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Abstract
Identifying functional brain regions from fMRI data involves the comparison of in-

dividual activations and the inference of group activation model. To overcome the short-
comings of voxel-based analyses, which model the data as a smooth random field, we
use a method that directly compares the individual activation patterns. In our work, an
optimal, generative model of the activation foci of interest is computed by employing
factor analysis and model selection techniques. We show the advantages of our approach
to functional localisation on synthetic data and data from an auditory fMRI experiment.

1 Introduction
Identifying brain regions of interest across subjects using functional magnetic resonance
imaging (fMRI) is difficult due to the considerable degree of inter-subject variability in
shape, location and configuration of these regions [4]. The correspondence problem can
be solved by constraining group analysis by functional labels, or macro-anatomical land-
marks [7]. The standard procedure consists in registering the different brains, performing a
voxel-wise, multivariate analysis (e.g. random effects analysis, RFX) and comparing func-
tionally specific effects in the group activation map to atlases containing architectonic in-
formation from post mortem brains [5, 9, 13]. Beyond that, structural matching techniques
have been recently employed for comparing the functional activation patterns across subjects
[6, 8, 11, 12]. We use the surface-based, structural analysis method ISA by Engel, et al. [6],
which allows investigating thoroughly the large number of small but separate activation foci
in the auditory cortex (AC) in relation to regional, macro-anatomical landmarks [1, 13]. Our
work focusses on the model estimation and selection problem in order to extend their ap-
proach: Based on the activation mapping, a group activation model is obtained by applying
standard manifold learning methods. A model that generalises to a wider population (i.e. un-
seen data) without over-fitting is selected by comparing the performance of different models.
The quality of the functional localisation results can then be evaluated statistically.

2 Structural Multi-subject Analysis
Prior to the group analysis, each individual fMRI data set is transformed to a surface-based,
sparse description Y (s) = (y1, . . . ,yN(s)),s = 1, . . . ,K, in terms of the spatial coordinates of
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local maxima y j in the K activation maps [6]. Therefore, the functional volumes are pre-
processed, projected onto the individual cortical surfaces, and analysed in the general linear
model framework. The individual activation patterns Y (s) are assumed to be instantiated
from a group model X = (x1, . . . ,xN), which represents the activation foci of specific re-
gions of interest (ROI). Each pattern may be subject to random and structural error (e.g., due
to measurement and detection error, or inter-individual differences). In order to separate the
ROI from noise, our method uses a parametric model G (p,X) of the group activation pattern,
where the parameters p define constraints on the functional variability across subjects.

Operto, et al. [8] use a Markov process for inferring the group model by comparing the
relative positions of activations in a global reference space. The BFL detection by Thirion,
et al. [11, 12] relies on the leave-one-out validation of individual activations being observed
from average (RFX) activation maps X . In their approaches, p would comprise global pose,
spatial relaxation and smoothing parameters (to account for misregistration), as well as a
reproducibility criterion. In contrast, the ISA method of Engel, et al. [6] simultaneously
estimates the group activation model and recovers correspondences between the activation
foci of specific functional fields by matching in an embedded, i.e. intrinsic, pattern space.
Here, X is a reference pattern, and p contains local pose and variation parameters.

2.1 Activation Mapping
Let the mapping of activation patterns Y ∈ {Y (s),s = 1, . . . ,K} be represented by a function

`(L∗) : X 7→ Y, where L∗ = argmax
L

C (L,P,τ), (1)

such that `(xi) is the observed activation focus y j ∈ Y that best corresponds to model point
xi ∈ X (and vice versa). L∗ defines the optimal pairwise assignments w.r.t. the functional
C (L,P,τ) = ∑i ∑ j P(i, j)L(i, j), where P is a correspondence probability matrix with ele-
ments from [0,1], and

L(i, j) =
{

1, if P(i, j) = maxi P(i, j) = max j P(i, j)∧P(i, j) > τ ∈ [0,1)
0, otherwise. (2)

Following [6] for determining true correspondences (1), an iterative scheme estimates at
each discrete time step t > 0 the correspondence probability P, which depends on the feature
affinity in embedded space, and computes a non-rigid, geometry-preserving transformation
to align X and Y w.r.t. the matching pairs i, j. This transformation is described as a smooth,
time-varying displacement field u(x, t),x∈ X , which is expressed in terms of a weight vector
q as u(x, t) = Φq(t), i.e. X(t) = X + u(x, t). The orthonormal vectors in Φ span the pattern
space according to the chosen Gaussian kernel embedding of the activation foci.

2.2 Inferring a Graphical Model of the Functional ROI
Finally, the group activation pattern is defined as

X̄ = {xi : p(xi|Y )≥ ϑ}, (3)

where ϑ ∈ [0,1] is a threshold on the reproducibility of activations in the group. Based on the
correspondences L∗s,ς with a reference pattern X = Y (ς),ς = 1, . . . ,K, we can directly study
the properties of the point distribution that results from the Gaussian kernel embedding [6].
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More specifically, standard methods from statistics, i.e. (kernel) PCA [10, 14], can be applied
for robustly building a statistically representative model of the group activation,

X∗ = X̄∗+Ψb. (4)

Here, X̄∗ denotes the observation mean, and the functions ψk ∈Ψ span the generative pattern
space according to the d×d-empirical covariance matrix C = Ψ∆2Ψ> of the centred random
variables in embedded space. The weight vector b comprises the latent variables, which
follow a N (0,I) distribution with d degrees of freedom (DOF). The posterior p(b|Y ) may
then be used instead of the energy functional C for assessing the matching confidence.

2.3 Model Selection
The observable variables Y are aggregated in a model (4) representing the underlying struc-
tural organisation of the data. Latent variables, as inferred by factor analysis (Sect. 2.2),
represent shared variance, i.e. variations in the spatial coordinates of ROI, expanded along
the (ordered) principal components ψk. Each observation Y deviates from the maximum a-
posteriori reconstruction X̄∗+ Ψ̄b∗ by the residual ρ , for which p(ρ) = N (0,σI). In our
case, the reconstruction error depends on the complexity m of the generative model, as well
as on the reliability of the underlying correspondence sets (i.e. quality of the “training data”).

By model selection one wants to find the m < d-dimensional basis expansion that min-
imises the empirical risk R(σ ,b,m) of the regression function. R is a function of the measure-
ment error, of the estimation error, i.e. distance between the model parameters in the full (Eq.
4) and truncated model space Ψ̄∈Rd×m, and of the approximation error r(m) = ∑

d
l=m+1 b(l)2

(cf. [2]). The model with the smallest number of DOF m is selected, such that no more com-
plex model gives a significantly lower risk. We use the method of Cootes et al. [3] for
comparing the empirical distribution p̂(ρ) with a theoretical distribution p(ρ) using error
propagation and the Bhattacharya metric, B, for hypothesis testing.

Unmatched features with ∑i L(i, j) = 0,∀i, are assigned a null label `(y j) = /0, i.e. con-
sidered “noise”. As a result, each subject may or may not show a region associated with a
focus of activation defined at the group level, and the particular measurement may or may
not be included in the correspondence sets used for learning. Our solution to this “chicken
and egg” problem is to select as reference X a representative pattern Y (ς) from the pairwise
correspondences L∗s,n,s 6= n. A naïve choice is the sample with the largest number of fea-
tures, i.e. ς1 = argmaxs |Y (s)|. Since selecting an individual observation involves the risk of
introducing a bias in the results, we propose the following alternative strategies for model
selection. The second method uses cross-validation, and selects

ς2 = argmax
s

C (L∗s,n,P,τ), n ∈ {1, . . . ,K}\ s, (5)

based on the inter-pattern similarity function C (cf. Sect. 2.1). The third method uses

ς3 = argmax
s

δ (L∗s,n,P,τ), n ∈ {1, . . . ,K}\ s, (6)

where δ averages the (robust) Mahalanobis distance between the embedded features, which
are observed in a fraction of ϑ subjects (cf. Sect. 2.2). Fourthly, we can select from the
sample the pattern Y (ς) as reference that gives rise to the graphical model, of which the
distrbution of residuals p̂(ρς ) best matches the distribution p(ρ) of the observation noise,
i.e.

ς4 = argmin
s

B(p̂(ρς ), p(ρ)). (7)
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(a) (b) (c)
Figure 1: Predicted location of auditory ROI within the temporal region of a reference cor-
tex. The presented group activation foci were identified in at least 7 of 9 subjects using the
proposed multi-subject analysis (a) and related techniques (see Section 3).

3 Experimental Results
For a quantitative analysis, we synthesised a ground truth pattern X of N = 10 activation foci
with a minimum inter-focus spatial distance of 5 mm on a reference cortical surface from
our database. K = 100 disturbed instances Y of this pattern were generated by duplicating
the original pattern, and introducing random position error e(X)∼N (0,σ),σ = 2mm, and
structural error e(N)∼N (0,ε),ε = 0.1. In our experiments, the data set was randomly split
into a training and test set, and then each of the methods (Sect. 2.3) was run on this split.
We computed the error rates using ϑ = 0.5 in a repeated random sub-sampling validation.
The model X that was selected using minimisation of R using Equations 6 and 7, performed
best and provided a good reconstruction of the ground truth. Except from the largest sample-
based model (i.e. using ς1), we obtained superior results over ISA [6]. The difference in the
performance was statistically significant (p < 0.01, one-sided t-test).

We further compared our results on real data from an auditory fMRI study with the ROI
identified using RFX analysis, ISA [6], and a clustering method (referred to as CVC) that
employs principles of [11]. For the sake of fairness, all analyses were constrained to the
local, surface-based reference spaces of the auditory territories described in [1]. In brief,
for ϑ = 5

9 , the proposed method extracted 9 group activation foci compared with 7 regions
from ISA and CVC. Four regions were identified in the RFX group map, in which small but
separate regions were fused into larger clusters or “averaged out”. In comparison with our
method, both ISA and CVC computed suboptimal assignments, most probably due to the
inferior reliability of the underlying models. The reference pattern was in our case chosen
according to Equation 6. As shown in Figure 1(a), the four foci with highest reproducibility
in at least 7 of 9 subjects identified one activation in the primary AC (red label), one ROI
in the secondary AC (yellow) and two regions (green and pink) on planum temporale, i.e.
association cortex. Each of the auditory territories can be further subdivided into at least
three areas and thus the number of regions found corresponds well with this expectation.
Parts of these regions were also detected by ISA and CVC (Figs. 1b and c).

4 Conclusions and Future Work
This paper presents a novel method for inferring a generative model of the positions of ROI
from fMRI data of multiple subjects. Effectively, the method relaxes the common, over-
simplifying assumption of activated regions being clustered in a common spatial reference.
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Correspondences are found across subjects by a topology-preserving registration of the ac-
tivation patterns in an embedded space [6], and then used for learning a generative group
activation model. In combination with the evaluated strategies for model selection, our ap-
proach improves previous work on the structural analysis of group functional data [6, 8, 11],
and allows a statistical assessment of the individual observations and predictive performance
of the group activation model. The identification of outlying observations is a difficult prob-
lem in the given high dimension (i.e. whole brain)–small sample–“several sources of valid
variation” scenario. Therefore, an important direction for future research is to improve the
inter- and intra-subject modelling, such that to each region a probability can be assigned of
being a ROI given its relative position and specific signal characteristics.
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