
Automata over Infinite Alphabets

Andrzej Murawski and Nikos Tzevelekos

Lecture 4: Fresh-Register Automata

Freshness

We saw automata for recognising languages like:

L = { d1d2 · · · dn ∈ D∗ | n ≥ 0 ∧ ∀i. di 6= di+1 }

L = { d0d1d2 · · · dn ∈ D∗ | n ≥ 0 ∧ ∀i > 0. di 6= d0 }

Such languages are based on being able to capture local freshness : being
able to distinguish a name from a bounded number of names in memory.

However, consider this language that describes e.g. a memory allocator
in Java or ML:

Lfresh = { d1d2 · · · dn ∈ D∗ | n ≥ 0 ∧ ∀i 6=j di 6= dj) }

Such examples require global freshness, which we examine in this lecture.

Fresh-Register Automata

An r-Fresh-Register Automaton (r-FRA) is a tuple
A = 〈Q, qI , τI , δ, F 〉, where:

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• τI ∈ Regir is the initial r-register assignment,

• and δ ⊆ Q×Opr ×Q is the transition relation,

where Opr = { i, i•, i⊛ | 1 ≤ i ≤ r }.

Thus, the new operation is: q
i⊛
−→ q′

It means: accept a globally fresh name and store it in register i

Semantics of FRAs: in pictures

Semantics of FRAs: in pictures

Semantics of FRAs: in pictures

Examples

Lfresh = { d1d2 · · · dn ∈ D∗ | n ≥ 0 ∧ ∀i 6=j (di 6= dj) }

L = { d1d1d2d2 · · · dndn ∈ D∗ | n ≥ 0 ∧ ∀i 6=j (di 6= dj) }

L′ = { d1d
′
1d2d

′
2 · · · dnd

′
n ∈ D∗ | n ≥ 0 ∧ ∀i<j (dj 6= di, d

′
i, d

′
j) }

qI 1⊛ qI q1
1⊛

1

qI q1
1⊛

1•

Formal semantics of FRAs Notation:

ν(x) = the set of names appearing in x

Let A = 〈Q, qI , τI , δ, F 〉 be an r-FRA. To give a semantics to FRAs we
need an extended kind of configuration. Let us set:

ConfA = { (q, τ,H) ∈ Q× Regir × Pfin(D) | ν(τ) ⊆ H }

That is, configurations are triples of a state q, an r-register assignment τ
and a history H (the set of all names seen so far by the automaton).

An evolution (q1, τ1, H1)
d
−→ (q2, τ2, H2) between configurations needs

to satisfy one of the following conditions (for some 1 ≤ i ≤ r):

• (q1
i
−→ q2) ∈ δ, and τ1(i) = d, τ2 = τ1 and H2 = H1;

• (q1
i•
−→ q2) ∈ δ, and d /∈ ν(τ1), τ2 = τ1[i 7→ d] and H2 = H1 ∪ {d};

• (q1
i⊛
−→ q2) ∈ δ, and d /∈ H1, τ2 = τ1[i 7→ d] and H2 = H1 ∪ {d}.

The configuration graph of A is formed by all possible configuration
evolutions, and L(A) = {w ∈ D∗ | (qI , τI , ν(τI))

w
−→→ (q, τ,H) ∧ q ∈ F }.

Non-Examples

Lpalindrome = { d1d2 · · · dndn · · · d2d1 ∈ D∗ | n ≥ 0 }

L2
fresh = {ww′ ∈ D∗ | w,w′ ∈ Lfresh }

These follow from the next boundedness result.

Theorem. Let L be some FRA-recognisable language. There is an
r ∈ N such that, for any word w1w2 ∈ L with ν(w2) ⊆ ν(w1),
there is some w1w

′
2 ∈ L with |w′

2| = |w2| and |ν(w′
2)| ≤ r + 1.

Proof. Take r to be the number of registers of an FRA A accepting L.
Given an accepting run ρ of A on w1w2, with ν(w2) ⊆ ν(w1), it must be
the case that there are no global fresh transitions after accepting w1.
But, using only local freshness, A can at most distinguish between r + 1
names, hence ρ can be repeated with no more than r + 1 names.

Closure properties

Following a similar route as for RAs, we can show:

• for any pair of FRAs A1,A2 there is FRA A′ such that
L(A′) = L(A1) ∩ L(A2)

• for any pair of FRAs A1,A2 there is FRA A′ such that
L(A′) = L(A1) ∪ L(A2)

However, our previous theorem denies the following closures:

concatenation e.g. L2
fresh (= LfreshLfresh) is not FRA-recognisable

Kleene star we can find a similar example as above [exercise]

complement e.g. L2
fresh can be recognised by an (F)RA [exercise]

Another notion of equivalence: Bisimulation

A more behavioural notion of equivalence says:

Two automata are equivalent if they can simulate the operation of
one another in a name-by-name manner

For instance (assuming empty initial registers):

qI
1⊛

∼ qI q1
1⊛

1⊛

∼ qI
1⊛

2⊛

but also:

qI

q1

q2

1⊛

1, 1⊛

1⊛

1, 1⊛

∼ qI q1
1⊛

1, 1⊛

6∼ qI

q1

q2

1⊛
1

1⊛

1⊛

Bisimulation formally

Let A be an FRA and let G be its configuration graph. A relation
R ⊆ ConfA × ConfA is called a bisimulation if, whenever κ1 Rκ2:

• for all κ1
d
−→ κ′

1 there is some κ2
d
−→ κ′

2 such that κ′
1Rκ′

2,

• for all κ2
d
−→ κ′

2 there is some κ1
d
−→ κ′

1 such that κ′
1Rκ′

2,

• if κi = (qi, τi, Hi), for i = 1, 2, then q1 ∈ F ⇐⇒ q2 ∈ F .

Moreover:

• If R1 ∪R2 are bisimulations then so is R1 ∪R2.

• We take ∼ to be the union of all bisimulations, called bisimilarity.
I.e. κ1 ∼ κ2 if κ1Rκ2 for some bisimulation R (κ1, κ2 called
bisimilar).

• A1 ∼ A2 if their initial configurations are bisimilar (in the union
configuration graph).

• Bisimilarity is an equivalence (reflexive, symmetric & transitive).

Examples revisited

qI
1⊛ (R1)

∼ qI q1
1⊛

1⊛

(R2)
∼ qI

1⊛

2⊛

• R1 = { ((qI , τ,H), (qI , τ,H)) | ν(τ) ⊆ H }

∪ { ((qI , τ,H), (q1, τ,H)) | ν(τ) ⊆ H }

• R2 = { ((qI , τ,H), (qI , τ
′, H)) | ν(τ) ∪ ν(τ ′) ⊆ H }

∪ { ((q1, τ,H), (qI , τ
′, H)) | ν(τ) ∪ ν(τ ′) ⊆ H }

• R1;R2 witnesses bisimilarity of first and last automaton

We observe that, in all cases above, the FRAs accept the same
languages. Is there a general connection?

Bisimilarity vs language equivalence

Theorem. If A1 ∼ A2 then L(A1) = L(A2).

Proof idea. Given an FRA-configuration graph G and a configuration κ,
let L(κ) be the language of all paths from κ to some final configuration:

L(κ) = {w ∈ D∗ | there is a w-labelled path in G from κ to a final κF }

It suffices then to show that κ ∼ κ′ implies L(κ) = L(κ′).

The converse does not hold in general, for example:

qI q1
1⊛

1, 1⊛

6∼ qI

q1

q2

1⊛

1

1⊛

1⊛

Application: equivalence with M-automata

We can define M-type automata similarly to RA(M)’s by simply

extending transition labels to: Opr = (P([r]) ∪ {⊛})× P([r])

e.g. in q
⊛,Y
−−→ q′ we read a globally fresh name and store it in registers Y .

Theorem. For any r-FRA(M) A there is an (r+1)-FRA A′ such that
A ∼ A′.

Application: equivalence with M-automata

Theorem. For any r-FRA(M) A there is an (r+1)-FRA A′ s.t. A ∼ A′.

Proof. Given an r-FRA(M) A = 〈Q, qI , τI , δ, F 〉, we define:

• Q′ = Q× Part r, q
′
I = (qI , πI) for some πI : [r + 1] → P([r])

partitioning τI (cf. [RA: sl.28]), F ′ = F × Part r and:

• for q
X,Y
−−→ q′ in δ and π1(i) = X , add (q, π1)

i
−→ (q′, π1[Y →֒ i]) in δ′,

• for q
∅,Y
−−→ q′ in δ and π1(i) = ∅, add (q, π1)

i•
−→ (q′, π1[Y →֒ i]) in δ′,

• for q
⊛,Y
−−→ q′ in δ and π1(i) = ∅, add (q, π1)

i⊛
−→ (q′, π1[Y →֒ i]) in δ′,

and take A′ = 〈Q′, q′I , τ
′
I , δ

′, F ′〉.

Now, taking R to contain all pairs ((q, τ,H), ((q, π), τ ′, H)) of A/A′

configurations such that (π, τ ′) represent τ :

ν(τ) ⊆ ν(τ ′) ∧ ∀i,d (τ
′(i) = d =⇒ τ−1(d) = π(i))

we can show that R is a bisimulation [Exercise].

Main result: bisimilarity is decidable

As FRAs extend RAs, language equivalence for FRAs in undecidable.
However, we are going to show the following.

Theorem. The following problem, called Bisimilarity, is decidable.

Input: An r-FRA A and configurations κ1, κ2 with common history.
Question: Is it the case that κ1 ∼ κ2?

Some notes:

• Important for applicability of FRAs as a modelling paradigm.

• The restriction to common history is not essential (but easier).

• Strictly speaking, the input (A, κ1, κ2) is not finite as κ1, κ2 may
contain names, which come from an infinite domain.

However, in this case it suffices to think of the domain as being
just H, which is finite.

Proof idea: symbolic reasoning

Consider a pair (κ1, κ2) of configurations with κi = (qi, τi, H).

To check whether κ1 ∼ κ2 are bisimilar, we do not need to know
τ1, τ2, H in full detail. Rather, it suffices to know:

• what are the common names of τ1, τ2 (and in which positions),

• what are the private names of τ1, τ2 (and in which positions),

• what is the size of H with respect to the names in ν(τ1) ∪ ν(τ2).

Given the above, we can then reason symbolically, by looking directly at
A (which is finite) rather than its configuration graph (that is infinite).

Symbolic reasoning

Consider a the following situation:

κ1 = (q1, [d1, d2, d3, d4, d5], H) κ2 = (q2, [d
′
1, d

′
2, d

′
3,#,#], H)

where d2 = d′2, d3 = d′1, d5 = d′3 and |H| = 8.

In order for κ1 ∼ κ2 to hold:

• if q1
3
−→ q′1 then there must be q2

1
−→ q′2,

• if q1
1
−→ q′1 then there must be q2

j•

−→ q′2,

• if q2
1•
−→ q′2 then there must be q1

i•
−→ q′1,

• if q2
1•
−→ q′2 then there must be q1

1
−→ q′1 and q1

4
−→ q′′1 ,

• if q2
1⊛
−→ q′2 then there must be q1

i⊛
−→ q′1 or and q1

i•
−→ q′1.

In the last case we use the fact that local freshness is more general than
global freshness (i.e. it can accept more names).

Global freshness can (sometimes) be as general as local

Consider a the following situation:

κ1 = (q1, [d1, d2, d3, d4, d5], H) κ2 = (q2, [d
′
1, d

′
2, d

′
3,#,#], H)

where d2 = d′2, d3 = d′1, d5 = d′3 and |H| = 5.

In order for κ1 ∼ κ2 to hold:

• . . .

• if q2
1•
−→ q′2 then there must be q1

1
−→ q′1 and q1

4
−→ q′′1 ,

• if q2
1•
−→ q′2 then there must be q1

i•
−→ q′1 or q1

i⊛
−→ q′1

This is because q2
1•
−→ q′2 can accept:

• d1 and d4 (taken care of by previous case)

• any name in H \ ({d1, · · · , d5} ∪ {d′1, d
′
2, d

′
3}) (empty!)

• any name not in H (taken care by either of q1
i•/i⊛

−−−→ q′1)

Symbolic bisimulations

First, let us represent each pair:

(q1, [d1, d2, d3, d4, d5], H) (q2, [d
′
1, d

′
2, d

′
3,#,#], H) |H| = 5

with: (q1, q2, ({1, 2, 3, 4, 5}, {(2, 2), (3, 1), (5, 3)}, {1, 2, 3}), 5).

Thus, we define symbolic configurations as:

Conf s = { (q1, q2, ρ, h) ∈ Q×Q× Spanr × [2r + 1]

| Spanr = P([r])× ([r]
∼=
⇀ [r])× P([r])

∧ ρ = (S1, ρ̂, S2) ∧ dom(ρ̂) ⊆ S1 ∧ cod(ρ̂) ⊆ S2 }

Notes:

• Symbolic configurations describe pairs of concrete configurations.

• We call the third component of a symbolic configuration a span.
It describes how the two registers assignments are related.

• We only need to count the size of H up to 2r + 1.

Definition of symbolic bisimulation

We represent each pair:

(q1, [d1, d2, d3, d4, d5], H) (q2, [d
′
1, d

′
2, d

′
3,#,#], H) |H| = 5

as: (q1, q2, ρ, h) = (q1, q2, ({1, 2, 3, 4, 5}, {(2, 2), (3, 1), (5, 3)}, {1, 2, 3}), 5).

Given r-FRA A, a relation R ⊆ Conf s is called a symbolic bisimulation
if, when (q1, q2, ρ, h) ∈ R, with ρ = (S1, ρ̂, S2), q1 ∈ F ⇐⇒ q2 ∈ F and:

• for all q1
i
−→ q′1 with i ∈ dom(ρ̂) there is q2

ρ̂(i)
−−→ q′2 with (q′1, q

′
2, ρ, h) ∈ R,

• for all q1
i
−→ q′1 with i ∈ S1 \ dom(ρ̂) there is q2

j•

−→ q′2
with (q′1, q

′
2, ρ[i 7→ j], h) ∈ R,

• for all q1
i⊛
−→ q′1 there is q2

j•

−→ q′2 or q2
j⊛

−→ q′2 with
(q′1, q

′
2, ρ[i 7→ j], h⊕ 1) ∈ R,

where: ρ[i 7→ j] = (S1 ∪ {i}, ρ̂[i 7→ j], S2 ∪ {j})

ρ̂[i 7→ j] = (ρ̂ \ ({i} × [r]) \ ([r]× {j})) ∪ {(i, j)}

h⊕ 1 = h+ 1 if h ≤ 2r, and (2r + 1)⊕ 1 = 2r + 1

Definition of symbolic bisimulation (ctd)

We represent each pair:

(q1, [d1, d2, d3, d4, d5], H) (q2, [d
′
1, d

′
2, d

′
3,#,#], H) |H| = 5

as: (q1, q2, ρ, h) = (q1, q2, ({1, 2, 3, 4, 5}, {(2, 2), (3, 1), (5, 3)}, {1, 2, 3}), 5).

Given r-FRA A, a relation R ⊆ Conf s is called a symbolic bisimulation
if, when (q1, q2, ρ, h) ∈ R, with ρ = (S1, ρ̂, S2), q1 ∈ F ⇐⇒ q2 ∈ F and:

• for all q1
i•
−→ q′1:

• for all j ∈ S2 \ cod(ρ̂) there is q2
j
−→ q′2 with (q′1, q

′
2, ρ[i 7→ j], h) ∈ R,

• if ‖ρ‖ < h then there is q2
j•

−→ q′2 with (q′1, q
′
2, ρ[i 7→ j], h) ∈ R,

• there is q2
j•

−→ q′2 or q2
j⊛

−→ q′2 with (q′1, q
′
2, ρ[i 7→ j], h⊕ 1) ∈ R;

(because, in every case, i• can capture some globally fresh name)

where ‖ρ‖ = |S1|+ |S2| − |dom(ρ̂)| is the number of all names in the
two simulated assignments (removing repetitions)

Definition of symbolic bisimulation (ctd ctd)

We represent each pair:

(q1, [d1, d2, d3, d4, d5], H) (q2, [d
′
1, d

′
2, d

′
3,#,#], H) |H| = 5

as: (q1, q2, ρ, h) = (q1, q2, ({1, 2, 3, 4, 5}, {(2, 2), (3, 1), (5, 3)}, {1, 2, 3}), 5).

Given r-FRA A, a relation R ⊆ Conf s is called a symbolic bisimulation
if, when (q1, q2, ρ, h) ∈ R, with ρ = (S1, ρ̂, S2), q1 ∈ F ⇐⇒ q2 ∈ F and:

• the symmetric conditions apply for all q2
x
−→ q′2.

Given κ1, κ2 with κi = (q1, τi, H), these are symbolic bisimilar, written
κ1 ∼s κ2, if there is symbolic bisimulation R such that

(q1, q2, τ1 ≍ τ2, |H|2r+1) ∈ R

where τ1 ≍ τ2 = (dom(τ1), τ1; τ
−1
2 , dom(τ2))

and |H|2r+1=

{

|H| if |H| < 2r + 1

2r + 1 otherwise
.

Bisimilarity is decidable

We can show the following.

Theorem. For any pair of configurations κ1, κ2 with common history,
κ1 ∼ κ2 iff κ1 ∼s κ2.

and therefore:

Corrolary. Bisimilarity is decidable.

Proof. Given (A, κ1, κ2), it suffices to check whether κ1 ∼s κ2, that is,
whether there is symbolic bisimulation R ⊆ Conf s such that
(q1, q2, τ1 ≍ τ2, |H|2r+1) ∈ R.
But note that Conf s is bounded, so we can exhaustively search in it for
an R satisfying the required conditions.

Correspondence

The proof of the Theorem relies on two correspondences.

Lemma. Suppose R is a bisimulation. Then, the relation

R′ = { (q1, q2, ρ, h) | ∃(qi, τi, H) ∈ R. ρ = τ1 ≍ τ2 ∧ h = |H|2r+1 }

is a symbolic bisimulation.

Lemma. Suppose R is a symbolic bisimulation. Then, the relation

R′ = { ((q1, τ1, H), (q2, τ2, H)) | (q1, q2, τ1 ≍ τ2, |H|2r+1) ∈ R }

is a bisimulation.

Summary and References

Fresh-Register Automata

• Definitions

• Example languages and non-examples

• Closure properties

• Bisimilarity (aka bisimulation equivalence)

• Bisimilarity and language equivalence

• Symbolic methods and decidability

References and further directions
• B.Bollig, P. Habermehl, M. Leucker, B.Monmege: A Robust Class of Data Languages and

an Application to Learning. LMCS 10(4) (2014)

• A. S.Murawski, S. J. Ramsay, N.Tzevelekos: Bisimilarity in fresh-register automata. LICS
2015: to appear

• A. S.Murawski, N. Tzevelekos: Algorithmic Nominal Game Semantics. ESOP 2011: 419-438

• N.Tzevelekos: Fresh-register automata. POPL 2011: 295-306

Exercises

1. Taking Ld = { dw ∈ D∗ | w ∈ Lfresh ∧ d /∈ ν(w) } for some fixed
d ∈ D, show that L∗

d is not FRA-recognisable.

2. Design an RA recognising the complement of L2
fresh.

3. Show that bisimilarity is an equivalence relation.

4. Complete the proof of the reduction from FRA(M) to FRA by
showing that the constructed R is a bisimilarity.

	Freshness
	Fresh-Register Automata
	Semantics of FRAs: in pictures
	Semantics of FRAs: in pictures
	Semantics of FRAs: in pictures
	Examples
	Formal semantics of FRAs
	Non-Examples
	Closure properties
	Another notion of equivalence: Bisimulation
	Bisimulation formally
	Examples revisited
	Bisimilarity vs language equivalence
	Application: equivalence with M-automata
	Application: equivalence with M-automata
	Main result: bisimilarity is decidable
	Proof idea: symbolic reasoning
	Symbolic reasoning
	Global freshness can (sometimes) be as general as local
	Symbolic bisimulations
	Definition of symbolic bisimulation
	Definition of symbolic bisimulation (ctd)
	Definition of symbolic bisimulation (ctd ctd)
	Bisimilarity is decidable
	Correspondence
	Summary and References
	Exercises

