard	1992	France		
BenSlama	2002	Tunisia		$>$
Sekine	2002	Japan		
Von Kries	2002	Germany		
Agras	2004	USA		
Giugliano	2004	Brazil		\rightarrow
Padez	2005	Portugal		
Reilly	2005	UK		
Chaput	2006	Canada		-
Chen	2006	Taiwan		
Seicean	2007	USA		
Combined effect: $\mathrm{p}<0.0001$				
Heterogeneity Begg's test:	$6 ; p<0.001$		0.1 Odds Ratio	(log scale) 10

		ą	Adult e 15-102	(ears)	
First author	Year	Country	Short sleep if lean	Short sleep if obese	Codds Ratio
Vioque	2000	Spain		-	3.35 (2.22 to 5.06)
Shigeta	2001	Japan			1.97 (1.03 to 3.77)
Kripke	2002	USA			1.52 (1.46 to 1.58)
Cournot	2004	France			1.38 (0.97 to 1.96)
Hasler	2004	Switzerland		$>$	10.8 (0.99 to 118.1)
Bjorkelund	2005	Sweden			1.52 (0.68 to 3.40)
Gangwisch 1	2005	USA		-	1.84 (1.40 to 2.42)
Gangwisch2	2005	USA			1.38 (1.07 to 1.78)
Gangwisch 3	2005	USA			0.95 (0.67 to 1.35)
Singh	2005	USA		-	1.70 (1.27 to 2.28)
Moreno	2006	Brazil			1.22 (1.06 to 1.40)
Vahtera	2006	Finland			1.43 (1.35 to 1.52)
Watari (men)	2006	Japan		.	1.95 (1.20 to 3.19)
Watari (women)	2006	Japan		\rightarrow	2.97 (0.77 to 11.50)
Bjortvan	2007	Norway		\bigcirc	1.88 (1.22 to 2.89)
Chaput (men)	2007	Canada			4.01 (1.73 to 9.33)
Chaput (women)	2007	Canada		- .	2.64 (1.25 to 5.56)
Ko	2007	Hong Kong		-	1.30 (1.13 to 1.49)
Tuomilehto	2007	Finland			1.30 (1.05 to 1.61)
Fogelholm (men)	2007	Finland		-	1.46 (1.13 to 1.89)
Fogelholm (women)	2007	Finland		-	1.75 (1.36 to 2.26)
Stranges	2008	UK		6	2.01 (1.56 to 2.60)
Combined effect: $p<0.0001$					1.55 (1.43 to 1.68)
Heterogeneity: $\mathrm{Q}=64.0, \mathrm{p}<0.001$ Begg's test: $p=0.09$		0.1 Odds R		(og scale) 10	

Is prolonged lack of sleep associated with obesity?

Bi-directional model of the sleep deprivation-obesity association ${ }^{1}$

[^2]${ }^{2}$ Cappuccio FP et al. Sleep 2008; 31: 619-26

Effect of sleep duration on leptin and ghrelin levels

a) Mean (seM) leptin and serum plasma ghrelin levels in healthy individuals after 2 days with 4 h or 10 h sleep periods
b) Mean (seM) 24 h serum leptin profiles after 6 days of $4 \mathrm{~h}, 8 \mathrm{~h}$ and 12 h in bed in nine healthy, lean men, studied at bed rest who ate three identical carbohydrate-rich meals. At the end of these study periods, the participants slept an average of 3 h 48 min in the 4 h in bed group, 6 h 52 min in the 8 h in bed group, and 8 h 52 min in the 12 h in bed group.
All characteristics of the 24 h leptin profile increased from the 4 h to the 12 h bedtime condition. The bars represent sleep periods

IV GTT in healthy individuals when fully rested and after sleep manipulations

a) results when fully rested and after 5 nights of 4 h in bed
b) results during baseline sleep and after 3 nights of suppression of slow-wave sleep

Prolonged sleep restriction with circadian disruption impairs glucose metabolism

- >5wks optimal sleep
- 3 weeks of sleep restriction (5.6h per 24h) +
- Circadian disruption (recurrent '28h' days)
- 9 days recovery
- Prolonged sleep restriction with concurrent circadian disruption decreased resting metabolic rate and increased post-prandial plasma glucose (from inadequate insulin secretion)

Annals of Internal Medicine

A New Challenge to Widely Held Views on the Role of Sleep

- RCT cross-over in 7 young adults
- 4 days of 4.5 h or 8.5 h in bed
- Adipocytes from subcutaneous fat on both periods
- In-vitro ability of insulin to increased levels of pAkt assessed (measure of cellular insulin sensitivity)
- Total body insulin sensitivity assessed by IVGTT
- During sleep restriction, both cellular and total body insulin sensitivity decreased by ~30\%

Insulin Signaling Pathway for Glucose Transport Chain

Sleep restriction and gene expression

- 26 participants
- 1 wk sleep restriction (5.7h per 24h)
- 1 wk control (8.5 h per 24 h)
- Whole-blood RNA at the end of each period
- Control for light, activity, food
- Transcriptome analysis revealed that 711 genes were up- or downregulated during sleep restriction
- Genes affected associated with circadian rhythms, sleep haemostasis, oxidative stress and metabolism.

[^3]
Short sleep and metabolic consequences?

Rationale

* In short-term, acute, laboratory and cross-sectional observational studies disturbed or reduced sleep is associated with glucose intolerance, insulin resistance, reduced acute insulin response to glucose and a reduction in the disposition index, thus predisposing to type 2 diabetes.
* The causality of the association, the generalizability of the results and their extrapolation to longer-term effects of sustained sleep disturbances are studied in prospective population studies to establish a temporal sequence between exposure and outcome

Short duration of sleep and incidence of type-2 diabetes

Sleep duration and Hypertension

Sleep (h/d)	Men	Women
	The Western New York Health Study ${ }^{1}$ (cross-sectional)	
	$\mathrm{n}=1,317$	$\mathrm{n}=1,710$
<6	$0.93(0.62-1.41)$	$1.66(1.09-2.53)$
$6-8$	1.0	1.0
>8	1.39	0.69
	Whitehall II Study ${ }^{2}$ (prospective; f -up 5 yrs)	
	$\mathrm{n}=2,686$	$\mathrm{n}=1,005$
≤ 5	$0.96(0.62-1.48)$	$1.94(1.08-3.50)$
6	$1.07(0.86-1.34)$	$1.56(1.07-2.27)$
7	1.0	1.0
8	$1.07(0.80-1.42)$	$1.17(0.74-1.86)$
$9+$	$0.36(0.11-1.19)$	$0.92(0.26-3.27)$

Prospective association between sleep-disordered breathing and hypertension

(The Sleep Heart Health Study)

TABLE 2. ADJUSTED ODDS RATIOS* OF INCIDENT HYPERTENSION AT FOLLOW-UP IN RELATION TO BASELINE APNEA-HYPOPNEA INDEX AMONG 2,470 SLEEP HEART HEALTH STUDY SUBJECTS WITHOUT HYPERTENSION AT BASELINE

Baseline AHI	n	Model 1^{\dagger}	Model 2^{\ddagger}	Model 3^{5}
$0-4.9$	1,511	-	-	-
$5-14.9$	629	$1.13(0.90-1.43)$	$0.92(0.72-1.17)$	0.94
$(0.73-1.22)$				
$15-29.9$	234	$1.54(1.12-2.11)$	$1.12(0.80-1.56)$	1.09
$\geqslant 30$	97	$2.19(1.39-3.44)$	$1.51(0.93-2.47)$	$1.50(0.91-2.46)$

Association between sleep and change in blood pressure in mid life: The CARDIA Sleep Study

5-year change in SBP

5-year change in DBP
mmiHg

Decreased Slow Wave Sleep increases the risk of hypertension in elderly men

Inflammation and Sleep

Inflammatory markers are elevated in individuals undergoing short term sleep deprivation studies.
Short sleep may lead to increased secretion of inflammatory cytokines, which in turn may lead to an increase in cardiovascular risk

Cross sectional relationship between hs-CRP and duration of sleep (hours) in women

Coef. (95\% CI) Coef. (95\% CI) reference Coef. (95\% CI) Coef. (95\% CI) \quad p-value ${ }^{+}$

	$\begin{gathered} <=5 \\ (n=56) \end{gathered}$	$\begin{gathered} 6 \\ (n=269) \end{gathered}$	$\begin{gathered} 7 \\ (n=578) \end{gathered}$	$\begin{gathered} 8 \\ (n=303) \end{gathered}$	$\begin{gathered} 9+ \\ (n=43) \end{gathered}$	
Model 1	$\begin{gathered} 1.55^{*} \\ (1.09,2.21) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.87,1.23) \end{gathered}$	1	$\begin{gathered} 1.01 \\ (0.85,1.19) \end{gathered}$	$\begin{gathered} 1.45^{*} \\ (1.01,2.07) \end{gathered}$	0.004
Model 2	$\begin{gathered} 1.49 * \\ (1.07,2.09) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.81,1.12) \end{gathered}$	1	$\begin{gathered} 0.93 \\ (0.79,1.09) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.91,1.77) \end{gathered}$	0.03
Model 3	$\begin{gathered} 1.38 \\ (1.00,1.92) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.80,1.10) \end{gathered}$	1	$\begin{gathered} 1.00 \\ (0.86,1.17) \end{gathered}$	$\begin{gathered} 1.43^{*} \\ (1.03,1.97) \end{gathered}$	0.02
Model 4	$1.42 *$ $(1.02,1.96)$	$\begin{gathered} 0.95 \\ (0.82,1.11) \end{gathered}$	1	$\begin{gathered} 1.00 \\ (0.86,1.16) \end{gathered}$	$\begin{gathered} 1.35 \\ (0.99,1.85) \end{gathered}$	0.04

Geometric mean ratio by category of sleep duration (<=5, 6, 7, 8, 9+) with 7hrs sleep as the reference. * P-values at 0.05 significance level for contrast
between sleep categories and the reference (7 hours). $\dagger \mathrm{P}$-values for test of nonlinear trends
Model 1: adjusted for age and marital status; Model 2: Model 1 + BMI; Model 3: Model 2 + smoking; Model 4: Model 3 + Systolic blood pressure and Trigs

Incidence of Coronary Calcifications by sleep duration

No. of participants
Actigraphy 17
Self-report 8 749 $49 \quad 148$

60
188
144
88
$\begin{array}{lllllll}\text { Self-report } & 8 & 22 & 60 & 144 & 175 & 83\end{array}$
5
(The Chicago CARDIA Cohort Study)

Effect stronger in women

Women ($\mathrm{n}=291$)
0.48 (0.27-0.85)

Men ($n=203$)
0.76 (0.52-1.10)

Short sleep

- CHD
- Stroke
- CVD
- Death

Outcomes

Short sleep and incidence of C.H.D.

Short sleep and incidence of stroke

Study or Subgroup	log[Risk Ratio]	SE	Events Total	Participants Total	Weight	Risk Ratio IV, Random, $95 \% \mathrm{Cl}$	Risk IV, Rando	Ratio om, 95\% CI
Amagai 2004 (men)	0.2624	1.0088	34	4419	0.1\%	1.30 [0.18, 9.39]		
Amagai 2004 (women)	1.16	0.6022	29	6906	0.4\%	3.19 [0.98, 10.38]		
Chen 2008	0.131	0.0824	1166	93175	21.4\%	1.14 [0.97, 1.34]		
Hamazaki 2011 (men)	0.6098	1.061	30	2282	0.1\%	1.84 [0.23, 14.72]		
Ikehara 2009 (men)	0.4383	0.3311	1038	41489	1.3\%	1.55 [0.81, 2.97]		
Ikehara 2009 (women)	0.0677	0.2952	926	57145	1.7\%	1.07 [0.60, 1.91]		
Kakizaki 2013	0.0488	0.1139	1165	49256	11.2\%	1.05 [0.84, 1.31]		
Kim 2013 (men)	0.0198	0.1637	627	61936	5.4\%	1.02 [0.74, 1.41]		
Kim 2013 (women)	0.1484	0.1409	632	73749	7.3\%	$1.16[0.88,1.53]$		
Kronholm 2011 (men)	0.0677	0.1679	1057	11373	5.2\%	1.07 [0.77, 1.49]		
Kronholm 2011 (women)	0.1398	0.1424	1125	11917	7.2\%	$1.15[0.87,1.52]$		
Leng 2014 (men)	0.077	0.186	198	4444	4.2\%	$1.08[0.75,1.56]$		
Leng 2014 (women)	0.2231	0.1968	148	5248	3.8\%	$1.25[0.85,1.84]$		
Pan 2014 (men)	0.1222	0.1393	693	27954	7.5\%	1.13 [0.86, 1.48]		
Pan 2014 (women)	0.3148	0.1214	688	35303	9.9\%	1.37 [1.08, 1.74]		-
Qureshi 1997	0	0.1893	285	7844	4.1\%	1.00 [0.69, 1.45]		
von Ruesten 2012	0.7227	0.2843	169	23620	1.8\%	$2.06[1.18,3.60]$		
Westerlund 2013	0.0488	0.1387	1685	41192	7.6\%	$1.05[0.80,1.38]$		
Total (95\% Cl)			11695	559252	100.0\%	1.15 [1.07, 1.24]		-
Heterogeneity: $\mathrm{Tau}^{2}=0.00 ; C h i^{2}=12.90, \mathrm{df}=17(P=0.74) ;\left.\right\|^{2}=0 \%$ Test for overall effect $Z=3.68$ ($P=0.0002$)							0.1 1 1 0.2 0.5 Reduced risk	1 1 1 2 5 10 Increased risk

Cappuccio FP et al. Eur Heart J 2011; 32: 1484-92
updated in: Leng Y et al. Neurology 2015; 84: 1072-9

Cognitive function with age

Cognitive function

Policy concerns:
MCI increasing with aging population
Factors delaying MCI and dementia by and large unknown

Is sleep important for cognitive wellbeing?

English Longitudinal $\underline{S} t u d y$ of $\underline{\text { Aging (ELSA) }}$
Prospective population study of British men and women, aged 50+ years

Miller MA et al. PLoS ONE 2014; 9 (6): e100991

Cognitive function by sleep duration adjusted by sleep quality in younger and older people

Non-amnestic T-scores (non-memory)

Short duration of sleep and all-cause mortality

Relative Risk (95\% CI)

1.26 (0.80 to 1.98) 1.06 (0.61 to 1.84) 0.66 (0.37 to 1.16) 1.00 (0.54 to 1.84) 1.93 (1.12 to 3.35) 0.90 (0.50 to 1.61) 1.00 (0.89 to 1.12) 0.98 (0.70 to 1.37) 1.11 (1.04 to 1.17) 1.07 (1.01 to 1.14) 1.11 (0.32 to 3.80) 1.00 (0.58 to 1.73) 2.41 (1.34 to 4.34) 0.70 (0.21 to 2.35) 1.08 (0.96 to 1.22) 1.25 (0.93 to 1.67) 1.26 (1.12 to 1.42) 1.21 (1.05 to 1.39) 0.98 (0.76 to 1.26) 1.14 (0.77 to 1.69) 0.67 (0.43 to 1.05) 1.27 (1.07 to 1.52) 1.28 (1.01 to 1.62) 1.28 (1.04 to 1.59) 1.02 (0.87 to 1.19)
1.12 (1.06 to 1.18)

All-Cause mortality from Phase 3 by the change in sleep between Phase 1 and Phase 3

CVD mortality from Phase 3 by the change in sleep between Phase 1 and Phase 3

Summary

The association between short duration of sleep and cardiometabolic risk factors and outcomes may reflect causality as
$>$ The effect is strong: large relative risk
\Rightarrow It is consistent: confirmed in different populations for several end-points
$>$ It shows a temporal sequence: short sleep preceding endpoints
$>$ Dose - response: it consistently shows a threshold effect
$>$ Biological plausibility: there are several potential mechanisms involved

Conclusions

Short sleep duration
$>$ associated with increased risk of obesity both in adults and in children.
$>$ prospective studies confirm a temporal sequence in infants, children and adolescents
$>$ quantity and quality of sleep are significant predictors of type 2 diabetes
$>$ it predicts hypertension, coronary heart disease, stroke and CVD
$>$ affects all-cause mortality via increases in cardiovascular deaths
Plausible mechanisms exist to explain the associations (metabolic, biochemical, cellular, genetic)

Unresolved issues

$>$ Cause, consequence or symptom?
$>$ Residual confounding? Reverse causality?
$>$ Evidence from cross-sectional and case-control designs inappropriate
$>$ Short vs long term effects?
$>$ Life-time trajectories?
$>$ Time in bed vs time asleep vs naps?
$>$ Self-report vs direct sleep assessment?
$>$ Sleep vs phase of sleep?
$>$ Age- and Gender-effects?
$>$ Genetic determinants?
$>$ Reversibility of effect?
> More research
$>$ (i) to understand the mechanisms by which sleep disturbances are linked to chronic conditions of affluent societies
$>$ (ii) to establish the reversibility of its effects

Acknowledgments

We thank the following organizations for supporting the different aspects of the Sleep Health \& Society Programme ${ }^{\circledR}$.

(DH)
Department of Health

The University of Warwick

MONASH
University

$$
\begin{aligned}
& \text { BOSTON } \\
& \text { UNIVERSITY }
\end{aligned}
$$

ȘLEEP, HEALTH \& SOCIETY ${ }^{\odot}$

[^0]: ${ }^{\circ}$ Cappuccio FP \& Miller MA.

[^1]: ${ }^{\text {© }}$ Cappuccio FP \& Miller MA.

[^2]: ${ }^{1}$ Cappuccio FP \& Miller MA. Br Med J 2011; 342: d3306

[^3]: $100908070605040302010 \begin{array}{lllllllllll}10 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100\end{array}$ Percentage of differentially expressed genes

