
1

Automata over Infinite Alphabets
Pushdown Register Automata

Andrzej Murawski Nikos Tzevelekos
University of Warwick Queen Mary University of London

http://warwick.ac.uk/amurawski/esslli15

ESSLLI 2015

http://warwick.ac.uk/amurawski/esslli15


Preliminaries

2

Let us assume an infinite alphabet D of data values or names.

◻ We shall introduce a simple formalism for computations based on

– a finite number of D-valued registers,
– a D-valued pushdown store.

◻ Writing [r] for {1,⋯, r}, by an r-register assignment we mean an
injective map from [r] to D. We write Reg ir for the set of all such
assignments.



Pushdown register automata

3

A pushdown r-register automaton (r-PDRA) is a tuple

A = ⟨Q, qI , τI , δ, F ⟩

where:

◻ Q is a finite set of states,

◻ qI ∈ Q is the initial state,

◻ τI ∈ Reg
i

r is the initial register assignment,

◻ δ ⊆ Q ×Opr ×Q is the transition relation with

Opr = { i, i
●, push(i), pop(i) ∣ 1 ≤ i ≤ r } ∪ {pop● }.



Configurations, successors, etc

4

◻ A configuration of an r-PDRA A is a triple

(q, τ, s) ∈ Q ×Reg ir ×D
∗.

◻ Given d ∈ D ∪ {ǫ}, we write (q1, τ1, s1)
d
Ð→ (q2, τ2, s2) if (q1,op, q2) ∈ δ

for some op ∈ Opr and one of the following conditions holds.

– op = i, d = τ1(i), τ2 = τ1, s2 = s1
– op = i●, ∀i d ≠ τ1(i), d = τ2(i), ∀j≠i τ2(j) = τ1(j), s2 = s1
– op = push(i), d = ǫ, τ2 = τ1 and s2 = τ1(i)s1
– op = pop(i), d = ǫ, τ2 = τ1 and τ1(i)s2 = s1
– op = pop●, d = ǫ, τ2 = τ1, s1 = ds2, where ∀i d ≠ τ1(i)

Some authors also consider op = i●ǫ with the same meaning as i● but with
d = ǫ.



Acceptance

5

A run of A is a sequence κ0,⋯, κk of configurations such that

◻ κ0 = κI ,

◻ for all 0 ≤ i < k, κi

di
Ð→ κi+1 for some di ∈ D + {ǫ}.

A run is accepting if κk = (qk, τk) for some qk ∈ F . In this case we say
that A accepts d0⋯dk ∈ D∗.

The set of all sequences w ∈ D∗ accepted by A is called the language of
A and denoted by L(A).

A language L ⊆ D∗ is called an PDRA-language (or a
quasi-context-free language) if there exists a PDRA that accepts it.



Invariance and distinguishability

6

◻ Let σ ∶ D → D be a permutation. If κ
d
Ð→ κ′ then

σ(κ)
σ(d)
ÐÐ→ σ(κ′).

◻ r-register automata (without pushdown storage) can take advantage
of the registers to distinguish r elements of D from the rest.

◻ Consequently, any run can be replaced with a run that ends in the
same state, yet is supported by merely r + 1 elements of the infinite
alphabet.

◻ With extra pushdown storage, an r-PDRS is capable of storing un-
boundedly many elements of D. How many elements can we really
distinguish?



Exercise

7

Recall that there exists an r-RA accepting

{d1⋯dr+1 ∣ ∀i≠jdi ≠ dj}

Task. Construct r-PDRA that accept the following languages.

◻ {d1⋯d2r ∣ ∀i≠j di ≠ dj}?
◻ {d1⋯d3r ∣ ∀i≠j di ≠ dj}?
◻ {d1⋯d4r ∣ ∀i≠j di ≠ dj}?



3r bound

8

We shall write ν(x) for the set of elements of D occurring in x, e.g.

ν(τ) = τ([r]) ∩D.

Theorem. Fix an r-PDRA. For every transition sequence transition
sequence

ρ = (q0, τ0, ǫ) ⊢
n (qn, τn, ǫ),

there is a transition sequence

ρ′ = (q0, τ
′
0, ǫ) ⊢

n (qn, τ
′
n, ǫ)

with τ ′
0
= τ0, τ ′n = τn and ∣ν(ρ′)∣ ≤ 3r.



Proof

9

The proof is by induction on n. When n ≤ 1, the result is trivial.
Otherwise, we distinguish two cases.

◻ In the first case, the transition sequence is of the form:

(q0, τ0, ǫ) ⊢ (q1, τ1, d) ⊢
n−2 (qn−1, τn−1, d) ⊢ (qn, τn, ǫ)

in which the first transition is by push(i) (so d = τ1(i)), the last
transition is by pop(j) or pop● and the stack does not empty until
the final transition.

◻ Otherwise, the transition sequence is of the form:

(q0, τ0, ǫ) ⊢
k (qk, τk, ǫ) ⊢

n−k (qn, τn, ǫ)

with 0 < k < n.



Case I

10

Since d is never popped from the stack during the middle segment, also

(q1, τ1, ǫ) ⊢
n−2 (qn−1, τn−1, ǫ)

is a valid transition sequence and hence, from the induction hypothesis,
there is a transition sequence between the same two configurations using
no more than 3r names.

By adding d to the bottom of every stack in this sequence one obtains
another valid transition sequence: (q1, τ ′1, d) ⊢

n−2 (qn−1, τ ′n−1, d) with
τ ′
1
= τ1 and τ ′n−1 = τn−1, and the new sequence features ≤ 3r names. It

follows that the latter can be extended to the required:

(q0, τ0, ǫ) ⊢ (q1, τ
′
1, d) ⊢

n−2 (qn−1, τ
′
n−1, d) ⊢ (qn, τn, ǫ)

since neither push(i), nor pop(j)/pop● change the registers.



Case II

11

It follows from the induction hypothesis that there are sequences:

ρ1 = (q0, τ
′
0, ǫ) ⊢

k (qk, τ
′
k, ǫ) ρ2 = (qk, τ

′
k, ǫ) ⊢

n−k (qn, τ
′
n, ǫ)

with τ ′
0
= τ0, τ ′n = τn, τ

′
k
= τk and which each, individually, use no more

than 3r names.

◻ Let N ⊇ ν(τ0) ∪ ν(τk) ∪ ν(τn) be a set of names of size 3r. We aim
to map ν(ρ1) and ν(ρ2) into N by injections i and j respectively.

◻ For i we set i(a) = a for any a ∈ ν(τ0) ∪ ν(τk) and otherwise choose
some distinct b ∈ N ∖ (ν(τ0) ∪ ν(τk)).

◻ Similarly, for j we set j(a) = a for any a ∈ (ν(τk) ∪ ν(τn)) and
otherwise choose some distinct b ∈ N ∖ (ν(τk) ∪ ν(τn)).

Note that these choices are always possible because ∣ν(ρ1)∣, ∣ν(ρ2)∣ ≤ ∣N ∣.
Finally, we extend i and j to permutations σi and σj on D.



Final step

12

Since transition sequences are closed under permutations

ρ = (q0, σi ⋅ τ0, ǫ) ⊢
k (qk, σi ⋅ τk = σj ⋅ τk, ǫ) ⊢

n−k (qn, σj ⋅ τn, ǫ)

is a valid transition sequence with

◻ σi ⋅ τ0 = τ0,
◻ σj ⋅ τn = τn,
◻ ν(ρ) ⊂ N .



Closure properties

13

,

◻ union
◻ concatenation
◻ star

/

◻ complementation
◻ intersection

Related topic: data languages

data word = tag + data value

To come: more models of computation over infinite alphabets!



Decision problems

14

PDRA emptiness/reachability is decidable thanks to the 3r result.

Complexity table

register assignments injective filled injective with # non-injective
RA NL NP PSPACE

PDRA EXPTIME EXPTIME EXPTIME



Bibliography

15

◻ Register automata [KF94, NSV04]
◻ Pushdown register automata [CK98, Seg06, MRT14]
◻ More [NSV04, Seg06, BS07, BKL14]

[BKL14] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Logical Methods in Computer

Science, 10(3), 2014.

[BS07] H. Björklund and T. Schwentick. On notions of regularity for data languages. In Proceedings of FCT, volume 4639 of
Lecture Notes in Computer Science, pages 88–99. Springer, 2007.

[CK98] E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets. Acta Inf., 35(3):245–267, 1998.

[KF94] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363, 1994.

[MRT14] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Reachability in pushdown register automata. In Proceedings of MFCS,
LNCS, pages 464–473. Springer, 2014.

[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets. ACM Trans. Comput.

Log., 5(3):403–435, 2004.

[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proceedings of CSL, volume 4207 of
Lecture Notes in Computer Science. Springer, 2006.


	Preliminaries
	Pushdown register automata
	Configurations, successors, etc
	Acceptance
	Invariance and distinguishability
	Exercise
	3r bound
	Proof
	Case I
	Case II
	Final step
	Closure properties
	Decision problems
	Bibliography

