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Abstract 

Registering diagnostic lung CT and whole body CT images is a difficult task due 

to their acquisition under different breathing stages. We have implemented a 

novel framework for 3D CT lung image registration which combines elastic 

registration with log-unbiased deformations and a spatially variable constraint to 

reduce image folding and retain the rigidity of the bones. A comparison of the 

proposed method, versus classic elastic registration on 3D phantom data, has 

shown that our algorithm has been successful in keeping the ribs and other bony 

structures rigid while reducing the amount of folding of the deformation field.  

I. Introduction                                        

Registering a diagnostic CT image to a whole body CT image used for PET attenuation 

correction is a very complex task for two reasons : (1) the volumes are acquired during 

different breathing stages; the whole body CT is obtained during passive breathing 

without any forced ventilatory movement, and the diagnostic lung CT is taken under 

deep inspiration for an enhanced view of the lung tissue (for better detection of tumours 

and viewing of the airways); (2) the diagnostic lung CT is acquired after the injection of 

a contrast agent whereas the whole body CT is acquired without contrast enhancement. 

Non-rigid image registration of the CT images is therefore necessary to establish spatial 

correspondence between the two volumes. A common problem with non-rigid 

registration techniques is that they treat the entire image as a flexible object and even 

rigid structures, such as the bones and the spine, are treated non-rigidly. The physical 

properties of the underlying structures are generally not taken into consideration while 

registering the images. One-to-one correspondence between the images is also desirable 

to avoid the appearance or disappearance of unwanted structures within the image. 

However, current registration techniques fail to meet both these conditions 

simultaneously leading to physically implausible solutions.      

To date, there have been a few efforts in providing spatially varying or local 

regularization methods for image registration. One of the first inhomogeneous 

registration algorithms was proposed by Davatzikos [1], who used an inhomogeneous 

elastic model for registration of brain images. The method was designed to favour 

deformations in certain structures as specified by the user. However, the method was not 

able to recover very large deformations and was computationally very expensive. Other 

methods developed were a damped spring method [2], an inhomogeneous fluid 

registration [5], a finite element model [3] and a landmark based warp incorporating 
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rigid structures [11]. However, none of these techniques have been applied for CT lung 

image registration. Staring et al. [8] proposed a method based on B-splines registration 

which uses subsequent filtering of the deformation field after a regular number of 

iterations to constrain the deformation of the bones. This method was used for registering 

CT lung images, but the results did not show a sufficient overlap of the rigid structures 

after registration. 

Image registration is an ill-posed problem because multiple solutions exist, and the only 

way to reach to a particular solution is to add suitable constraints to the problem.  The 

purpose of our work is to combine the advantages of different techniques in a new 

integrated framework that provides a physically plausible solution for registering whole 

body CT with diagnostic lung CT volumes.  In this work, we will demonstrate the 

functionality and performance of this framework on a CT lung phantom dataset with 

different breathing stages.   

II. Proposed Method: 

Our proposed method extends the classic elastic registration model because of its 

suitability to model the physical behaviour of human tissue [6]. Elastic image registration 

is defined in terms of the Navier-Lamé linear partial differential equations where internal 

forces act as the regularizer and the deformation is driven by external forces [10]. The 

behaviour of the model in terms of the displacement vector field ‘u’ is represented by the 

following equation:  

     ,div      u uF  (1) 

where ‘F ’ denotes the external forces. The derivation of the external force term is based 

on the similarity measure and optimization is achieved through the gradient descent 

method. The Lamé constants, ‘λ’ and ‘µ’, control the material properties of the elastic 

model. Since solving the equation in the above form is computationally expensive, we 

use the method presented by Fischer and Modersitzki [4] which utilizes the fast Fourier 

transform to obtain a fast direct solution for the large system of linear equations and 

avoids the necessity to invert the matrix associated with the system. 

We also incorporate a statistical distribution of the Jacobian maps of the deformation 

field in the logarithmic space to produce unbiased transformations from the external 

force component, as suggested by the work of Yanovsky et al. [9]. This step constrains 

folding of the deformation field and yields a better distribution of the Jacobian maps 

within the image. The new external force component is given as:  

2

( , , ( )) ( ) ( ) ( ) ( ( )) ( ( )) 1 log ( ( )) ,F R M x R x M x s x Id x dx J x J x dx

 

      | | | |u u u u (2) 

where ‘R’ is the reference image, ‘M’ is the moving image, ‘γ’ is a weighting parameter, 

‘s(x)’ is the original transformation, ‘Id’ is the identity transform, ‘০’ denotes the  

composition operator  and J(u) is the determinant of the Jacobian matrix of the 

deformation field which describes the change in the volume (compression or expansion) 

at the particular location.     

To maintain the rigidity of the bones during the registration process and prevent any 

bending, we add the filtering technique of the deformation field as proposed in Staring et 

al.[5] into our framework. The spatially varying filter is applied to the deformation field 

after every iteration or after a specified number of iterations. The objective of the filter is 
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to preserve the linearity of the deformations of the rigid tissue. This is achieved by 

calculating a weighted mean over a small neighbourhood (Ωx), as shown below:  

        
x xx Ω x Ω

x c x x / c x , m u  (3) 

where c(x) is the stiffness coefficient map with values between 0 (for nonrigid 

structures) and 1 (for rigid structures such as bone) . The current experiment uses a 5 x 5 

x 5 neighbourhood for the filter while the stiffness map for the bones is obtained using 

thresholding of the intensity values. The filtered deformation field is then defined by 

assigning a value close to the mean deformation if the tissue is rigid, and a value close to 

the original deformation otherwise. The estimation for the resultant deformation field is 

shown in Eq (4):  

         (x) 1-c x x +c x xNewu u m  (4) 

III. Experiments and Results  

The proposed algorithm was tested on a phantom dataset generated using the 4D 

NURBS-based Cardiac-Torso (NCAT phantom) toolkit developed by Segars [7]. The 4D 

NCAT phantom is a realistic and flexible simulation tool for generating CT volumes and 

modelling cardiac and respiratory motion. Five volumes have been generated 

representing different stages of a breathing cycle having a resolution of   192 x 192 x 192 

voxels. The voxel size in each direction is 0.48 mm. Gaussian noise was added to the 

images to test the robustness of the algorithms.  

The proposed method has been compared with the standard elastic registration technique 

that has the same underlying transformation model as our proposed method. The 

accuracy of the proposed method has been validated by measuring the volume overlap of 

the organs (such as the lungs, liver, ribs and spine) in the reference and the moving 

image after registration. The overlap ratio (also named Dice Coefficient) used is defined 

as:  

  1 2 1 2
Overlap ratio 2 V V V V , +  (5) 

where V1 and V2 are the volumes representing a particular organ in the reference and the 

moving image. We also compare the percentage of folding that occurs in both methods, 

estimated from the Jacobian determinant values of the deformation field. The different 

stages of the breathing cycles have been registered with one another. A coarse-to-fine 

multi-resolution strategy was used to recover large deformations. Three levels of 

resolution were used for both registration algorithms, and 250 iterations were performed 

for each level. The stiffness coefficient map c(x) was calculated by binary thresholding 

of the CT volume. The Dice’s coefficients were calculated for each organ and each 

registration, and were then averaged. The average volume overlap values, displayed in 

Table 1, confirm that the proposed method has a better overlap for the major organs as 

compared to the standard elastic registration, especially in ribs and spine and to a lesser 

degree in the lungs. This can be expected because the lung is compressible/expandable 

organ where the deformations will be largest. Visual inspection of Figure 1 confirms that 

the proposed method has superior performance. Figure 1 also shows that the proposed 

method preserves the rigidity of the bone by restricting the deformation. The average 

percentage of folding of the deformation field that occurs in the general elastic 

registration method is 0.1 % while this percentage is reduced to only 0.007% after 

registering the volumes using our proposed method.   
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Method Ribs Spine Lung Liver Average 

Before Registration 0.7797 0.9355 0.8339 0.7342 0.8208 

Elastic registration 0.9021 0.9214 0.9820 0.9211 0.9316 

Proposed method 0.9638 0.9538 0.9756 0.9423 0.9589 

Table 1. Average overlap (Dice coefficient) of the organs 

 

Figure 1: Example slices of 3D registration results (a) Moving Image, (b) Reference 

Image, (c) Difference Image before registration, (e) Transformed image after elastic 

registration, (f) Difference Image after elastic registration, (h) Transformed image after 

registration with the proposed method, (i) Difference image after registration with the 

proposed method.  Zoomed image of the bone (labelled by red box in the other images) 

with the deformation field (d) Using elastic registration, (g) Using proposed method. 
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IV. Discussion and Conclusion  

In traditional non-rigid registration techniques, the entire image is treated with the same 

physical properties, which can result in physically implausible deformation of rigid 

structures. In this paper, we have presented a new framework that successfully combines 

elastic registration with log unbiased deformations and spatial constraints for bone 

rigidity. Our proposed method was quantitatively evaluated on the NCAT phantom and 

its comparison with the standard elastic registration technique shows that our method has 

a superior performance. The organ overlap ratios and the Jacobian values indicate that 

our method has performed well in preserving the rigidity of the bones and in preserving 

image topology. Hence, our method is able to model locally rigid motion and find a 

physically plausible solution for the given registration problem. Our future work focuses 

on extending this framework to accommodate for registration of contrast enhanced 

diagnostic lung CT volumes to whole body CT volumes.    
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