Teaching Practical Human Factors principles to non-specialists: What works and what doesn't

Dr David Embrey Human Reliability Associates

Overview

- What do we do?
- Who do we train?
- What are our training objectives?
- Structure and content of courses
- What has worked?
- To what extent can this experience be applied to the healthcare sector?

_

What do we do: Healthcare

- Cultural aspects and evaluation of incident reporting systems (QIS Scotland)
- Evaluation of clinical interventions & Quality systems
- Clinical governance
- Aggregate root cause analysis
- Evaluation of maternity services organisational culture
- Mismatching errors: Right Patient Right Care (NPSA 2004)

Training activities

- Training courses provided in most safety critical industries over the past 25 years
- Courses give in in EU, Japan, Brazil, Venezuela, USA, Korea
- In-company, open courses, MSc module on Sheffield University Process Safety and Loss Prevention course (Process engineers)
- 1-4 day courses
 - Human factors in risk assessment
 - Incident investigation
 - Procedures development
 - Human error prevention

_

What are our training objectives?

- Provide an appreciation of the nature of human factors and its relevance to the participants' interests (normally safety related)
- Assist them in meeting the needs of safety regulators (Health & Safety Executive)
- Provide an overview of basic theory regarding human error & available tools and techniques
- Provide practical experience of using the techniques in a workshop context
- Persuade participants that risks cannot be managed without systematic evaluation of human factors

6

Structure and content: Day 1: Introduction, theory and tools

- Introduction to human factors
- Core topics (HSE HSG 48)
 - -e.g. procedures, training, communications
- Human error (Slips, mistakes, violations)
- Systems induced error versus individual causes
- Proactive error reduction tools

Structure and content: Day 2-Incident investigation & causal analysis

- STEP technique (accident sequence analysis)-workshop
- Video-Kegworth incident
- Causal trees-workshop based on Kegworth
- · Systemic causes of incidents
- Causal context analysis-workshop based on chemical plant incident

R

Structure and content: Day 3: Task based risk analysis

- Consensus based approach to risk management (CARMAN)-
 - Workforce participation
 - Codification of undocumented domain knowledge
- Task Error Analysis Method (TEAM)
 - Analogous to engineering risk assessment methods
 - Human reliability analysis & engineering risk analysis
 - Running case study (gas alarm in offshore production platform)

Barriers-1

- Participants may believe that engineering solutions to risk management are preferable
- Engineers distrust 'soft' disciplines such as psychology
- Belief that human error cannot be addressed systematically

Barriers-2

- Belief that human error is inevitable-'original sin' doctrine
- Individual view: all human error can be prevented by sufficient application and self discipline
- Unaware of the system induced error perspective
- Unrealistic view of feasibility of exact numerical approaches in complex sociotechnical environments

10

Enablers

- Regulatory requirements for human factors analyses- COMAH Safety cases
- Extensive HF guidance notes published on the HSE website
- Major accidents, e.g. Texas City
 - Traditional behavioural safety approaches inadequate
 - Requirement for proactive approach to human error emphasised
- Influential authors, e.g. James Reason have popularised the systems approach to human error management

What works

- · Recognise the culture of the participants
 - Minimise theory
 - Provide a wide range of techniques
 - Provide as much hands on experience as possible (workshops in small groups)
- Make connections
 - Choose relevant examples/case studies to illustrate central importance of HF
 - Link tools and techniques with those from primary discipline of participants

12

What works

- Establish credibility
 - Have plenty of stories/anecdotes from one's own experience (credibility)
 - Focus on well recognised problem areas, e.g. Why don't people follow procedures?
- Use a range of media
 - -Videos
 - -Integrate into workshops

14

What works

- Use active learning
 - Provide hands on experience (workshops in small groups)
 - Make sure that workshop difficulty level is set correctly
 - Supervise workshop groups carefullyensure that no one is isolated or made to feel stupid
 - -Provide full model answers

What works

- Emphasise continuity and relationships between tools / techniques
 - Develop a running example for use in workshops
 - Show how various techniques combine as part of a total analysis

16

How do we know that it works?

- Very strong positive feedback from participants
- Approach has become de facto standard to satisfy regulatory requirements (COMAH Safety cases for the HSE)

Translating these insights into the patient safety domain

- How do the barriers to human factors in healthcare differ from those in other industries?
 - Differing needs of groups such as nurses and clinicians?
 - Openness to insights from non-clinical settings/industries- NIH?
 - Emphasis on clinical trial 'evidence based' paradigm may undervalue pragmatic approaches

18

Translating these insights into the patient safety domain

- Are the training strategies that have proved successful in an engineering context transferrable to healthcare?
- Are there effective regulatory pressures to drive penetration of human factors training into the healthcare sector?
- What is the healthcare equivalent of a Safety Case?