Automata over Infinite Alphabets

Andrzej Murawski and Nikos Tzevelekos

Lecture 4: Fresh-Register Automata

Freshness

We saw automata for recognising languages like:

$$
\begin{aligned}
& \mathcal{L}=\left\{d_{1} d_{2} \cdots d_{n} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall i . d_{i} \neq d_{i+1}\right\} \\
& \mathcal{L}=\left\{d_{0} d_{1} d_{2} \cdots d_{n} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall i>0 . d_{i} \neq d_{0}\right\}
\end{aligned}
$$

Such languages are based on being able to capture local freshness: being able to distinguish a name from a bounded number of names in memory.

However, consider this language that describes e.g. a memory allocator in Java or ML:

$$
\left.\mathcal{L}_{\text {fresh }}=\left\{d_{1} d_{2} \cdots d_{n} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall_{i \neq j} d_{i} \neq d_{j}\right)\right\}
$$

Such examples require global freshness, which we examine in this lecture.

Fresh-Register Automata

An r-Fresh-Register Automaton (r-FRA) is a tuple $\mathcal{A}=\left\langle Q, q_{I}, \tau_{I}, \delta, F\right\rangle$, where:

- Q is a finite set of states,
- $q_{I} \in Q$ is the initial state,
- $F \subseteq Q$ is the set of final states,
- $\tau_{I} \in R e g_{r}^{i}$ is the initial r-register assignment,
- and $\delta \subseteq Q \times O p_{r} \times Q$ is the transition relation,
where $O p_{r}=\left\{i, i^{\bullet}, i^{\circledast} \mid 1 \leq i \leq r\right\}$.

Thus, the new operation is: $q \xrightarrow{i^{\circledast}} q^{\prime}$
It means: accept a globally fresh name and store it in register i

Semantics of FRAs: in pictures

Semantics of FRAs: in pictures

Semantics of FRAs: in pictures

Examples

$$
\begin{aligned}
\mathcal{L}_{\mathrm{fresh}} & =\left\{d_{1} d_{2} \cdots d_{n} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall_{i \neq j}\left(d_{i} \neq d_{j}\right)\right\} \\
\mathcal{L} & =\left\{d_{1} d_{1} d_{2} d_{2} \cdots d_{n} d_{n} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall_{i \neq j}\left(d_{i} \neq d_{j}\right)\right\} \\
\mathcal{L}^{\prime} & =\left\{d_{1} d_{1}^{\prime} d_{2} d_{2}^{\prime} \cdots d_{n} d_{n}^{\prime} \in \mathcal{D}^{*} \mid n \geq 0 \wedge \forall_{i<j}\left(d_{j} \neq d_{i}, d_{i}^{\prime}, d_{j}^{\prime}\right)\right\}
\end{aligned}
$$

Formal semantics of FRAs

Notation:

$\nu(x)=$ the set of names appearing in x
Let $\mathcal{A}=\left\langle Q, q_{I}, \tau_{I}, \delta, F\right\rangle$ be an r-FRA. To give a semantics to FRAs we need an extended kind of configuration. Let us set:

$$
\operatorname{Conf}_{\mathcal{A}}=\left\{(q, \tau, H) \in Q \times \operatorname{Reg}_{r}^{\mathrm{i}} \times \mathcal{P}_{\mathrm{fin}}(\mathcal{D}) \mid \nu(\tau) \subseteq H\right\}
$$

That is, configurations are triples of a state q, an r-register assignment τ and a history H (the set of all names seen so far by the automaton).

An evolution $\left(q_{1}, \tau_{1}, H_{1}\right) \xrightarrow{d}\left(q_{2}, \tau_{2}, H_{2}\right)$ between configurations needs to satisfy one of the following conditions (for some $1 \leq i \leq r$):

- $\left(q_{1} \xrightarrow{i} q_{2}\right) \in \delta$, and $\tau_{1}(i)=d, \tau_{2}=\tau_{1}$ and $H_{2}=H_{1}$;
- $\left(q_{1} \xrightarrow{i^{\bullet}} q_{2}\right) \in \delta$, and $d \notin \nu\left(\tau_{1}\right), \tau_{2}=\tau_{1}[i \mapsto d]$ and $H_{2}=H_{1} \cup\{d\}$;
- $\left(q_{1} \xrightarrow{i^{\oplus}} q_{2}\right) \in \delta$, and $d \notin H_{1}, \tau_{2}=\tau_{1}[i \mapsto d]$ and $H_{2}=H_{1} \cup\{d\}$.

The configuration graph of \mathcal{A} is formed by all possible configuration evolutions, and $\mathcal{L}(\mathcal{A})=\left\{w \in \mathcal{D}^{*} \mid\left(q_{I}, \tau_{I}, \nu\left(\tau_{I}\right)\right) \xrightarrow{w}(q, \tau, H) \wedge q \in F\right\}$.

Non-Examples

$$
\begin{aligned}
\mathcal{L}_{\text {palindrome }} & =\left\{d_{1} d_{2} \cdots d_{n} d_{n} \cdots d_{2} d_{1} \in \mathcal{D}^{*} \mid n \geq 0\right\} \\
\mathcal{L}_{\text {fresh }}^{2} & =\left\{w w^{\prime} \in \mathcal{D}^{*} \mid w, w^{\prime} \in \mathcal{L}_{\text {fresh }}\right\}
\end{aligned}
$$

These follow from the next boundedness result.
Theorem. Let \mathcal{L} be some $F R A$-recognisable language. There is an $r \in \mathbb{N}$ such that, for any word $w_{1} w_{2} \in \mathcal{L}$ with $\nu\left(w_{2}\right) \subseteq \nu\left(w_{1}\right)$, there is some $w_{1} w_{2}^{\prime} \in \mathcal{L}$ with $\left|w_{2}^{\prime}\right|=\left|w_{2}\right|$ and $\left|\nu\left(w_{2}^{\prime}\right)\right| \leq r+1$.

Proof. Take r to be the number of registers of an FRA \mathcal{A} accepting \mathcal{L}. Given an accepting run ρ of \mathcal{A} on $w_{1} w_{2}$, with $\nu\left(w_{2}\right) \subseteq \nu\left(w_{1}\right)$, it must be the case that there are no global fresh transitions after accepting w_{1}. But, using only local freshness, \mathcal{A} can at most distinguish between $r+1$ names, hence ρ can be repeated with no more than $r+1$ names.

Closure properties

Following a similar route as for RAs, we can show:

- for any pair of FRAs $\mathcal{A}_{1}, \mathcal{A}_{2}$ there is FRA \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)$
- for any pair of FRAs $\mathcal{A}_{1}, \mathcal{A}_{2}$ there is FRA \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)$

However, our previous theorem denies the following closures:
concatenation e.g. $\mathcal{L}_{\text {fresh }}^{2}\left(=\mathcal{L}_{\text {fresh }} \mathcal{L}_{\text {fresh }}\right)$ is not FRA-recognisable Kleene star we can find a similar example as above [exercise] complement e.g. $\overline{\mathcal{L}_{\text {fresh }}^{2}}$ can be recognised by an (F)RA [exercise]

Another notion of equivalence: Bisimulation

A more behavioural notion of equivalence says:
Two automata are equivalent if they can simulate the operation of one another in a name-by-name manner

For instance (assuming empty initial registers):

but also:

Bisimulation formally

Let \mathcal{A} be an FRA and let \mathcal{G} be its configuration graph. A relation $R \subseteq \operatorname{Conf}_{\mathcal{A}} \times \operatorname{Conf}_{\mathcal{A}}$ is called a bisimulation if, whenever $\kappa_{1} R \kappa_{2}$:

- for all $\kappa_{1} \xrightarrow{d} \kappa_{1}^{\prime}$ there is some $\kappa_{2} \xrightarrow{d} \kappa_{2}^{\prime}$ such that $\kappa_{1}^{\prime} R \kappa_{2}^{\prime}$,
- for all $\kappa_{2} \xrightarrow{d} \kappa_{2}^{\prime}$ there is some $\kappa_{1} \xrightarrow{d} \kappa_{1}^{\prime}$ such that $\kappa_{1}^{\prime} R \kappa_{2}^{\prime}$,
- if $\kappa_{i}=\left(q_{i}, \tau_{i}, H_{i}\right)$, for $i=1,2$, then $q_{1} \in F \Longleftrightarrow q_{2} \in F$.

Moreover:

- If $R_{1} \cup R_{2}$ are bisimulations then so is $R_{1} \cup R_{2}$.
- We take \sim to be the union of all bisimulations, called bisimilarity. I.e. $\kappa_{1} \sim \kappa_{2}$ if $\kappa_{1} R \kappa_{2}$ for some bisimulation $R\left(\kappa_{1}, \kappa_{2}\right.$ called bisimilar).
- $\mathcal{A}_{1} \sim \mathcal{A}_{2}$ if their initial configurations are bisimilar (in the union configuration graph).
- Bisimilarity is an equivalence (reflexive, symmetric \& transitive).

Examples revisited

- $R_{1}=\left\{\left(\left(q_{I}, \tau, H\right),\left(q_{I}, \tau, H\right)\right) \mid \nu(\tau) \subseteq H\right\}$ $\cup\left\{\left(\left(q_{I}, \tau, H\right),\left(q_{1}, \tau, H\right)\right) \mid \nu(\tau) \subseteq H\right\}$
- $R_{2}=\left\{\left(\left(q_{I}, \tau, H\right),\left(q_{I}, \tau^{\prime}, H\right)\right) \mid \nu(\tau) \cup \nu\left(\tau^{\prime}\right) \subseteq H\right\}$ $\cup\left\{\left(\left(q_{1}, \tau, H\right),\left(q_{I}, \tau^{\prime}, H\right)\right) \mid \nu(\tau) \cup \nu\left(\tau^{\prime}\right) \subseteq H\right\}$
- $R_{1} ; R_{2}$ witnesses bisimilarity of first and last automaton

We observe that, in all cases above, the FRAs accept the same languages. Is there a general connection?

Bisimilarity vs language equivalence

Theorem. If $\mathcal{A}_{1} \sim \mathcal{A}_{2}$ then $\mathcal{L}\left(\mathcal{A}_{1}\right)=\mathcal{L}\left(\mathcal{A}_{2}\right)$.
Proof idea. Given an FRA-configuration graph \mathcal{G} and a configuration κ, let $\mathcal{L}(\kappa)$ be the language of all paths from κ to some final configuration:
$\mathcal{L}(\kappa)=\left\{w \in \mathcal{D}^{*} \mid\right.$ there is a w-labelled path in \mathcal{G} from κ to a final $\left.\kappa_{F}\right\}$
It suffices then to show that $\kappa \sim \kappa^{\prime}$ implies $\mathcal{L}(\kappa)=\mathcal{L}\left(\kappa^{\prime}\right)$.
The converse does not hold in general, for example:

Application: equivalence with M-automata

We can define M-type automata similarly to RA(M)'s by simply
extending transition labels to:

$$
O p_{r}=(\mathcal{P}([r]) \cup\{\circledast\}) \times \mathcal{P}([r])
$$

e.g. in $q \xrightarrow{\circledast, Y} q^{\prime}$ we read a globally fresh name and store it in registers Y.

Theorem. For any $r-F R A(M) \mathcal{A}$ there is an ($r+1$)-FRA \mathcal{A}^{\prime} such that $\mathcal{A} \sim \mathcal{A}^{\prime}$.

Application: equivalence with M-automata

Theorem. For any $r-F R A(M) \mathcal{A}$ there is an $(r+1)-F R A \mathcal{A}$ s.t. $\mathcal{A} \sim \mathcal{A}^{\prime}$. Proof. Given an $r-\operatorname{FRA}(\mathrm{M}) \mathcal{A}=\left\langle Q, q_{I}, \tau_{I}, \delta, F\right\rangle$, we define:

- $Q^{\prime}=Q \times$ Part $_{r}, q_{I}^{\prime}=\left(q_{I}, \pi_{I}\right)$ for some $\pi_{I}:[r+1] \rightarrow \mathcal{P}([r])$ partitioning τ_{I} (cf. [RA: sl.28]), $F^{\prime}=F \times$ Part $_{r}$ and:
- for $q \xrightarrow{X, Y} q^{\prime}$ in δ and $\pi_{1}(i)=X$, add $\left(q, \pi_{1}\right) \xrightarrow{i}\left(q^{\prime}, \pi_{1}[Y \hookrightarrow i]\right)$ in δ^{\prime},
- for $q \xrightarrow{\emptyset, Y} q^{\prime}$ in δ and $\pi_{1}(i)=\emptyset$, add $\left(q, \pi_{1}\right) \xrightarrow{i^{\bullet}}\left(q^{\prime}, \pi_{1}[Y \hookrightarrow i]\right)$ in δ^{\prime},
- for $q \xrightarrow{\circledast, Y} q^{\prime}$ in δ and $\pi_{1}(i)=\emptyset$, add $\left(q, \pi_{1}\right) \xrightarrow{i^{\oplus}}\left(q^{\prime}, \pi_{1}[Y \hookrightarrow i]\right)$ in δ^{\prime}, and take $\mathcal{A}^{\prime}=\left\langle Q^{\prime}, q_{I}^{\prime}, \tau_{I}^{\prime}, \delta^{\prime}, F^{\prime}\right\rangle$.
Now, taking R to contain all pairs $\left((q, \tau, H),\left((q, \pi), \tau^{\prime}, H\right)\right)$ of $\mathcal{A} / \mathcal{A}^{\prime}$ configurations such that $\left(\pi, \tau^{\prime}\right)$ represent τ :

$$
\nu(\tau) \subseteq \nu\left(\tau^{\prime}\right) \wedge \forall_{i, d}\left(\tau^{\prime}(i)=d \Longrightarrow \tau^{-1}(d)=\pi(i)\right)
$$

we can show that R is a bisimulation [Exercise].

Main result: bisimilarity is decidable

As FRAs extend RAs, language equivalence for FRAs in undecidable. However, we are going to show the following.

Theorem. The following problem, called Bisimilarity, is decidable.
Input: An r-FRA \mathcal{A} and configurations κ_{1}, κ_{2} with common history. Question: Is it the case that $\kappa_{1} \sim \kappa_{2}$?

Some notes:

- Important for applicability of FRAs as a modelling paradigm.
- The restriction to common history is not essential (but easier).
- Strictly speaking, the input $\left(\mathcal{A}, \kappa_{1}, \kappa_{2}\right)$ is not finite as κ_{1}, κ_{2} may contain names, which come from an infinite domain. However, in this case it suffices to think of the domain as being just H, which is finite.

Proof idea: symbolic reasoning

Consider a pair $\left(\kappa_{1}, \kappa_{2}\right)$ of configurations with $\kappa_{i}=\left(q_{i}, \tau_{i}, H\right)$.
To check whether $\kappa_{1} \sim \kappa_{2}$ are bisimilar, we do not need to know τ_{1}, τ_{2}, H in full detail. Rather, it suffices to know:

- what are the common names of τ_{1}, τ_{2} (and in which positions),
- what are the private names of τ_{1}, τ_{2} (and in which positions),
- what is the size of H with respect to the names in $\nu\left(\tau_{1}\right) \cup \nu\left(\tau_{2}\right)$.

Given the above, we can then reason symbolically, by looking directly at \mathcal{A} (which is finite) rather than its configuration graph (that is infinite).

Symbolic reasoning

Consider a the following situation:

$$
\kappa_{1}=\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad \kappa_{2}=\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right)
$$

where $d_{2}=d_{2}^{\prime}, d_{3}=d_{1}^{\prime}, d_{5}=d_{3}^{\prime}$ and $|H|=8$.
In order for $\kappa_{1} \sim \kappa_{2}$ to hold:

- if $q_{1} \xrightarrow{3} q_{1}^{\prime}$ then there must be $q_{2} \xrightarrow{1} q_{2}^{\prime}$,
- if $q_{1} \xrightarrow{1} q_{1}^{\prime}$ then there must be $q_{2} \xrightarrow{j^{\bullet}} q_{2}^{\prime}$,
- if $q_{2} \xrightarrow{{ }^{\bullet}} q_{2}^{\prime}$ then there must be $q_{1} \xrightarrow{i^{\bullet}} q_{1}^{\prime}$,
- if $q_{2} \xrightarrow{\bullet \bullet} q_{2}^{\prime}$ then there must be $q_{1} \xrightarrow{1} q_{1}^{\prime}$ and $q_{1} \xrightarrow{4} q_{1}^{\prime \prime}$,
- if $q_{2} \xrightarrow{1^{\circledast}} q_{2}^{\prime}$ then there must be $q_{1} \xrightarrow{i^{\circledast}} q_{1}^{\prime}$ or and $q_{1} \xrightarrow{i^{\bullet}} q_{1}^{\prime}$.

In the last case we use the fact that local freshness is more general than global freshness (i.e. it can accept more names).

Global freshness can (sometimes) be as general as local

Consider a the following situation:

$$
\kappa_{1}=\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad \kappa_{2}=\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right)
$$

where $d_{2}=d_{2}^{\prime}, d_{3}=d_{1}^{\prime}, d_{5}=d_{3}^{\prime}$ and $|H|=5$.
In order for $\kappa_{1} \sim \kappa_{2}$ to hold:

- if $q_{2} \xrightarrow{{ }^{\bullet}} q_{2}^{\prime}$ then there must be $q_{1} \xrightarrow{1} q_{1}^{\prime}$ and $q_{1} \xrightarrow{4} q_{1}^{\prime \prime}$,
- if $q_{2} \xrightarrow{1^{\bullet}} q_{2}^{\prime}$ then there must be $q_{1} \xrightarrow{i^{\bullet}} q_{1}^{\prime}$ or $q_{1} \xrightarrow{i^{\oplus}} q_{1}^{\prime}$

This is because $q_{2} \xrightarrow{{ }^{\bullet}} q_{2}^{\prime}$ can accept:

- d_{1} and d_{4} (taken care of by previous case)
- any name in $H \backslash\left(\left\{d_{1}, \cdots, d_{5}\right\} \cup\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\}\right)$ (empty!)
- any name not in H (taken care by either of $q_{1} \xrightarrow{i^{\bullet} / i^{®}} q_{1}^{\prime}$)

Symbolic bisimulations

First, let us represent each pair:

$$
\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right) \quad|H|=5
$$

with:

$$
\left(q_{1}, q_{2},(\{1,2,3,4,5\},\{(2,2),(3,1),(5,3)\},\{1,2,3\}), 5\right)
$$

Thus, we define symbolic configurations as:

$$
\begin{aligned}
\text { Conf }_{\mathrm{s}}=\{ & \left(q_{1}, q_{2}, \rho, h\right) \in Q \times Q \times \operatorname{Span}_{r} \times[2 r+1] \\
& \mid \operatorname{Span}_{r}=\mathcal{P}([r]) \times([r] \cong[r]) \times \mathcal{P}([r]) \\
& \left.\wedge \rho=\left(S_{1}, \hat{\rho}, S_{2}\right) \wedge \operatorname{dom}(\hat{\rho}) \subseteq S_{1} \wedge \operatorname{cod}(\hat{\rho}) \subseteq S_{2}\right\}
\end{aligned}
$$

Notes:

- Symbolic configurations describe pairs of concrete configurations.
- We call the third component of a symbolic configuration a span. It describes how the two registers assignments are related.
- We only need to count the size of H up to $2 r+1$.

Definition of symbolic bisimulation

We represent each pair:

$$
\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right) \quad|H|=5
$$

as: $\left(q_{1}, q_{2}, \rho, h\right)=\left(q_{1}, q_{2},(\{1,2,3,4,5\},\{(2,2),(3,1),(5,3)\},\{1,2,3\}), 5\right)$.
Given r-FRA \mathcal{A}, a relation $R \subseteq \operatorname{Conf}_{\mathrm{s}}$ is called a symbolic bisimulation if, when $\left(q_{1}, q_{2}, \rho, h\right) \in R$, with $\rho=\left(S_{1}, \hat{\rho}, S_{2}\right), q_{1} \in F \Longleftrightarrow q_{2} \in F$ and:

- for all $q_{1} \xrightarrow{i} q_{1}^{\prime}$ with $i \in \operatorname{dom}(\hat{\rho})$ there is $q_{2} \xrightarrow{\hat{\rho}(i)} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho, h\right) \in R$,
- for all $q_{1} \xrightarrow{i} q_{1}^{\prime}$ with $i \in S_{1} \backslash \operatorname{dom}(\hat{\rho})$ there is $q_{2} \xrightarrow{j^{\bullet}} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho[i \mapsto j], h\right) \in R$,
- for all $q_{1} \xrightarrow{i^{\oplus}} q_{1}^{\prime}$ there is $q_{2} \xrightarrow{j^{\bullet}} q_{2}^{\prime}$ or $q_{2} \xrightarrow{j^{\oplus}} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho[i \mapsto j], h \oplus 1\right) \in R$,
where:

$$
\begin{aligned}
\rho[i \mapsto j] & =\left(S_{1} \cup\{i\}, \hat{\rho}[i \mapsto j], S_{2} \cup\{j\}\right) \\
\hat{\rho}[i \mapsto j] & =(\hat{\rho} \backslash(\{i\} \times[r]) \backslash([r] \times\{j\})) \cup\{(i, j)\} \\
h \oplus 1 & =h+1 \text { if } h \leq 2 r, \text { and }(2 r+1) \oplus 1=2 r+1
\end{aligned}
$$

Definition of symbolic bisimulation (ctd)

We represent each pair:
$\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right) \quad|H|=5$
as: $\left(q_{1}, q_{2}, \rho, h\right)=\left(q_{1}, q_{2},(\{1,2,3,4,5\},\{(2,2),(3,1),(5,3)\},\{1,2,3\}), 5\right)$.
Given r-FRA \mathcal{A}, a relation $R \subseteq \operatorname{Conf}_{\mathrm{s}}$ is called a symbolic bisimulation if, when $\left(q_{1}, q_{2}, \rho, h\right) \in R$, with $\rho=\left(S_{1}, \hat{\rho}, S_{2}\right), q_{1} \in F \Longleftrightarrow q_{2} \in F$ and:

- for all $q_{1} \xrightarrow{i^{\bullet}} q_{1}^{\prime}$:
- for all $j \in S_{2} \backslash \operatorname{cod}(\hat{\rho})$ there is $q_{2} \xrightarrow{j} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho[i \mapsto j], h\right) \in R$,
- if $\|\rho\|<h$ then there is $q_{2} \xrightarrow{j^{\bullet}} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho[i \mapsto j], h\right) \in R$,
- there is $q_{2} \xrightarrow{j^{\bullet}} q_{2}^{\prime}$ or $q_{2} \xrightarrow{j^{\oplus}} q_{2}^{\prime}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}, \rho[i \mapsto j], h \oplus 1\right) \in R$; (because, in every case, i^{\bullet} can capture some globally fresh name)
where $\|\rho\|=\left|S_{1}\right|+\left|S_{2}\right|-|\operatorname{dom}(\hat{\rho})|$ is the number of all names in the two simulated assignments (removing repetitions)

Definition of symbolic bisimulation (ctd ctd)

We represent each pair:

$$
\left(q_{1},\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right], H\right) \quad\left(q_{2},\left[d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \#, \#\right], H\right) \quad|H|=5
$$

as: $\left(q_{1}, q_{2}, \rho, h\right)=\left(q_{1}, q_{2},(\{1,2,3,4,5\},\{(2,2),(3,1),(5,3)\},\{1,2,3\}), 5\right)$.
Given r-FRA \mathcal{A}, a relation $R \subseteq \operatorname{Conf}_{\mathrm{s}}$ is called a symbolic bisimulation if, when $\left(q_{1}, q_{2}, \rho, h\right) \in R$, with $\rho=\left(S_{1}, \hat{\rho}, S_{2}\right), q_{1} \in F \Longleftrightarrow q_{2} \in F$ and:

- the symmetric conditions apply for all $q_{2} \xrightarrow{x} q_{2}^{\prime}$.

Given κ_{1}, κ_{2} with $\kappa_{i}=\left(q_{1}, \tau_{i}, H\right)$, these are symbolic bisimilar, written $\kappa_{1} \sim_{s} \kappa_{2}$, if there is symbolic bisimulation R such that

$$
\left(q_{1}, q_{2}, \tau_{1} \asymp \tau_{2},|H|_{2 r+1}\right) \in R
$$

where $\tau_{1} \asymp \tau_{2}=\left(\operatorname{dom}\left(\tau_{1}\right), \tau_{1} ; \tau_{2}^{-1}, \operatorname{dom}\left(\tau_{2}\right)\right)$
and $|H|_{2 r+1}=\left\{\begin{array}{ll}|H| & \text { if }|H|<2 r+1 \\ 2 r+1 & \text { otherwise }\end{array}\right.$.

Bisimilarity is decidable

We can show the following.
Theorem. For any pair of configurations κ_{1}, κ_{2} with common history, $\kappa_{1} \sim \kappa_{2}$ iff $\kappa_{1} \sim_{s} \kappa_{2}$.
and therefore:
Corrolary. Bisimilarity is decidable.
Proof. Given $\left(\mathcal{A}, \kappa_{1}, \kappa_{2}\right)$, it suffices to check whether $\kappa_{1} \sim_{s} \kappa_{2}$, that is, whether there is symbolic bisimulation $R \subseteq \operatorname{Conf}_{\mathrm{s}}$ such that $\left(q_{1}, q_{2}, \tau_{1} \asymp \tau_{2},|H|_{2 r+1}\right) \in R$.
But note that $\operatorname{Conf}_{\mathrm{s}}$ is bounded, so we can exhaustively search in it for an R satisfying the required conditions.

Correspondence

The proof of the Theorem relies on two correspondences.
Lemma. Suppose R is a bisimulation. Then, the relation

$$
R^{\prime}=\left\{\left(q_{1}, q_{2}, \rho, h\right)\left|\exists\left(q_{i}, \tau_{i}, H\right) \in R . \rho=\tau_{1} \asymp \tau_{2} \wedge h=|H|_{2 r+1}\right\}\right.
$$

is a symbolic bisimulation.

Lemma. Suppose R is a symbolic bisimulation. Then, the relation

$$
R^{\prime}=\left\{\left(\left(q_{1}, \tau_{1}, H\right),\left(q_{2}, \tau_{2}, H\right)\right) \mid\left(q_{1}, q_{2}, \tau_{1} \asymp \tau_{2},|H|_{2 r+1}\right) \in R\right\}
$$

is a bisimulation.

Summary and References

Fresh-Register Automata

- Definitions
- Example languages and non-examples
- Closure properties
- Bisimilarity (aka bisimulation equivalence)
- Bisimilarity and language equivalence
- Symbolic methods and decidability

References and further directions

- B. Bollig, P. Habermehl, M. Leucker, B. Monmege: A Robust Class of Data Languages and an Application to Learning. LMCS 10(4) (2014)
- A. S. Murawski, S. J. Ramsay, N. Tzevelekos: Bisimilarity in fresh-register automata. LICS 2015: to appear
- A. S. Murawski, N. Tzevelekos: Algorithmic Nominal Game Semantics. ESOP 2011: 419-438
- N. Tzevelekos: Fresh-register automata. POPL 2011: 295-306

Exercises

1. Taking $\mathcal{L}_{d}=\left\{d w \in \mathcal{D}^{*} \mid w \in \mathcal{L}_{\text {fresh }} \wedge d \notin \nu(w)\right\}$ for some fixed $d \in \mathcal{D}$, show that \mathcal{L}_{d}^{*} is not FRA-recognisable.
2. Design an RA recognising the complement of $\mathcal{L}_{\text {fresh }}^{2}$.
3. Show that bisimilarity is an equivalence relation.
4. Complete the proof of the reduction from $\operatorname{FRA}(M)$ to FRA by showing that the constructed R is a bisimilarity.
