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Crick envisaged the a-helical coiled coil to result
from systematic bending of an a-helix such that
every seventh residue was structurally equivalent,
and he derived equations for the coordinates of the
backbone atoms. Crick’s predictions were vindi-
cated experimentally and coiled-coil sequences
were shown to have hydrophobic residues alter-
nately spaced 3 and 4 residues apart. Nonetheless,
in some coiled coils such canonical heptad repeats
are interrupted by inserts of 3 or 4 residues gener-
ating decad and hendecad motifs. The supercoiling
of the coiled coils varies with the sequence pattern,
being left- or right-handed in purely heptad-based
or hendecad-based motifs, respectively. To model
coiled coils with a mixture of motifs, we describe
how Crick’s equations can be modified for cases
where the pitch is not constant. Using the analogy
of the bending of a beam, we took the tilt angle to
change linearly with distance along the major helix
and the pitch of a motif to be affected by neighbor-
ing motifs depending on the rigidity of the a-helical
strands. We tested our approach by fitting the two-,
three-, and four-stranded noncanonical coiled
coils of GrpE, hemagglutinin, and tetrabrachion.
The backbone atoms of the model and crystal struc-
tures agreed with root mean square deviations of
<1.1A. © 2002 Elsevier Science (USA)

Key Words: a-helical coiled coil; GrpE; hendecad;
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INTRODUCTION

Analysis of completed genome sequences suggests
that as many as ~5-10% of residues in proteins are
present in a-helical coiled coils (Walshaw and Woolf-
son, unpublished results; Mewes et al., 2000; New-
man et al., 2000; Burkhard et al., 2001), but compar-
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atively only a few coiled-coil proteins have been
structurally characterized at high resolution (Lu-
pas, 1996; Walshaw and Woolfson, 2001). To under-
stand better the design principles of a-helical coiled
coils, there is therefore an urgent need to predict
their structure from their sequence at as near the
atomic level as possible.

Crick (1953a) noted that in a straight «-helix 7
residues make just under two turns. He suggested
that a coiled coil could be generated by small but
systematic bending of a straight «-helix so that ev-
ery seventh residue was structurally equivalent.
Two or more such a-helices could then pack against
one another with the side chains of one strand in-
serting into the spaces between the side chains of
the other (“knobs into holes packing”). Using this
condition he derived a set of equations for defining
the backbone coordinates of a coiled coil and showed
that this structure accounted for the X-ray diffrac-
tion pattern of o-fibrous proteins (Crick, 1953b). He
further suggested for tropomyosin that hydrophobic
residues might tend to occur with alternating inter-
vals of 3 and 4 residues (Crick, 1953a). Because the
number of residues per turn in an a-helix (~3.6) is
not precisely intermediate between 3 and 4, hydro-
phobic residues in such positions would form a left-
handed stripe that winds slowly around the helix
surface, that is, in the opposite sense to the winding
of the «-helix itself. A coiled coil could then be
formed by the hydrophobic stripes of two or more
a-helices coming together and wrapping in a rope-
like manner. Since Crick’s suggestion, not only tro-
pomyosin but many other coiled-coil proteins have
indeed been shown to contain such a heptad repeat
of hydrophobic residues (Stone et al., 1975; Cohen
and Parry, 1990, 1994).

High-resolution structures of proteins with a sim-
ple heptad repeat are well approximated by Crick
coiled coils (O’'Shea et al., 1991; Phillips, 1992; Lu-
pas, 1996; Walshaw and Woolfson, 2001). However,
many coiled-coil proteins have sequences in which
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there are occasional interruptions in the otherwise
regular heptad repeat of hydrophobic residues
(Brown et al., 1996; Lupas, 1996; Hicks et al., 1997).
These occur when there is a repetition of either the
interval of 4 (a “stutter”) or a repetition of the inter-
val of 3 (a “stammer”) (Brown et al., 1996). For
example, there is a stutter in the center of the IIB
region of intermediate filament proteins producing
the pattern (3-4)-(3-4-4)-(3-4) (Parry and Fraser,
1985). In this case locally there is thus a motif con-
taining 11 residues (a hendecad motif) rather than
the canonical heptad. On the other hand, a stammer
would generate the pattern (3-4)-(3-3-4)-(3-4) con-
taining a 10-residue (decad) motif. In other coiled-
coil proteins, heptad sequences are interrupted by
an extra “skip” residue; for example, there are 4 in
the skeletal myosin coiled-coil tail sequence
(McLachlan and Karn, 1983; Offer, 1990). It has
been proposed that such skips are best treated as
two closely spaced stutters creating two adjacent
hendedad motifs (Lupas et al., 1995; Brown et al.,
1996; Hicks et al., 1997).

More recently, several coiled-coil proteins have
been discovered in which the hendecad or decad
motifs are not just occasional insertions but recur
repetitively. Examples include three proteins from
Giardia lamblia: the median body protein with a
repeating 7-10-7 (24-residue) motif, the stalked mo-
tor protein HPSR2 with a 7-11-7 (25-residue) motif,
and B-giardin with a 11-7-11 (29-residue) motif (Hol-
berton et al., 1988; Marshall and Holberton, 1993,
1995; Hicks et al., 1997). A shorter region displaying
a repetitive 7-11-7-11-7 pattern has been observed
in the nucleotide exchange factor GrpE (Harrison et
al., 1997), while tetrabrachion shows extensive rep-
etition of hendecad motifs (Peters et al., 1996).

Because the sequences at stutters, stammers, and
skips still comprise 3- and 4-residue motifs, albeit in
different combinations than the canonical 3-4 motif,
the hydrophobic seam does not disappear at such
interruptions but is displaced azimuthally, locally
changing its tilt angle to the molecular axis (Hicks et
al., 1997). Consequently, the coiled coil would be
expected to continue through these interruptions
but with changes in geometry. A change in tilt angle
would alter the local pitch of the coiled coil. Eleven
residues of an a-helix make just over three turns. A
consequence of this is that in a hendecad motif the
supercoil would be expected to become right-handed
rather than left-handed as in a heptad motif (Peters
et al., 1996; Hicks et al., 1997). In contrast, 10 resi-
dues of an a-helix make substantially under three
turns and the supercoil would be expected to be
left-handed in a decad motif with a pitch even
smaller than for a heptad (Hicks et al., 1997).

In Crick’s formulation, the winding of the minor
helix, that is, an individual «-helical strand of the

coiled coil, is taken to resemble that of a straight
a-helix. An attractive feature is that only three key
parameters are required to define the major helix
(the supercoil): the pitch, the radius, and a param-
eter defining the relative rotation of the «-helical
strands. The pitch is a sensitive function of the se-
guence even in canonical coiled coils (Phillips, 1992;
Seo and Cohen, 1993; Offer and Sessions, 1995). In
noncanonical coiled coils it would be expected to
vary substantially, possibly even changing sign be-
tween heptad and hendecad motifs. We have there-
fore modified Crick’s equations so that changes in
pitch along the length of the coiled coil can be ac-
commodated. Using the mechanical analogy of the
bending of a beam, we have considered how the
stiffness of the «-helical strands would have the
effect of smoothing out abrupt changes in pitch
(kinks) between motifs of different types. Our main
goal was to develop a computer program based on
these equations that could be used for the prediction
of the three-dimensional structure of the backbone
of coiled coils with noncanonical sequences. We test
the applicability of this program in fitting the crystal
structures of three noncanonical coiled coils. These
are the double-stranded coiled coil of GrpE with
alternating heptad and hendecad motifs (Harrison
et al., 1997), the triple-stranded TBHA, coiled coil
from influenza hemagglutinin with a less regular
mix of heptad and hendecad motifs (Bullough et al.,
1994), and the four-stranded right-handed coiled coil
(RHCC) fragment from the stalk of tetrabrachion
with an unusual stretch of 15 residues preceding a
set of hendecad repeats (Stetefeld et al., 2000).

THEORETICAL BACKGROUND

Making Noncanonical Coiled Coils with Constant
Pitch

First we modified Crick’'s equations to create
coiled coils with constant pitch for cases in which
every nth residue was equivalent but where n can
assume values other than 7. In Crick’s formulation
the coiled coil is traced out by a vector whose origin
moves along the major helix rotating in a plane
perpendicular to the tangent to the major helix as it
does so. The rotation (measured in radians with
respect to local axes) is proportional to the distance
t traveled along the major helix. The constant of
proportionality is called w,.

In passing from one atom to the equivalent atom n
residues further along the coiled coil (a distance of
nd along the major helix where d is the residue
translation in an a-helix), this vector must rotate by
an integral number of turns.

w.nd = 27N, (1)
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TABLE |
Values of n and N for Coiled Coils
Pitch®
n N w; A) Tilt angle
7 2 47/7d 159 10.5°
10 3 37/5d 56 27.7°
11 3 67/11d —398 —4.2°
15 4 87/15d —150 —-11.2°
18 5 57/9d 1144 1.5°
24 7 7w/12d 94 17.5°
25 7 147/25d 423 4.0°
26 7 77/13d —204 —-8.2
29 8 167/29d —2450 -0.7°

& The pitch and tilt angle are calculated for a coiled coil con-
structed from an a-helix with 3.617 residues per turn, an axial
translation of 1.495 A, and a major helical radius of 4.7 A. A
positive value for the pitch and tilt angle implies a left-handed
supercoil; a negative value indicates a right-handed supercoil.

where N is the integer nearest to the number of
turns n residues make in a straight a-helix. By
supercoiling the a-helical strands, residues are en-
abled to occupy precisely equivalent positions every
N turns of the a-helix. Table | lists the values of n
that may be useful in constructing coiled-coil mod-
els. They have been chosen so that n/m lies close to
an integer (N), where m is the number of residues
per turn in a straight a-helix. For heptad, decad, or
hendecad motifs nis 7, 10, or 11, respectively. Hence
to create a noncanonical, but regularly repeating,
coiled coil in which every nth residue is equivalent,
we simply have to assign w», the appropriate value
given above.

Alternatively, if a coiled coil were to be modeled on
the basis of smoothing out variations in adjacent
motifs such as a repeating pattern of 7-11, 7-10-7,
7-11-7, or 11-7-11 motifs, n could be chosen as 18, 24,
25, or 29, respectively. Note that here we define
motifs simply by the interval between residues in
equivalent positions, not directly by the hydrophobic
pattern. Hence a repeating pattern of 7-11-7 motifs
is not to be regarded as precisely equivalent to a
repeating 25-residue motif. In the first case the 1st,
8th, and 19th residues are in similar positions be-
cause of pitch changes, whereas in the repeating
25-residue motifs only the 1st and 26th residues are
equivalent because the pitch is constant.

For a coiled coil with constant pitch, the pitch
should be appropriate for n. In a straight a-helix the
line connecting every nth residue is not parallel to
the axis but winds around it forming the seam along
which neighboring a-helical strands contact one an-
other in the coiled coil. Fraser and MacRae (1973)
deduced from this geometry the relation between
the pitch, P, and m. Generalizing this relationship
for noncanonical coiled coils we obtain

- = \/(N/n - 1/m)? 4mre, (@)

where ry is the major helix radius. At the time of
Crick’s original papers the a-helix was assumed to
be left-handed and, therefore, the supercoil was
taken to be right-handed. Now it is known that the
a-helix is right-handed and the supercoil for heptad-
based coiled coils is left-handed. We shall therefore
consider the supercoil to have a positive P if it is
left-handed. This will occur if N/n > 1/m. A right-
handed supercoil (negative P) will occur if N/n <
1/m. Table | lists the calculated pitches for m =
3.617 and d = 1.495 A (the values for the polyala-
nine a-helix determined by Arnott and Dover, 1967)
and with r, = 4.7 A. No assumption need be made
that the coiled coil is integral. It should be noted
that the calculated pitch is left-handed for a heptad
or decad motif, right-handed for a hendecad motif,
and near-infinite for n = 18 or 29. Also note the
extreme sensitivity of the pitch to changes in m.

Coiled Coils with Variable Pitch

Such equations for constant pitch are satisfactory
for generating coiled coils where only one motif is
present or where the aim is to construct models with
supercoil smoothing over several motifs. However,
in coiled coils with a mixture of motifs such as 7-11,
7-11-7, or 11-7-11, we may expect the coiled coil to
show differences in local pitch between the motifs.
Therefore we generalized the Crick equations for
cases where the pitch is not constant but changes
with distance along the coiled coil.

How does the pitch change from one motif to the
next? It might have been supposed that in the center
of a motif the pitch would be the same as in an
infinite stretch of that motif but would change to-
ward its neighboring motifs. If that were the case, in
a coiled coil where heptads alternated with hendec-
ads, the pitch would abruptly shift from left-handed
to right-handed, producing a zigzag structure. How-
ever, this would require the a-helical strands to
bend very sharply. For example, if the tilt angle in
the center of a heptad motif were 10.5° and that in
the center of an adjoining hendecad motif were
—4.2°, this would require the «-helical strands to
bend by 14.7° over a stretch of at most nine residues
or ~13.5A. That would require a radius of curvature
as low as 53 A. If the bending were to occur only over
say the “e”, “f”, and “g” residues of the heptad motif,
the radius of curvature would be only 18 A In glob-
ular proteins the radius of curvature of a-helices is
around 60 A and in canonical coiled coils it is as high
as 150 A (Blundell et al., 1983; Barlow and Thorn-
ton, 1988). It is pertinent that in the crystal struc-
ture of GrpE where heptads alternate with hendec-
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FIG. 1. Diagram of a beam bent at four sites by the application of couples. The beam is represented by the long thick wavy line, and
each of the four sleeves, by which a couple is applied, is represented by a pair of short thick lines. The unstrained direction of each of the

sleeves is shown by a dotted line.

ads the a-helical strands are nearly straight and lie
side by side (Harrison et al., 1997). Yet in coiled coils
where there are stretches of uninterrupted hen-
decad or uninterrupted heptad sequences the super-
coiling is markedly right-handed or left-handed, re-
spectively. This strongly suggests that neighboring
motifs interact in such a way as to smooth out dif-
ferences. We suggest that in regions where heptads
are adjacent to hendecads the very different tilt
angles required for these two motifs for optimal in-
teraction in the core of the coiled coil cannot simul-
taneously be satisfied because of the rigidity of the
a-helical strands. The result is a compromise be-
tween the two tilt angles. However, in a stretch of a
single type of motif repeat no such compromise
needs to be reached and the tilt angle can readily
adopt the optimum value for that type of motif. In
other words the pitch of a motif is not an absolute
but depends on the nature of the neighboring motifs.

Therefore we need to model the mechanical effect
which one motif has on its neighboring motifs. We
were not concerned with attempting a detailed mod-
eling of the myriad atomic interactions that underlie
such an interaction, but instead with adopting a
more pragmatic approach likening each «-helical
strand to a beam. We supposed that each motif, if
unstrained, adopts the tilt angle appropriate for an
infinite stretch of that motif but due to the stiffness
of the strands actually adopts some other tilt angle
closer to that of its neighbors.

Consider first the curvature induced by applying
couples of equal and opposite magnitude C to the
ends of an initially straight rod of circular cross-
sectional radius a and length I. In the standard
method for analyzing the bending of a cantilevered
beam (see, for example, Gere, 2001), the internal
bending moment generated by the tension of fibrous
elements on the outside of the curvature and by the
compression of fibrous elements on the inside of the
curvature is equated with the external bending mo-
ment. Applying couples to both ends of the beam,
rather than clamping the beam at one end and ap-
plying a load at the other, produces a simpler result:
the beam is deformed into a circular arc of radius R
given by

wYa*

€= R 3

where Y is the Young’'s modulus of the beam.

If the angle to a fixed line made by a tangent to the
beam at any point distance s from one end is 6, 1/R
may be replaced by dé/ds.

We suppose in this mechanical analogy that the
couples are generated by inserting the ends of the
beam into sleeves that are spring-loaded. Un-
strained, the sleeves adopt angles 6, and 6, to the
fixed line but when strained by inserting the beam
into them they adopt angles 6, + 86, and 6, + &6,. If
the spring constant is K, the couples applied to the
two ends of the beam are K6, and K6, so that

mYa*dé
. 7TYa.4 (62 + 502 - 61 - 861) (4)
B 41 ’

Note that if Y is large, (i.e., the beam is stiff) or K
is small (i.e., the springs are weak), the angles
adopted by the sleeves, (6, + 86;) and (0, + &6,), are
identical and equal to (6, + 6,)/2 so the beam is
straight. If, however, Y is small or K is large, 66, and
86, are small and the sleeves adopt the unstrained
angles 0, and 0,. If K = (wYa®)/(2l), then 86, = (0, —
0,)/4 and so the angles adopted are ((36,/4) + 0.,/4)
and (6,/4 + (36,/4)). Hence values of (wYa%/2IK)
around 1 provide a convenient marker of this inter-
mediate situation.

We now have to extend this treatment to the case
where the beam is inserted into many (n) spring-
loaded sleeves along its length so that the couples
generated are Ké6,, Ké6,, Ké6, . . . Ké6,. The bend-
ing of a beam into a wave in this manner is illus-
trated in Fig. 1 for the case in which there are four
sleeves. Note that for the general case

_2 86; = 0. (5)
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It is supposed that the unstrained angles 6,
05, . .. 6, of these sleeves differ but the spring con-
stants K are identical.

Consider a segment of the beam between the mth
and the (m + 1)th sleeve. The first m couples and the
last (n — m) couples contribute in equal and opposite
directions to the straining of this segment into a
circular arc. Hence

i=m 4

K2 861 =4 (Omes + 80y — 6 = 861),  (6)
. m

where s, is the contour length of this segment.
Or writing (4K/mYa*) as a single constant b,

bSm 2 80i = (Omis + 80y — O — 30,).  (7)

i=1

There are n-1 of these equations so, together with
Eqg. (5), the values of all §6; and hence all the actual
angles (6; + 86;) of the beam at the sleeves are
determined. In each segment the value of 6 depends
linearly on s (although the constant of proportional-
ity, and hence radii of the arcs, differs between seg-
ments) so the entire shape of the beam is known.
Note that the value of b governs the shape of the
beam. If b is low, the beam is nearly straight; if b is
high, the beam is very wavy. Consequently we shall
refer to b as the smoothing parameter.

We shall use this example of a beam twisted by a
series of spring-loaded sleeves into a wave as an
analogy in constructing a coiled coil with variable
pitch. But it should be noted that whereas the beam
is bent into a wave in two dimensions, the coiled coil
is bent in three dimensions. Each of the sleeves
corresponds to the center of a motif that in an infi-
nite stretch of these identical motifs would adopt the
unstrained tilt angle ¢; but instead, due to the finite
rigidity of the a-helical strands, adopts a different
perturbed tilt angle (o; + 6¢y). The tilt angle is thus
analogous to the angle, 6, the beam makes to a fixed
direction, while the distance, t, measured along the
mayjor helix is analogous to the distance, s, measured
along the length of the beam. Using this analogy, the
tilt angle « at any point along the major helix is
taken to change linearly between the center of one
motif and the center of a neighboring motif. A con-
sequence of making this analogy is that the sum of
the tilt angles at the centers of the motifs through-
out the length of the coiled coil is invariant as the
smoothing parameter b is altered.

The local pitch P at any point on the major helix
may then be determined from «:

277[’0
"~ tan o

(8)

Note that if b were very small (i.e., if the strands
were very stiff or the interactions a motif makes to
adopt the “ideal” tilt angle for that motif very weak),
the tilt angles of all the motifs would become iden-
tical and the pitch would be constant throughout the
coiled coil. If, however, b were very large (i.e., if the
strands were very compliant or the constraints on a
motif to adopt the “ideal” tilt angle very strong), all
da; would be zero and in the center of each motif the
strands would adopt a tilt angle appropriate for an
infinite stretch of that motif. Hence by adjusting a
single parameter, b, the effects of altering the com-
pliance of the strands can be explored. A convenient
marker for an intermediate situation occurs when
b = 2/t,, or ~0.15 for a segment between heptad and
hendecad motifs, where t., is the length measured
along the major helix between the centers of the mth
and (m + 1)th motifs. Note that a motif not only
affects its immediate neighbors but also has a small
influence on more remote motifs. Figure 2 shows a
plot of the tilt angle against the distance along the
major helix for a pattern of 7-11-7-11-7-11-7-11 mo-
tifs with a range of b values. With b = 10, the tilt
angles at the centers of the heptad or hendecad
motifs are similar to those obtained for repeating
polymers of purely heptad or purely hendecad motifs
(10.5° and —4.2°, respectively). As b decreases, the
differences between these tilt angles decrease and at
b = 0.01 only small fluctuations in tilt angle are seen
between motifs.

The Major Helix

We had to define the axial and azimuthal coordi-
nates of any point along the major helix a distance t
from its origin. In Crick’s case of constant pitch, the
translation AZ along the molecular axis in travers-
ing a length At of the major helix is given by

AZ __IPiat At (9)
\/PZ + 47721’3 “

In our case where P varies with t, this had to be
replaced by

|P|dt
AZ=|————=|cos adt (10)

JPZ+ am?r

If the tilt angle « is a linear function of t and has
the value «; at t; and «, at t,, then this may be
integrated to give
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FIG. 2. Effect of changing the smoothing parameter b on the variation of tilt angle along an idealized noncanonical coiled coil with
a 7-11-7-11-7-11-7-11 pattern of motifs. —-——-b = 0.01;---b = 0.1;---b = 0.5; — b = 10.

L-t

AZ = (sin a, — sin oy). (11)
1

ay, —

In Crick’s case of constant pitch, the azimuthal
rotation Ay around the molecular axis in traversing
a length At of the major helix is given by

A N 27At ) At 12
=+ ———=sina_.
v V“PZ + 4773 “ Io (12)

The azimuthal rotation is taken to be positive for
a left-handed supercoil (positive P) and negative for
a right-handed supercoil (negative P).

If P varies with t, this must be replaced with

dt 1 (.
=— fsm adt. (13)

A= 27 | ===
v 71-f\/P2-|-411'2I’§ o

Again an explicit solution is possible if « is a linear
function of t:

Ay = Lo h ) (cos a; — €OS ay). (14)

Crp(ap oy

By applying Egs. (11) and (14) separately to each
segment and summing them, the cylindrical coordi-
nates (Z, ) of any point a distance t along the major
helix can be calculated.

The Minor Helix

Having defined the major helix, it was necessary
to determine how rapidly the coiled coil should be
traced out by the rotating vector. Since the value of
w, differs for different motifs, we supposed that w;
too would vary along the length of a coiled coil con-
taining mixed motifs. We assigned w, throughout
each heptad, decad, or hendecad motif a value iden-
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tical to that for an infinite polymer of that motif. But
other options, such as allowing w; to depend on the
local tilt angle, are also possible.

The Backbone Coordinates

With the above considerations, it was possible to
calculate the coordinates of the atoms of the back-
bone of the coiled coil with variable pitch. To derive
such coordinates, Crick used local axes whose origin
followed the path of the major helix, the local z' axis
being tangential to the major helix and the local x’
axis always pointing directly away from the molec-
ular axis. He derived equations for the transforma-
tion from this local frame to the global frame. Sup-
pose the origin of the local axes is on the major helix
with cylindrical coordinates (Z, {) and hence Carte-
sian coordinates (rq CoS ¢, —rg Sin ¢, Z). Any point x’
y’ z' referred to the local axes has coordinates in the
global frame given by

X = Fy COS ¢ + X' coS ¢ +y' €COS a Sin s
, . (15)
—2z'sinasiny
y = —rgsin g — X' sin § +y’ cos a COS ¢
' i (16)
— Z' sin a cos i
z=Z+y'sina+ 2z cos a. (17)

The coiled coil is generated by a vector whose
origin moves along the major helix rotating in a
right-handed manner by o, radians per unit of t
traveled. For the Crick case of constant pitch, w; is
constant and the local coordinates of any point on a
continuous coiled coil are

X" =r; cos(ot + ¢) (18)
y' =r;sin(ot + ¢;) (19)
7z’ =0, (20)

where r, is the radius of the minor helix and ¢, is the
phase angle, both of which depend on the type of
atom.

For the case of noncanonical coiled coils where w,
is itself a function of t, Eq. (18) and (19) must be
replaced with

X' '=r, cos(ledt + @) (21)

y =1, sin(fwldt + ¢). (22)

Combining Egs. (15), (16), (17), (21), and (22) we
arrive at the Cartesian coordinates of a point on the
continuous coiled coil

X=Try,C0S ¢y+r, cos(ledt + ¢;) COS s

(23)
+r sin(fwldt + ¢,) COS a Sin s
y= —rpsing—r; cos(fwldt + @) Sin s
(24)
+r sin(fwldt + ¢1) COS & COS
z=2+r, sin(fwldt + ¢y) SiN a. (25)

For an atom of a particular type in residue i of the
coiled coil, the translation t and phase angle ¢, in
the above equations are given by

t=z,+(—1)d (26)
ot Z,e SIN «
P1= @1 T Prol — W1Zg T rir (27)

0

where z,, and ¢, are the axial and azimuthal polar
coordinates of that type of atom relative to a refer-

ence atom (conveniently C, or Cp) in a straight a-he-

lix and ¢7*" is the value of ¢, for that reference atom.

" therefore serves as a convenient measure of the

relative rotation of the a-helical strands. (¢{*" would

be termed ¢f if the reference atom is the C, atom

and ¢f if it were the C4 atom.) The value of ¢f*" is

assumed to be identical in a mixture of heptad,
decad, and hendecad motifs.

METHODS

We wrote a program BEAMMOTIFCC.c to incorporate the
above principles. BEAMMOTIFCC calculates the backbone coor-
dinates for any mixture of motifs, not necessarily a regularly
repeating pattern. The input variables include the following: m
and d, the residues per turn and axial translation per residue of
a straight a-helix; r,, the major helical radius; ¢f, the relative
rotation of the a-helical strands; and b, the smoothing parameter
determined by both the compliance of the a-helical strands and
the strength of the interface. The number of a-helical strands can
be altered, rotational symmetry about the molecular axis being
assumed. The unstrained tilt angles of the major helix at the
centers of different motifs (e.g., at the centers of heptad and
hendecad motifs) were calculated from m, d, and r,. The starting
values for the m and d parameters for the straight «-helix were
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TABLE 11
Parameters for Model Coiled Coils to Best Fit Native Coiled Coils

Number of  Residues rms d Io Tilt angles at centers
Protein Pattern of motifs strands  superposed® (A) m (A) (A) of b of motifs
Noncanonical
coiled coils
GrpEP 7-11-7-11-7 2 44-86 (2) 1.08 3.589 1.490 4.84 214.6 0.007 2.5°1.9°2.2°1.9°25°
TBHA, of 11-7-11-7-7-7-11-11 3 40-105(3) 0.96 3.629 1.500 6.84 214.8 0.025 3.8° 6.7° 6.2°9.3°9.8°
hemagglutinin 8.3°3.5°1.1°
RHCC of 8-7-11-11-11 4 4-51(4) 0.84 3.661 1489 7.45 207.2 0.063 —20.4° —2.0° —-1.3°
tetrabrachion -0.9° -0.8°
Canonical coiled
coils
GCN4 7-7-7-7 2 2-29(2) 0.30 3.628 1506 4.86 217.7 —
GCN4 p-l11 7-7-7-7 3 2-29(3) 0.39 3.608 1530 6.65 216.1 —
GCN4 p-LI 7-7-7-7 4 2-29(4) 0.66 3593 1520 7.56 2195 —
Cortexillin 7-7-7-7-7-7-7-7-7-7- 2 243-343 (2) 094 3.636 1501 4.91 211.7 —
7-7-7-7-7
Tropomyosin 7-7 2 36-50(2) 0.30 3.580 1.518 4.99 2122 —
22-36 (1) 0.14 3.619 1.514 427 2103 —

2 The number in parentheses is the number of chains of the coiled coil used in the superposition. .
b In the refinement of GrpE the axial stagger of the two chains was allowed to alter. In the refined model this stagger was 1.7 A.

taken from the values for polyalanine (Arnott and Dover, 1967).
The starting value of r, was taken to be 4.7 A for a double-
stranded coiled coil (Offer and Sessions, 1995), 6.7 A for a triple-
stranded coiled coil (Harbury et al., 1994), and 7.6 A for a four-
stranded coiled coil (Harbury et al., 1993). The starting value of
<p}3 was taken to be 210° (Offer and Sessions, 1995).

The output is a pdb file of the coordinates of the backbone
atoms. Coiled-coil structures were viewed in the molecular graph-
ics application Insightll (MSI, San Diego, CA). The root mean
square (rms) deviation of the heavy atoms of the backbone over
the corresponding atoms in the crystal structure was determined
after the superposition of the model and experimental structures.
The idealized structures were refined by varying m, d, ro, ¢%, and
b to minimize the rms deviation by the downhill simplex method
(Nelder and Mead, 1965) modified to run from a shell script (Offer
et al., 2000).

BEAMMOTIFCC is not limited by the length of the coiled coil.
It can satisfactorily deal with a hendecad in the center of 20
heptads maintaining the correct phase delay across the stutter
regardless of the degree of smoothing. However, it should not be
used where there are long repeats (>10) of the same type of motif,
due to errors incurred using Eq. (7) in calculating the set of d¢;
when the first is near zero. Such a situation would be best han-
dled by making a separate calculation for the region where the
pitch is expected to be essentially constant (using a program
based on the unmodified Crick equations) and combining the
result with a calculation made with BEAMMOTIFCC for the
region over which the pitch is expected to change.

RESULTS

At present there are only a few examples of non-
canonical coiled motifs in the Brookhaven database
(Hicks et al., 2002). These are either based on hep-
tad—hendecad sequence combinations or are purely
hendecad-based. For our purpose, namely, testing
the modeling capabilities of BEAMMOTIFCC, we
selected three structures to cover the range of dif-
ferent coiled-coil oligomer states from two- to four-
stranded; at present there is only one example of a

five-stranded coiled-coil structure, namely, COMP
(Malashkevich et al., 1996), and this is based on
canonical heptad repeats. All the structures we dis-
cuss are parallel coiled coils. The results of modeling
these noncanonical coiled coils are shown in Table
I, where they are compared with the modeling of
canonical coiled coils, including two-stranded coiled
coils of GCN4 (O’Shea et al., 1991), tropomyosin
(Brown et al., 2001), and cortexellin (Burkhard et al.,
2000), of three-stranded GCN4 p-1l (Harbury et al.,
1994), and of four-stranded GCN4 p-LI (Harbury et
al., 1993).

GrpE (1dkg)

First we modeled the two-stranded coiled coil of
the nucleotide exchange factor GrpE from Esche-
richia coli. The crystal structure of this factor has
been determined when bound to the ATPase domain
of the heat shock protein DnaK (Harrison et al.,
1997). The GrpE structure is an asymmetric dimer
with the interface formed from two long parallel
helices that form a rather distorted homodimeric
coiled coil. The sequence in this region shows hep-
tads interspersed with hendecads to form a 7-11-7-
11-7 pattern. Since 18 residues in an a-helix make
almost exactly five turns, this sequence pattern
would be expected to straighten the coiled coil and
produce two helical strands that lie side by side;
indeed the crystal structure strikingly confirms the
almost complete absence of supercoiling. We mod-
eled residues 44—-86 with alternating heptads and
hendecad motifs in the pattern 7-11-7-11-7. Because
in GrpE the two strands in the coiled coil are axially
staggered we allowed the chains of the model to
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stagger during refinement. Using the starting pa-
rameters the rms deviation when the backbone
heavy atoms of residues 44 to 86 of the GrpE model
were superposed over the crystal structure was 1.38
A and this improved to 1.08 A on refinement. By
viewing the a-helical strands in the crystal structure
one behind the other (Fig. 3), the slight left-handed
supercoiling in the N-terminal half of the structure
is seen, while in the C-terminal half the two a-heli-
cal strands are essentially straight. The model re-
produces this feature satisfactorily. During refine-
ment the b value fell to a low level and
correspondingly the tilt angles showed only small
differences between the centers of the heptad and
hendecad motifs (Table I1).

Hemagglutinin (1htm)

Next, we modeled the three-stranded coiled coil
from the integral membrane glycoprotein hemagglu-
tinin of influenza virus. A large domain forming the
host-receptor binding site is situated at one end of
the coiled-coil stem. At the other end of this stem is
the domain that anchors the protein into the viral
membrane. Prior to fusion, residues 76-126 of the
HA, chains form a relatively short triple-stranded
coiled-coil stem, and, despite their high coiled-coil
potential (Carr and Kim, 1993), residues 38-55 and
56-75 form a separate short a-helix and extended
strand, respectively, which pack against the outside
of the coiled coil (Wilson et al., 1981). However,
when the pH is lowered to 5, the chains refold ex-
tensively (Carr and Kim, 1993; Bullough et al.,
1994). The short a-helix and extended strand be-
come incorporated into the coiled coil at its N-termi-
nal end; conversely the C-terminal end of the coiled
coil refolds to form a loop and separate a-helix. This
large conformational change is thought to cause the
relocation of the fusion peptide 100 A toward the
target membrane. The crystal structure of TBHA,,
the proteolytic product of hemagglutinin after expo-
sure to the pH of membrane fusion (Bullough et al.,
1994), shows residues 40 to 105 of each HA, chain
forming a continuous three-stranded coiled coil. The
coiled coil commences with a slightly left-handed
supercoil with a long pitch, followed by a more pro-
nounced left-handed helix with a shorter pitch and
then a region that is almost straight. We modeled
residues 40-105 as a pattern of 11-7-11-7-7-7-11-11
motifs with Ser 40 as the g residue of the first heptad
as suggested by Bullough et al. (1994). With the
starting parameters the rms deviation was 1.2 Abut
on refinement this improved to 0.96 A. The model
has somewhat too high a pitch and major helical
radius at the C-terminal end of the coiled coil but
otherwise the broad features of the supercoiling are
well demonstrated by the model, with the N- and
C-terminal ends of the coiled coil being very under-

wound and the central region exhibiting a clear left-
handed supercoiling (Fig. 4).

Tetrabrachion (1fe6)

Finally, we modeled the RHCC fragment of the
exceptionally stable four-stranded coiled coil of the
stalk of the glycoprotein tetrabrachion from the
thermophilic archaebacterium Staphylothermus
marinus (Peters et al., 1996). In this coiled coil, a
predominantly heptad repeat of hydrophobic resi-
dues shifts to a predominantly hendecad repeat af-
ter a proline residue. The crystal structure of RHCC,
a 52-residue fragment in the C-terminal segment of
the stalk, confirmed earlier predictions (Peters et al.,
1996) that in this predominantly hendecad region
the coiled coil should be right-handed (Stetefeld et
al., 2000). In the original phasing of the sequence
(Peters et al., 1996), this fragment was considered to
consist exclusively of hendecad repeats. However, in
the crystal structure the first 18 residues have a
more pronounced right-handed supercoiling than
the remainder of the coiled coil and the phasing of
the sequence in this region was therefore reas-
sessed. It was concluded that residues 12—-15 should
be treated as an additional stutter (Stetefeld et al.,
2000); this reassignment allows more hydrophobic
residues in the “a” and “h” positions of the hendecad.
There is therefore a stretch of 15 residues from 4 to
18 before the hendecad repeats start that Stetefeld
et al. considered to consist of an octad plus a heptad.
We therefore modeled residues 4-18 in this way and
residues 19-52 as a set of hendecad repeats. With
the starting parameters, the rms deviation when the
backbone heavy atoms of residues 4-51 of all four
chains were superposed on the crystal structure was
23 A. on refinement this rms deviation improved
considerably to 0.84 A. The fit to the crystal struc-
ture is shown in Fig. 5. The change from pronounced
right-handed supercoiling in residues 4-18 to a
weaker right-handed supercoiling in residues 19-52
is well modeled.

DISCUSSION

In this paper we describe the generalization of the
Crick equations for modeling coiled-coil structures
to deal with the variable pitch exhibited by nonca-
nonical sequences, that is, where the heptad repeat
is interrupted or replaced by decad or hendecad mo-
tifs. Our software can cope with any combination of
motifs and is not restricted to simple, regularly re-
peating patterns. The advantage of the equations is
that only five intuitively straightforward parame-
ters need to be specified to define a noncanonical
coiled coil, regardless of the pattern of the motifs.
These are m, the residues per turn, and d, the axial
translation per residue of a straight a-helix, rq, the
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FIG. 3. Stereoview of the superposition of the refined model
(red) and the crystal structure (blue) of GrpE (PDB entry 1dkg).
Only the backbone atoms of residues 44 to 86 of the coiled coil are
displayed. The model assumed a pattern of 7-11-7-11-7 motifs.
The coiled coils are viewed in such a direction that the two
a-helical strands cross one another and the rear strand has been
shown in paler colors. The N-terminal end is at the bottom and
residue numbers at intervals of 3 or 4 residues are indicated.

FIG. 4. Stereoview of the superposition of the refined model
(red) and the crystal structure (blue) of TBHA, from influenza
hemagglutinin (PDB entry 1htm). Only the backbone atoms of
residues 40 to 105 are displayed. The model assumed a pattern of
11-7-11-7-7-7-11-11 motifs. The N-terminal end is at the bottom
and residue numbers at intervals of 3 or 4 residues are indicated.

FIG. 5. Stereoview of the superposition of the refined model (red)
and the crystal structure (blue) of the RHCC from tetrabrachion (PDB
entry, 1fe6). Only the backbone atoms of residues 4 to 51 are displayed.
The model assumed an 8-7-11-11-11 pattern of motifs. The two a-heli-
cal strands at the rear are shown in paler colors to allow the front two
strands to be seen more clearly. The N-terminal end is at the bottom
and residue numbers at intervals of 3 or 4 residues are indicated.

major helix radius, ¢f, the parameter defining the
relative rotation of the a-helical strands, and b, the
smoothing parameter that is determined by the com-
pliance of the «-helical strands and the strength of
the interface. This is a remarkably small number
considering the complexity of the coiled coil exhib-
ited for example by hemagglutinin. Note that the
pitches of the motifs making a pattern (e.g., heptads
and hendecads) are not allowed to vary indepen-
dently; they are related to each other through m and
din Eq. (2). It is fortunate that the five parameters
are known within quite close limits. Table Il shows
that in our refined models, excluding the rather
special case of tropomyosin segments, d varies be-
tween only 1.489 and 1.530 A and m between 3.584
and 3.661. Even allowing for the marked sensitivity
of pitch to m, this puts considerable constraints on
the modeling. If information about pitch is available
(e.g., for the myosin coiled-coil tail the pitch of the
heptad region is known to lie close to 145 A), this
places even further constraints. r,, the radius of the
supercoil, increases as the number of strands in-
creases and values within an accuracy of about 0.2 A
are available for two, three, and four strands
(O'Shea et al., 1991; Harbury et al., 1993, 1994). ¢
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TABLE 11

Suggested Parameters for Modeling Coiled Coils
of Unknown Structure

Number of d I'o
strands m A (A) of b
2 3.63 1.49 4.9 212° 0.03
3 3.63 1.49 6.8 212° 0.03
4 3.63 1.49 7.5 212° 0.03

is known by modeling for two-stranded coiled coils
(Offer and Sessions, 1995) and confirmed here in
modeling of GCN4. ¢f assumes similar values
(207°-219°) for the refined two-, three-, and four-
stranded noncanonical and canonical coiled-coil
models (Table II). In all three of our refined models
of the noncanonical coiled coils the value of b was
low, well below the benchmark intermediate value of
0.15, indicating a considerable degree of smoothing
of the tilt angles. Nevertheless even with the lowest
value of b obtained with the GrpE model, a residual
variation of the tilt angles from heptad to hendecad
is apparent. The parameters we suggest might be
used as a starting point for modeling two-, three-,
and four-stranded coiled coils are summarized in
Table I11.

This approach should allow us to calculate a plau-
sible model of the backbone of a coiled coil for which
the crystal structure is not available. The likely
error in the position of the atoms is probably less
than 1.5 A. This is of similar magnitude to the dif-
ference observed in crystal structures between bio-
chemically identical strands in multistranded coiled
coils (Harbury et al., 1993). In Crick’s concept, bend-
ing to produce the supercoil causes the atoms on the
outside of the coiled coil to move further apart and
those in the interior to move together. This results
in systematic perturbations to the bond lengths,
bond angles, and torsion angles for the residues
within a motif. However, as shown by the rms devi-
ations for fitting short canonical coiled coils, for ex-
ample, GCN4, such effects are smaller than 0.3 A.
To create the predicted model, it is of course first
necessary to establish the number of strands, either
by physical chemical measurements or by deducing
this from the sequence features (Berger et al., 1995;
Woolfson and Alber, 1995; Wolf et al., 1997). It is
obviously also crucial to analyze the sequence look-
ing, for example, for hydrophobic residues to define
the phasing and hence the pattern of motifs (Brown
et al., 1996; Hicks et al., 1997). In many cases this is
straightforward but the example of the RHCC frag-
ment of tetrabrachion indicates that in some cases
the phasing may be apparent only after the crystal
structure has been obtained (Brown et al., 1996;
Stetefeld et al., 2000).

The idealized models generated by these equa-
tions can be considered to be in effect a “smoothed”
version of the real coiled coil in which the effect of
side-chain packing in the inner and outer cores of
the interface results in residue-by-residue small
fluctuations in pitch (Philips, 1992; Seo and Cohen,
1993; Offer and Sessions, 1995). Such idealized mod-
els may nevertheless be directly useful, for example,
in predicting the winding of the supercoil and
thereby explaining the appearance of electron micro-
graphs of the molecules or predicting the interac-
tions which such coiled coils make in higher-order
assemblies. For example, the equations could be
used to model the long a-helical coiled-coil tails of
the skeletal and smooth myosin molecules having,
respectively, four or three skip residues. This would
allow us to see if the underwinding of the two a-he-
lical strands at each skip had similar or different
orientations along the length of the tail. It would
also enable us to extend to three dimensions
McLachlan and Karn's (1983) analysis of the
charge—charge interaction between neighboring
coiled-coil tails in the thick filament backbone.

If the goal was to predict the structure of a coiled
coil at the atomic level, the side chains, in conforma-
tions appropriate to the azimuthal position within
the motif, would need to be added and the models
refined by energy minimization or molecular dynam-
ics. Starts have been made in predicting the side-
chain conformations in the interface (Nilges and
Brunger, 1993; Harbury et al., 1994; Offer and Ses-
sions, 1995), and the complex intrahelical and inter-
helical interactions, but this remains a goal for the
future. We have shown, however, that the backbone
of coiled-coil proteins that have been crystallized are
well represented by a generalization of the Crick
equations, which, therefore, afford a convenient
starting point in prediction.

It was noticeable that on refinement of our models
of noncanonical coiled coils the value of b fell to a low
value. This implies that natural coiled coils do not
tolerate sharp changes in pitch along their lengths.
Rather, changes in pitch at the boundaries between
putative heptad and hendecad motifs are blurred
and smoothed out locally. This is well seen in the
crystal structure of GrpE where heptads alternate
with hendecads; the pitch does not abruptly shift
from left-handed to right-handed in a zigzag manner
but appears to be nearly constant. Nevertheless the
examples of RHCC and hemagglutinin clearly show
that the pitch in a coiled coil can change substan-
tially over a longer distance. It would be interesting
to design a coiled coil where a run of heptad motifs
was followed by a run of hendecad motifs, first to
show that strong left-handed supercoiling can coex-
ist with strong right-handed supercoiling and sec-
ond to gauge how rapidly the pitch changes at the
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boundary. We suggest that the behavior of natural
coiled coils is due to the relative stiffness of the
a-helical strands allowing the tilt angle to change
only slowly over a distance. All this raises the ques-
tion of whether the heptads and hendecads in a
mixed sequence are able to make the same kind of
interactions in the core of a coiled coil as they can in
a purely heptad-based or hendecad-based sequence.
For example, it was of interest to know whether the
“a” and “d” layers of the heptads of GrpE are similar
to those of canonical coiled coils and thus whether
the dimer interface can be considered to be that of a
true coiled coil. This would enable us to decide
whether it is meaningful to consider GrpE as con-
sisting of alternating heptad and hendecad motifs or
whether it is more properly treated as having 18-
residue motifs. Using the recommended default cut-
off values, our program SOCKET (Walshaw and
Woolfson, 2001) did not identify any clear knaobs into
holes interactions consistent with a two-stranded
coiled coil. However, when the parameters were
slightly relaxed to allow more distant knobs into
holes, interaction layers of knob residues were iden-
tified. These layers had faults consistent with the
out-of-register helix—helix interactions. Thus the
helical interface of GrpE can be considered a rather
loose and distorted noncanonical coiled coil. Clearly
more work is required to determine whether these
features and the near-constant pitch found in GrpE
are the general case for alternating heptad and hen-
decad motifs or whether coiled coils exist (or can be
designed) where the pitch changes more abruptly
(forming a zigzagging structure) because both types
of motif form strong interfaces with well-defined
knobs into holes packing.
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