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Preliminaries

2

Let us assume an infinite alphabet D of data values or names.

◻ We shall introduce a simple formalism for computations based on

– a finite number of D-valued registers,
– a D-valued pushdown store.

◻ Writing [r] for {1,⋯, r}, by an r-register assignment we mean an
injective map from [r] to D. We write Reg ir for the set of all such
assignments.



Pushdown register automata
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A pushdown r-register automaton (r-PDRA) is a tuple

A = ⟨Q, qI , τI , δ, F ⟩

where:

◻ Q is a finite set of states,

◻ qI ∈ Q is the initial state,

◻ τI ∈ Reg
i

r is the initial register assignment,

◻ δ ⊆ Q ×Opr ×Q is the transition relation with

Opr = { i, i
●, push(i), pop(i) ∣ 1 ≤ i ≤ r } ∪ {pop● }.



Configurations, successors, etc
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◻ A configuration of an r-PDRA A is a triple

(q, τ, s) ∈ Q ×Reg ir ×D
∗.

◻ Given d ∈ D ∪ {ǫ}, we write (q1, τ1, s1)
d
Ð→ (q2, τ2, s2) if (q1,op, q2) ∈ δ

for some op ∈ Opr and one of the following conditions holds.

– op = i, d = τ1(i), τ2 = τ1, s2 = s1
– op = i●, ∀i d ≠ τ1(i), d = τ2(i), ∀j≠i τ2(j) = τ1(j), s2 = s1
– op = push(i), d = ǫ, τ2 = τ1 and s2 = τ1(i)s1
– op = pop(i), d = ǫ, τ2 = τ1 and τ1(i)s2 = s1
– op = pop●, d = ǫ, τ2 = τ1, s1 = ds2, where ∀i d ≠ τ1(i)

Some authors also consider op = i●ǫ with the same meaning as i● but with
d = ǫ.



Acceptance
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A run of A is a sequence κ0,⋯, κk of configurations such that

◻ κ0 = κI ,

◻ for all 0 ≤ i < k, κi

di
Ð→ κi+1 for some di ∈ D + {ǫ}.

A run is accepting if κk = (qk, τk) for some qk ∈ F . In this case we say
that A accepts d0⋯dk ∈ D∗.

The set of all sequences w ∈ D∗ accepted by A is called the language of
A and denoted by L(A).

A language L ⊆ D∗ is called an PDRA-language (or a
quasi-context-free language) if there exists a PDRA that accepts it.



Invariance and distinguishability
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◻ Let σ ∶ D → D be a permutation. If κ
d
Ð→ κ′ then

σ(κ)
σ(d)
ÐÐ→ σ(κ′).

◻ r-register automata (without pushdown storage) can take advantage
of the registers to distinguish r elements of D from the rest.

◻ Consequently, any run can be replaced with a run that ends in the
same state, yet is supported by merely r + 1 elements of the infinite
alphabet.

◻ With extra pushdown storage, an r-PDRS is capable of storing un-
boundedly many elements of D. How many elements can we really
distinguish?



Exercise
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Recall that there exists an r-RA accepting

{d1⋯dr+1 ∣ ∀i≠jdi ≠ dj}

Task. Construct r-PDRA that accept the following languages.

◻ {d1⋯d2r ∣ ∀i≠j di ≠ dj}?
◻ {d1⋯d3r ∣ ∀i≠j di ≠ dj}?
◻ {d1⋯d4r ∣ ∀i≠j di ≠ dj}?



3r bound
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We shall write ν(x) for the set of elements of D occurring in x, e.g.

ν(τ) = τ([r]) ∩D.

Theorem. Fix an r-PDRA. For every transition sequence transition
sequence

ρ = (q0, τ0, ǫ) ⊢
n (qn, τn, ǫ),

there is a transition sequence

ρ′ = (q0, τ
′
0, ǫ) ⊢

n (qn, τ
′
n, ǫ)

with τ ′
0
= τ0, τ ′n = τn and ∣ν(ρ′)∣ ≤ 3r.



Proof
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The proof is by induction on n. When n ≤ 1, the result is trivial.
Otherwise, we distinguish two cases.

◻ In the first case, the transition sequence is of the form:

(q0, τ0, ǫ) ⊢ (q1, τ1, d) ⊢
n−2 (qn−1, τn−1, d) ⊢ (qn, τn, ǫ)

in which the first transition is by push(i) (so d = τ1(i)), the last
transition is by pop(j) or pop● and the stack does not empty until
the final transition.

◻ Otherwise, the transition sequence is of the form:

(q0, τ0, ǫ) ⊢
k (qk, τk, ǫ) ⊢

n−k (qn, τn, ǫ)

with 0 < k < n.



Case I
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Since d is never popped from the stack during the middle segment, also

(q1, τ1, ǫ) ⊢
n−2 (qn−1, τn−1, ǫ)

is a valid transition sequence and hence, from the induction hypothesis,
there is a transition sequence between the same two configurations using
no more than 3r names.

By adding d to the bottom of every stack in this sequence one obtains
another valid transition sequence: (q1, τ ′1, d) ⊢

n−2 (qn−1, τ ′n−1, d) with
τ ′
1
= τ1 and τ ′n−1 = τn−1, and the new sequence features ≤ 3r names. It

follows that the latter can be extended to the required:

(q0, τ0, ǫ) ⊢ (q1, τ
′
1, d) ⊢

n−2 (qn−1, τ
′
n−1, d) ⊢ (qn, τn, ǫ)

since neither push(i), nor pop(j)/pop● change the registers.



Case II
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It follows from the induction hypothesis that there are sequences:

ρ1 = (q0, τ
′
0, ǫ) ⊢

k (qk, τ
′
k, ǫ) ρ2 = (qk, τ

′
k, ǫ) ⊢

n−k (qn, τ
′
n, ǫ)

with τ ′
0
= τ0, τ ′n = τn, τ

′
k
= τk and which each, individually, use no more

than 3r names.

◻ Let N ⊇ ν(τ0) ∪ ν(τk) ∪ ν(τn) be a set of names of size 3r. We aim
to map ν(ρ1) and ν(ρ2) into N by injections i and j respectively.

◻ For i we set i(a) = a for any a ∈ ν(τ0) ∪ ν(τk) and otherwise choose
some distinct b ∈ N ∖ (ν(τ0) ∪ ν(τk)).

◻ Similarly, for j we set j(a) = a for any a ∈ (ν(τk) ∪ ν(τn)) and
otherwise choose some distinct b ∈ N ∖ (ν(τk) ∪ ν(τn)).

Note that these choices are always possible because ∣ν(ρ1)∣, ∣ν(ρ2)∣ ≤ ∣N ∣.
Finally, we extend i and j to permutations σi and σj on D.



Final step
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Since transition sequences are closed under permutations

ρ = (q0, σi ⋅ τ0, ǫ) ⊢
k (qk, σi ⋅ τk = σj ⋅ τk, ǫ) ⊢

n−k (qn, σj ⋅ τn, ǫ)

is a valid transition sequence with

◻ σi ⋅ τ0 = τ0,
◻ σj ⋅ τn = τn,
◻ ν(ρ) ⊂ N .



Closure properties
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,

◻ union
◻ concatenation
◻ star

/

◻ complementation
◻ intersection

Related topic: data languages

data word = tag + data value

To come: more models of computation over infinite alphabets!



Decision problems
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PDRA emptiness/reachability is decidable thanks to the 3r result.

Complexity table

register assignments injective filled injective with # non-injective
RA NL NP PSPACE

PDRA EXPTIME EXPTIME EXPTIME
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