
Automata over Infinite Alphabets

Andrzej Murawski and Nikos Tzevelekos

Lecture 5: Automata with History/Class Storage

Expressivity beyond FRAs

Fresh-Register Automata are great, but can we do more?

For example:

• (Non) Closure under concatenation (Lfresh · Lfresh) and Kleene
star (L∗

d): what if we could reset the history?

• Why only one history?

In this lecture we examine automata that manipulate whole
histories/classes containing names instead of single registers.

We present in particular History-Register Automata, which are an
inclusive representative of such models similar in spirit to RAs.

History-Register Automata: in pictures

Two kinds of transitions:

• q
X,Y
−−→ q′ : accept a name that is stored exactly in the histories

listed in X and transfer it to the histories listed in Y

• q
rs(i)
−−→ q′ : reset history i (without accepting any input letter)

History-Register Automata: transitions

Two kinds of transitions:

• q
X,Y
−−→ q′ : accept a name that is stored exactly in the histories

listed in X and transfer it to the histories listed in Y

• q
rs(i)
−−→ q′ : reset history i (without accepting any input letter)

History-Register Automata: transitions

Two kinds of transitions:

• q
X,Y
−−→ q′ : accept a name that is stored exactly in the histories

listed in X and transfer it to the histories listed in Y

• q
rs(i)
−−→ q′ : reset history i (without accepting any input letter)

History-Register Automata: transitions

Two kinds of transitions:

• q
X,Y
−−→ q′ : accept a name that is stored exactly in the histories

listed in X and transfer it to the histories listed in Y

• q
rs(i)
−−→ q′ : reset history i (without accepting any input letter)

Examples

qI q1
rs(1)

∅, {1}∅, {1}

[∅]
qI q1

{1}, {1}

∅, {2}

[{d}, ∅]

rs(2)

qI q1
{1}, ∅

∅, {1}

[∅]

{1}, ∅

qI q1
(∅, {1}), ({2}, {1, 2})[∅, ∅]

(∅, {2}), ({1}, {1, 2})

Lfresh · Lfresh = {ww′ | w,w′ ∈ Lfresh }

L∗
d = { dw1 · · · dwn ∈ D∗ | n ≥ 0 ∧ ∀1≤i≤n dwi ∈ Lfresh }

Lprod/cons = {ww′ ∈ D∗ | w,w′ ∈ Lfresh ∧ ν(w′) ⊆ ν(w) }

Lfresh ‖Lfresh = { d1d
′
1 · · · dnd

′′
n ∈ D∗ | n ≥ 0 ∧ d1 · · · dn, d

′
1 · · · d

′
n ∈ Lfresh }

History-register automata

An n-History-Register Automaton (n-HRA) is a tuple

A = 〈Q, qI , HI , δ, F 〉

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• HI ∈ Hisn is the initial n-history assignment,

• and δ ⊆ Q×Opn ×Q is the transition relation,

where

Opn = { (X,Y) | X,Y ⊆ [n] } ∪ { rs(i) | i ∈ [n] }

Hisn = {H : [n] → Pfin(D) }

Semantics of HRAs

Let A = 〈Q, qI , HI , δ, F 〉 be an n-HRA. Let us set:

ConfA = { (q,H) ∈ Q× Hisn }

i.e. configurations are now pairs of a state q and an n-history assignment.

A labelled transition (q1, H1)
d
−→ (q2, H2) between configurations needs

to satisfy the following condition (for some X,Y ∈ [n]):

• (q1
X,Y
−−→ q2) ∈ δ, and H−1

1 (d) = X , and H2(i) =

{

H1(i) ∪ {d} if i ∈ Y

H1(i) \ {d} otherwise

moreover, an (un)labelled transition (q1, H1)
ǫ
−→ (q2, H2) can occur when:

• (q1
rs(i)
−−→ q2) ∈ δ, and H2 = H1[i 7→ ∅].

The configuration graph of A is formed by all possible configuration
transitions, and L(A) = {w ∈ D∗ | (qI , HI)

w
−→→ (q,H) ∧ q ∈ F }.

What about registers?

Registers can be modelled by histories with at most one name: we can
enforce this using resets. An extra history then models, well, the history...

Theorem. For any r-fresh-register automaton A = 〈Q, qI , τI , δ, F 〉
there exists an n-HRA A′ = 〈Q,′ q′I , HI , δ

′, F ′〉 such that L(A) = L(A′).

First attempt:

• take n = r + 1; model each register i by a corresponding history i,
and use history r + 1 to store all encountered names

• q
i
−→ q′ becomes q

{i,r+1},{i,r+1}
−−−−−−−−−→ q′

• q
i⊛

−→ q′ becomes q
rs(i)
−−→ ·

∅,{i,r+1}
−−−−−→ q′

• q
i•

−→ q′ becomes q
rs(i)
−−→ ·

∅,{i,r+1}
−−−−−→ q′ and q

rs(i)
−−→ ·

{r+1},{i,r+1}
−−−−−−−−→ q′

but then, e.g. q1
1•
−→ q2

1•
−→ q3 could accept some dd!

this is because we reset too soon in q
rs(i)
−−→ ·

{r+1},{i,r+1}
−−−−−−−−→ q′

HRAs can model FRAs

We need an extra history so that we can first store the new name and

then reset i (for q
i•

−→ q′). This gives the following.

Theorem. For any r-fresh-register automaton A = 〈Q, qI , τI , δ, F 〉 there
exists an (r+2)-HRA A′ = 〈Q,′ q′I , HI , δ

′, F ′〉 such that L(A) = L(A′).

Idea:

• states are pairs (q, f), where f : [r]
∼=
→ [r + 1] remembers where

each register of the RA is modelled within the HRA’s r + 1 first
histories

• this f needs to be updated accordingly after each transition

• the (r+2)th history is used to store all encountered names

HRAs can model FRAs: the construction

Theorem. For any r-fresh-register automaton A = 〈Q, qI , τI , δ, F 〉 there
exists an (r+2)-HRA A′ = 〈Q,′ q′I , HI , δ

′, F ′〉 such that L(A) = L(A′).

Proof. We take Q′ = (Q× ([r]
∼=
→ [r + 1])) +Qrs, q′I = (qI , id[r]) and

F ′ = F × ([r]
∼=
→ [r + 1]). Moreover, HI(i) =

{τI(i)} if τI(i) 6= #

∅ o.w. if i ≤ r + 1

ν(τI) if i = r + 2

Finally, we include in δ′ the following transitions:

• for q
i
−→ q′ in δ, we add (q, f)

{f(i),r+2},{f(i),r+2}
−−−−−−−−−−−−→ (q′, f),

• for q
i⊛

−→ q′ in δ, we add (q, f)
∅,{f̂ ,r+2}
−−−−−→ ·

rs(f(i))
−−−−→ (q′, f [i 7→ f̂]),

• for q
i•

−→ q′ in δ, we add (q, f)
∅,{f̂ ,r+2}

−−−−−−−→ ·
rs(f(i))
−−−−→ (q′, f [i 7→ f̂])

{r+2},{f̂ ,r+2}

,

where, in each case, f̂ is the unique element in [r + 1] \ f([r]).
Also, Qrs supplies all the intermediate states (denoted with “·” above).

HRAs can model FRAs: tying up the proof

Theorem. For any r-fresh-register automaton A = 〈Q, qI , τI , δ, F 〉 there
exists an (r+2)-HRA A′ = 〈Q,′ q′I , HI , δ

′, F ′〉 such that L(A) = L(A′).

(ctd). It now suffices to show that A and A′ are bisimilar, but for a
special notion of bisimulation that “consumes” ǫ-transitions. Put simply,
we consider:

G ′
A′ = {κ1

d
−→ κ2 | κ1

d
−→ ·

ǫ
−→ κ2 ∈ GA′ }

as the configuration graph of A′. Then, taking:

R = { ((q, τ,H), ((q, f), H ′)) |H ′(r + 2) = H ∧H ′(f̂) = ∅

∧ ∀i. τ(i) = d =⇒ H ′(f(i)) = {d}

∧ τ(i) = # =⇒ H ′(f(i)) = ∅ }

we show that R is a bisimulation.

Closure properties

HRAs are already of the “M-type”, so we can readily close them under
the same operations as RAs. So, if A1 and A2 are HRAs:

• L(A1) ∪ L(A2): here we can simply make use of ǫ-transitions.

• L(A1) ∩ L(A2): we can do a similar construction as with RAs.

• L(A1) · L(A2): we can again do a similar construction, simplified
in that we can reset the histories of A1 when we move on to A2.

• L(A1)
∗: similar to the above.

• L(A1): we do not have closure under complement.

For example, the language

Ltwice = {w ∈ D∗ | ∀d∈ ν(w) d occurs exactly twice in w }

cannot be recognised by an HRA, but its complement can [Exercise].

HRAs cannot count exactly

Theorem. Ltwice = {w ∈ D∗ | ∀d∈ν(w) d occurs exactly twice in w } is
not HRA-recognisable.

Proof. We argue by contradiction. Suppose there is an HRA A with k
states and m histories such that L(A) = Ltwice. Then, in particular,
wbad = d1 · · · dkd1 · · · dk ∈ L(A) for some pairwise distinct d1, · · · , dk.

We examine the transition path of A that accepts wbad, call it p = p1p2.

• The name-accepting transitions of p1 must have labels (∅, X).

• Let q be a state appearing twice in p1 (p1 has length > k), so
p1 = p11(q)p12(q)p13. We have that the new path:

p′ = p′1p2 where p′1 = p11(q)p12(q)p12(q)p13

is also accepting for A, accepting, say, some w′
bad. Indeed, we saw

that the transitions in p1 cannot “block”, and we have that p2 can
still be taken (if anything, it will have more names to use now).

Contradiction: we have |p′1| > |p2| and therefore w′
bad /∈ Ltwice.

Universality and Emptiness

Universality undecidable: Since HRAs extend RAs, this follows from
undecidability for RAs.

Emptiness : We can reduce to a decidable weak counter-machine model
called Vector Addition Systems with States (VASS).

Ideas:

• To decide emptiness, we need to determine whether we can reach
a final configuration from an initial one.

• We can forget about what word is accepted and what names are
in the histories, as long as we remember how many names are
exactly in each history set X ⊆ [n].

• We can therefore simply count the names in each X ⊆ [n], which
gives us a counter machine model (with transfers).

• Since the counters cannot be tested for emptiness, the latter
model is decidable for state reachability.

Weaker forms of HRAs

There is too much liberty in HRAs: the complexity of emptiness
checking is Very Large (non-primitive recursive).

We therefore examine restrictions thereof:

• Ban resets!

Non-reset HRAs: closure properties

These are HRAs that do not have rs(i) transitions.

Closure under:

• intersection carries over.

• union and concatenation is proven as in the case of RAs.

• complement is still not possible (same counterexample).

• Kleene star is lost:

• while we do not have a general “boundedness” result, as in
the case of FRAs, we can show that the property fails for a
specific HRA-recognisable language. Taking

Ld = { d d1 · · · dn | d, d1, · · · , dn pairwise distinct }

for some fixed d, we can show that L∗
d is not recognisable by

any non-reset HRA.

Kleene star failure

Theorem. Taking Ld = { d d1 · · · dn | d, d1, · · · , dn pairwise distinct },
L∗

d is not recognisable by any non-reset HRA.

Proof. Suppose L∗
d = L(A) for some non-reset HRA A with m histories.

We pick wbad ∈ L(A) of the form:

wbad = dw1dw2 · · · dw22
m

such that no wi shares any name with the initial history of A and:

• each wi is of non-zero even length, say wi = wi1wi2 with |wi1| = |wi2|,

• for each i < j there is dij ∈ D that appears in wi1 and wj2 but
does not appear in wi2 wi+1 · · ·wj1.

Consider the path p = p1 · · · p22m accepting wbad. For each i,
pi = pi0pi1pi2, where pi0 accepts d, and pik accepts wik (k = 1, 2).

Let Qi be the set of all the X ’s that appear in pi1 in target position

(q
...,X
−−→ q′). Then, because wbad has 22

m

components, there are î < ĵ
such that Qî = Qĵ.

Kleene star failure

Theorem. Taking Ld = { d d1 · · · dn | d, d1, · · · , dn pairwise distinct },
L∗

d is not recognisable by any non-reset HRA.

(ctd). Since, dîĵ appears in wî1 and then only appears again in wĵ2, it

must be that in pî1 it is stored in some X̂ , and remains there until pĵ2.

But note that, at that the start of pĵ2, X̂ already contains a name, say

d′, because pĵ1 also contains X̂ in target position. This means that A
can accept d′ instead of dîĵ in wĵ2, and therefore accept some
w′

bad /∈ L∗
d, a contradiction.

It remains to show that such wbad exists. We take:

wbad = d d12 d13 · · · d122m � � · · ·� (22
m

− 1 boxes)

d � d23 · · · d222m d12� · · ·� (22
m

− 1 boxes)
· · ·

d � � · · · � d122m · · · d(22m−1)22m (22
m

− 1 boxes)

and fill in the boxes with fresh names.

Non-reset HRAs extend FRAs

Theorem. For any r-FRA A = 〈Q, qI , τI , δ, F 〉 there exists a non-reset
3r-HRA A′ = 〈Q,′ q′I , HI , δ

′, F ′〉 such that L(A) = L(A′).

The proof is much harder than the one we saw using resets...

Ideas:

• We model each register i by 3 histories: ir, ib, iy

• All histories contain disjoint names, and no name is “lost”

• The name of register i will be stored in one of ir, ib, iy:

• in history ir if we guess that we are going to read it

• in one of ib, iy if we guess that we are going to rewrite it

• We need to remember (in the state) in which of ir, ib, iy is the
name of register i stored, and update that info in every transition

• History ir will always contain at most 1 name, while histories ib, iy
will contain several (some of them garbage)

Local acceptance conditions

For emptiness of HRAs to be decidable, it is important that we cannot
check histories for emptiness arbitrarily (cf. full-powered counter
machines). But what about allowing just one such final check?

Ltwice = {w ∈ D∗ | ∀d ∈ ν(w). d occurs exactly twice in w }

The above could be accepted by the following HRA

qI

∅, {1}

[∅, ∅]
{1}, {2}

if we had imposed a local acceptance condition: “history 1 empty”

A model equivalent to non-reset HRAs + local acceptance conditions is
Data Automata/ Class Memory Automata (cf. References)

The expressivity picture

Summary and References

Automata with History/Class Storage

• History-Register Automata: definitions and examples

• Simulation of registers via histories and resets

• Closures and non-closures

• VASS and emptiness decidability

• Non-reset HRAs

• Local acceptance: DA/CMA

References and further directions
• H. Björklund, T. Schwentick: On notions of regularity for data languages. Theor. Comput.

Sci. 411(4-5): 702-715 (2010)

• M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin: Two-variable logic on
data words. ACM Trans. Comput. Log. 12(4): 27 (2011)

• C. Cotton-Barratt, A. S. Murawski, C.-H. Luke Ong: Weak and Nested Class Memory
Automata. LATA 2015: 188-199

• N. Tzevelekos, R. Grigore: History-Register Automata. FoSSaCS 2013: 17-33

Exercises

1. Show that the language accepted by HRAs are closed under union,
concatenation and Kleene star.

2. Show that there is no HRA accepting the language:

Lexact
prod/cons = {ww′ ∈ D∗ | w,w′ ∈ Lfresh ∧ ν(w′) = ν(w) }

3. Design an HRA that accepts the complement of Ltwice.

4. Design an HRA with a local acceptance condition that accepts the
language Lexact

prod/cons defined above.

	Expressivity beyond FRAs
	History-Register Automata: in pictures
	History-Register Automata: transitions
	History-Register Automata: transitions
	History-Register Automata: transitions
	Examples
	History-register automata
	Semantics of HRAs
	What about registers?
	HRAs can model FRAs
	HRAs can model FRAs: the construction
	HRAs can model FRAs: tying up the proof
	Closure properties
	HRAs cannot count exactly
	Universality and Emptiness
	Weaker forms of HRAs
	Non-reset HRAs: closure properties
	Kleene star failure
	Kleene star failure
	Non-reset HRAs extend FRAs
	Local acceptance conditions
	The expressivity picture
	Summary and References
	Exercises

