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Abstract. The traditional random forests technique has shown good classification accuracy for 2D 

object segmentation in natural images. However, the technique suffers from a few problems when 

extending it to 3D or 4D images which are of great interest in biomedical image analysis. In this 

paper, we develop an automatic 3D random forests method which is applied to segment the fetal 

femur in 3D ultrasound. The proposed technique trains balanced trees from imbalanced data. A 

weighted voting mechanism is proposed to generate the probabilistic class label. A cross 

validation on 20 3D fetal ultrasound volumes shows promising results. Experiments show that our 

technique achieves segmentation and measurements close to the accuracy of expert delineations. 

The method runs in a few seconds on a standard PC and hence is well-suited for clinical 

applications.  

1 Introduction 

The novelty of this work is to extend the conventional Random Forests [1] (RF) technique to 

provide an efficient method for 3D or 4D image segmentation. In addition, we provide a robust 

testing by weighting the class decision of each tree. The conventional RF technique has already 

been used to segment 2D images [2, 3] but great interest in medical image analysis raise the 

issue of having such technique to accurately and efficiently segment volumetric objects. 3D 

features are required to represent a 3D object of interest therefore we illustrate how to extend 

several features to 3D efficiently. The technique has been validated and applied to segment the 

fetal femur in 3D ultrasound images although our technique is equally applicable to other 

problems. 

Manual measurements can be inaccurate, tedious and time consuming. Another major 

problem with manual segmentation is intra and inter-observer reproducibility. The problem 

becomes harder when measuring volumetric structures where the errors propagate. Therefore, 

there is an urgent need to automate this process, enhance reproducibility and minimize the 

source of errors. 

Recently, learning-based techniques have been proposed for segmentation. Random forests 

[1] is a learning-based technique in which training using a gold standard segmentation is done 

by building multiple decision trees in which every node except the leaves is a decision node that 

contains a feature (this is called a variable in statistics terms) and its corresponding threshold. 

Every leaf node contains a probabilistic class distribution (histogram of class labels for the 

voxels that have reached that node). Testing is performed by traversing voxels over the trees 

starting from the root of each tree to a leaf node. The voxels are split at a given node depending 

on the classification of the feature/threshold at that node. The average probabilistic decision of 

the class distribution from all trees is considered the final probabilistic class distribution of the 

test case (voxel label in this scenario). For more information see [1-3] and Fig. 1. RF can 

achieve comparable accuracy to boosting while being faster [4]. In addition, randomness in 1) 

choosing a sample training set for each tree and 2) choosing a subset of features to try at each 

node provides better generalization and helps avoid over-fitting. RF has also shown to have 

robustness to noise and ambiguity between classes in the training data which makes the 

technique suitable to segment ultrasound data [1]. 

If an equal vote from each tree is used, the decision can be biased by the strength of the 

classifiers on the decision node path (see green nodes in Fig. 1). For example, if the forest has 

10 trees and the first one has a max depth of 5 while the other 9 trees have a max depth of 12 

then the decision made by the first tree depends on up to 5 classifiers which may provide a poor 

accuracy compared to the trees which have up to 12 classifiers on every path. In addition, the 

accuracy of each classifier affects the decision. This implies that it would be a better strategy if 

each tree contributes a weighted vote toward the final decision. 
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Fig. 1. Random forests which contain T decision trees. Decision is made as a combination of class 

distribution (red circles with green outline) from every tree (ti). 

2 Method 

2.1 Problem Description 

The ultimate goal of this work is to extend the traditional RF technique to 3D image 

segmentation and provide robust and meaningful 3D feature sets that can be computed 

efficiently in 3D. In addition, we provide a weighted decision that depends on the strength of 

the features used in each tree. 

2.2 3D Feature Sets 

Each node in the classification tree in the RF framework is a classifier. The classifier is in 

reality a feature and its threshold. In conventional RF, n' features are randomly selected out of n 

features in the pool (in 3D images, n can be a very huge number, e.g., 10
8
). This sub-section 

describes how to create this feature pool. 

Several challenging properties of ultrasound data like shadowing, speckle and other artifacts 

make the problem hard. Therefore, "intelligent" features are required to capture all variations. 

Several feature sets are constructed for a given image. We use the phrase "feature set" to denote 

the group of features of the same type but with different window sizes and locations around a 

Voxel Of Interest (VoxOI). Unary3D, binary3D, rectangle3D [3], Haar3D [5, 6] feature sets are 

used and averaged rectangle3D and position3D feature sets are proposed. Fig. 2 illustrates some 

of these feature sets. These features are extracted from image voxels. 

A unary3D feature is the intensity value of a random voxel within a random size window 

around VoxOI. A binary3D feature is the sum, difference or absolute difference of two random 

voxels in a random window around VoxOI [3]. A rectangle3D feature is the sum of all voxels of 

a random size rectangular cuboid starting from a random coordinate around the VoxOI. These 

feature sets have shown good performance in natural image segmentation [2, 3]. We extend the 

2D integral images [7] to 3D, see equations (1) and (2), to find the 3D rectangular sum 

efficiently. Notice that the 3D integral image can be efficiently computed in one pass. Since 

rectangle3D features depend on the size of rectangular cuboid which is biased to its dimensions 

we propose an averaged rectangle3D. The averaged rectangle3D feature set is actually a 

unary3D feature set of the sub-sampled image in a multi-resolutions image. Haar3D features are 

used to capture edge regions [6]. Finally, position3D features are used to capture the spatial 

locations of the voxels. This feature set helps discard many regions that have similar intensity 

and edge information to the object of interest (e.g., in our case allowing to distinguish the femur 

from other structures like tibia). 
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(2) 

In each feature set many features exist. For instance, in a rectangle3D feature set 11
6
 features 

can be generated with a maximum rectangle3D size of (11, 11, 11) starting from a random 

voxel within a window of a maximum size (11, 11, 11) around VoxOI. Calculating such 

features in 3D requires considerably more time than in 2D. In addition, many of these features 

are redundant and many are poor to be used for classification. Therefore, a weighted decision 

from each tree should give a more accurate classification. 
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(a) binary (b) Rectangle (c) Vertical Haar 

Fig. 2. Examples of the feature sets. The green color voxels are summed and subtracted from 

the summed red voxels.  

2.3 Training Random Forests 

In the traditional RF, the training phase proceeds by building randomized decision trees. The 

number of trees is set before hand. A top-down construction for every tree is performed starting 

from the root node. Each tree is trained on a random set of the training points with replacement. 

For each node in the tree n' features from the feature pool are randomly selected without 

replacement. The "best" feature out of n' with the "best" threshold is selected as a classifier in 

the tree node. Information gain is usually used to decide the performance of a classifier. The 

training set is then divided into two sub-sets according to the results of the classifier to left and 

right branches. The same process is continued recursively for each sub-set until the maximum 

tree height is reached or no more gain is achieved. For more information see [1]. After trees 

construction, every leaf node contains a probabilistic class distribution P(ci|l) for each class 

which is the histogram of the training examples of class label ci that reached leaf node l. 

2.4 Segmentation & Measurements 

In traditional RF, classifying new voxels proceeds by testing each voxel on the 

features/thresholds for every tree starting from the root to a leaf node. The probability for a 

voxel vi to belong to a specific class cj is the percentage of voxels of class cj that reached the 

leaf node with respect to all voxels reached it (vleaf) during training (3). The probabilities from 

all trees are averaged to generate the final probabilistic decision of a voxel vi belonging to a 

class cj (4). 
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Here T is the number of the trees and lt is a leaf node at treet.  

One major issue is the equal vote (1/T) from each tree where some trees may provide a bad 

classification accuracy. One solution could be to increase the number of trees but this 

significantly increases the training and testing time in the RF. Therefore, we propose a weighted 

voting in which the vote is weighted depending on the features used in each tree starting from 

the root until the leaf node. The decision from each tree is based on the classification accuracy 

of the nodes visited for every voxel vi. To embed this into the RF framework, a weighted sum of 

trees probabilities is proposed and equation (4) is generalized to (5). 
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(6) 

Here F is the total number of features on the path from the root to the leaf when classifying a 

voxel and Scoref(treet) is the training score of a feature f on a path at tree t. Finally, the volume 

of the segmentation of class cj is easily found by multiplying the number of segmented voxels 

by the voxel spacing. 

2.5 Post-processing 

This step is application-specific and is mainly applied here to reject regions with similar local 

shape and intensity distribution to the object of interest. Although RF provides good 
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classification accuracy, it is a discriminative model that captures local similarities. As a result, 

any structure which looks similar in intensity distribution and local shape can be regarded as the 

object of interest. A position feature set is added to reject such regions. Unfortunately, in our 

specific application some femur like structures are close to the femur and therefore position 

features may not be able to distinguish between the two (e.g., the femur is connected to tibia via 

the knee ligaments). To accommodate this, the largest 3D connected  component was 

automatically selected (the femur).  

3 Experimental Results 

Several measurements of fetal structures from 2D ultrasound images are important to diagnose 

the growth of the fetus and estimate gestational age and birth weight [8, 9]. Clinicians usually 

measure head circumference, biparietal diameter, abdominal circumference and femur length. 

Several research groups have studied and manually measured the fetal femur [8-10]. They have 

mainly focused on measuring femur length to correlate it with gestational age or birth weight. 

Several research groups have tried to automate the process of segmenting and measuring such 

structures in 2D ultrasound images [5, 11]. To our knowledge we are the first to investigate the 

problem of automatic femur volume segmentation in 3D ultrasound images. 

3.1 Dataset 

We tested our technique on 20 3D ultrasound volumes [9] acquired on 19 weeks fetuses ±6 days 

using a GE Voluson 730 scanner. Volumes dimensions are approximately 70×70×140 with a 

(0.5×0.5×0.5) mm
3
 voxel spacing. Although out-of-bag error estimate can be used as a 

classification error measure [1], cross validation was performed on the 20 volumes by using 18 

images for training and two for testing. Cross validation provides a more general and realistic 

error measure compared to the out-of-bag error in this application. 

3.2 Validation methodology 

Experiments on the traditional and weighted RF are reported to support the proposed technique. 

RF requires several parameters to be set. The parameters were fixed for all experiments (T = 10, 

max-tree-depth = 10, n' = 100). Recall and precision were calculated to measure how well the 

segmentation of the proposed technique compared to an expert manual segmentation according 

to (7) and (8) respectively. 

Recall =
FPTP

TP



 (7) Precision =
FNTP

TP



  (8) 
Where: TP is True Positive 

 FP is False Positive 

 FN is False Negative 

Recall and precision comparisons of the 20 volumes for the traditional RF and the weighted 

RF are shown in Table 1. Notice that the higher the recall the closer the segmentation is to the 

ground truth. Bland-Altman plots for the volume measurements to compare the manual 

segmentation and the traditional and weighted RF techniques show that the weighted RF has the 

minimum bias and tightest standard deviation bounds (Fig. 3). Visual comparisons between the 

manual segmentation and the both RF methods are shown in Fig. 4.  

The training and segmentation times for the RF technique are shown in Table 2. These times 

are for one experiment where 18 ultrasound images were used for training and one for testing, 

T=10, n'=100, Max-tree-depth=10, n~=8*10
6
. 

 

 

 

 

 

 

 

 

 

 

 
  

Fig. 3. Bland-Altman plots for the segmented femur volumes. Left: manual vs. traditional. RF. 

Right: manual vs. weighted RF. 
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4 Conclusions & Future work 

In this paper, the RF technique has been extended from the traditional 2D RF to 3D. We have 

shown that using weighted class decision from each tree in RF outperforms the conventional 

method. The technique has shown good accuracy and performance on the problem of fetal 

femur segmentation in 3D ultrasound data. Validation has been performed on a good size 

dataset which showed promising results. One major issue to consider is to eliminate irrelevant 

features in the huge feature pool. This will theoretically provide better classification accuracy. 

A second issue is how to integrate global shape information in the RF framework since RF 

mainly capture the local shape information of the object of interest. Researchers have looked 

into this issue by applying a generative model to the results of the discriminative model (e.g., 

Boosting and its variations, RF, etc...) [12]. Specific to our application, the feature set could 

also be extended to account for the signal attenuation for both the distal and proximal ends of 

the femur. We also plan to study the intra and inter-observer reproducibility by doing multiple 

manual segmentations from multiple experts. Finally, this approach is general and not restricted 

to the femur or indeed ultrasound. We plan to look at other applications too.  
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Fig. 4. A 2D slice of the segmentation using 3D random 

forests. Top is an original longitudinal (left) and ground truth 

(right). Bottom is the segmentation using traditional RF (left) 

and weighted RF (right). 

 

Table 1. Recall & precision for the 

traditional and weighted RF methods. 

 µ±σ 

Recall 

µ±σ  

Precision 

Trad. RF 64%±18% 88%±11% 

Weighted 
RF 

70%±15% 88%±11% 

 

Table 2. Training & test time for 

traditional and weighted RF methods. 

 

Training 

time 

(Hours) 

Segmentation 
time (Sec) 

Trad. RF 18 13 

Weighted 
RF 

18 22 

 


