Automata over Infinite Alphabets

Pushdown Register Automata

Andrzej Murawski
University of Warwick

Nikos Tzevelekos
Queen Mary University of London
http://warwick.ac.uk/amurawski/esslli15

ESSLLI 2015

Preliminaries

Let us assume an infinite alphabet \mathcal{D} of data values or names.

- We shall introduce a simple formalism for computations based on
- a finite number of \mathcal{D}-valued registers,
- a \mathcal{D}-valued pushdown store.
- Writing $[r]$ for $\{1, \cdots, r\}$, by an r-register assignment we mean an injective map from $[r]$ to \mathcal{D}. We write $R e g_{r}^{\mathrm{i}}$ for the set of all such assignments.

Pushdown register automata

A pushdown r-register automaton (r-PDRA) is a tuple

$$
\mathcal{A}=\left\langle Q, q_{I}, \tau_{I}, \delta, F\right\rangle
$$

where:

- $\quad Q$ is a finite set of states,
$\square q_{I} \in Q$ is the initial state,
- $\quad \tau_{I} \in R e g_{r}^{\mathrm{i}}$ is the initial register assignment,
- $\delta \subseteq Q \times O p_{r} \times Q$ is the transition relation with

$$
O p_{r}=\left\{i, i^{\bullet}, \operatorname{push}(i), \operatorname{pop}(i) \mid 1 \leq i \leq r\right\} \cup\left\{p o p^{\bullet}\right\} .
$$

Configurations, successors, etc

- A configuration of an r - $\operatorname{PDRA} \mathcal{A}$ is a triple

$$
(q, \tau, s) \in Q \times R e g_{r}^{\mathrm{i}} \times \mathcal{D}^{*}
$$

- Given $d \in \mathcal{D} \cup\{\epsilon\}$, we write $\left(q_{1}, \tau_{1}, s_{1}\right) \xrightarrow{d}\left(q_{2}, \tau_{2}, s_{2}\right)$ if $\left(q_{1}, o p, q_{2}\right) \in \delta$ for some $o p \in O p_{r}$ and one of the following conditions holds.

$$
\begin{aligned}
& -\quad o p=i, d=\tau_{1}(i), \tau_{2}=\tau_{1}, s_{2}=s_{1} \\
& -\quad o p=i^{\bullet}, \forall_{i} d \neq \tau_{1}(i), d=\tau_{2}(i), \forall_{j \neq i} \tau_{2}(j)=\tau_{1}(j), s_{2}=s_{1} \\
& -\quad o p=p u \operatorname{sh}(i), d=\epsilon, \tau_{2}=\tau_{1} \text { and } s_{2}=\tau_{1}(i) s_{1} \\
& -\quad o p=\operatorname{pop}(i), d=\epsilon, \tau_{2}=\tau_{1} \text { and } \tau_{1}(i) s_{2}=s_{1} \\
& -\quad o p=p o p^{\bullet}, d=\epsilon, \tau_{2}=\tau_{1}, s_{1}=d s_{2}, \text { where } \forall_{i} d \neq \tau_{1}(i)
\end{aligned}
$$

Some authors also consider $o p=i_{\epsilon}^{\bullet}$ with the same meaning as i^{\bullet} but with $d=\epsilon$.

Acceptance

A run of \mathcal{A} is a sequence $\kappa_{0}, \cdots, \kappa_{k}$ of configurations such that
$\square \quad \kappa_{0}=\kappa_{I}$,
\square for all $0 \leq i<k, \kappa_{i} \xrightarrow{d_{i}} \kappa_{i+1}$ for some $d_{i} \in \mathcal{D}+\{\epsilon\}$.

A run is accepting if $\kappa_{k}=\left(q_{k}, \tau_{k}\right)$ for some $q_{k} \in F$. In this case we say that \mathcal{A} accepts $d_{0} \cdots d_{k} \in \mathcal{D}^{*}$.

The set of all sequences $w \in \mathcal{D}^{*}$ accepted by \mathcal{A} is called the language of \mathcal{A} and denoted by $\mathcal{L}(\mathcal{A})$.

A language $L \subseteq \mathcal{D}^{*}$ is called an PDRA-language (or a quasi-context-free language) if there exists a PDRA that accepts it.

Invariance and distinguishability

- Let $\sigma: \mathcal{D} \rightarrow \mathcal{D}$ be a permutation. If $\kappa \xrightarrow{d} \kappa^{\prime}$ then

$$
\sigma(\kappa) \xrightarrow{\sigma(d)} \sigma\left(\kappa^{\prime}\right)
$$

- $\quad r$-register automata (without pushdown storage) can take advantage of the registers to distinguish r elements of \mathcal{D} from the rest.
- Consequently, any run can be replaced with a run that ends in the same state, yet is supported by merely $r+1$ elements of the infinite alphabet.
- With extra pushdown storage, an r-PDRS is capable of storing unboundedly many elements of \mathcal{D}. How many elements can we really distinguish?

Exercise

Recall that there exists an r-RA accepting

$$
\left\{d_{1} \cdots d_{r+1} \quad \mid \quad \forall_{i \neq j} d_{i} \neq d_{j}\right\}
$$

Task. Construct r-PDRA that accept the following languages.
$\square \quad\left\{d_{1} \cdots d_{2 r} \quad \mid \quad \forall_{i \neq j} d_{i} \neq d_{j}\right\} ?$
$\square \quad\left\{d_{1} \cdots d_{3 r} \quad \mid \quad \forall i \neq j\right.$ d $\left.d_{i} \neq d_{j}\right\} ?$
$\square \quad\left\{d_{1} \cdots d_{4 r} \quad \mid \quad \forall_{i \neq j} d_{i} \neq d_{j}\right\} ?$

$3 r$ bound

We shall write $\nu(x)$ for the set of elements of \mathcal{D} occurring in x, e.g.

$$
\nu(\tau)=\tau([r]) \cap \mathcal{D} .
$$

Theorem. Fix an r-PDRA. For every transition sequence transition sequence

$$
\rho=\left(q_{0}, \tau_{0}, \epsilon\right) \vdash^{n}\left(q_{n}, \tau_{n}, \epsilon\right),
$$

there is a transition sequence

$$
\rho^{\prime}=\left(q_{0}, \tau_{0}^{\prime}, \epsilon\right) \vdash^{n}\left(q_{n}, \tau_{n}^{\prime}, \epsilon\right)
$$

with $\tau_{0}^{\prime}=\tau_{0}, \tau_{n}^{\prime}=\tau_{n}$ and $\left|\nu\left(\rho^{\prime}\right)\right| \leq 3 r$.

Proof

The proof is by induction on n. When $n \leq 1$, the result is trivial. Otherwise, we distinguish two cases.

- In the first case, the transition sequence is of the form:

$$
\left(q_{0}, \tau_{0}, \epsilon\right) \vdash\left(q_{1}, \tau_{1}, d\right) \vdash^{n-2}\left(q_{n-1}, \tau_{n-1}, d\right) \vdash\left(q_{n}, \tau_{n}, \epsilon\right)
$$

in which the first transition is by push(i) (so $d=\tau_{1}(i)$), the last transition is by $\operatorname{pop}(j)$ or $\operatorname{pop}{ }^{\bullet}$ and the stack does not empty until the final transition.

- Otherwise, the transition sequence is of the form:

$$
\left(q_{0}, \tau_{0}, \epsilon\right) \vdash^{k}\left(q_{k}, \tau_{k}, \epsilon\right) \vdash^{n-k}\left(q_{n}, \tau_{n}, \epsilon\right)
$$

with $0<k<n$.

Case I

Since d is never popped from the stack during the middle segment, also

$$
\left(q_{1}, \tau_{1}, \epsilon\right) \vdash^{n-2}\left(q_{n-1}, \tau_{n-1}, \epsilon\right)
$$

is a valid transition sequence and hence, from the induction hypothesis, there is a transition sequence between the same two configurations using no more than $3 r$ names.

By adding d to the bottom of every stack in this sequence one obtains another valid transition sequence: $\left(q_{1}, \tau_{1}^{\prime}, d\right) \vdash^{n-2}\left(q_{n-1}, \tau_{n-1}^{\prime}, d\right)$ with $\tau_{1}^{\prime}=\tau_{1}$ and $\tau_{n-1}^{\prime}=\tau_{n-1}$, and the new sequence features $\leq 3 r$ names. It follows that the latter can be extended to the required:

$$
\left(q_{0}, \tau_{0}, \epsilon\right) \vdash\left(q_{1}, \tau_{1}^{\prime}, d\right) \vdash^{n-2}\left(q_{n-1}, \tau_{n-1}^{\prime}, d\right) \vdash\left(q_{n}, \tau_{n}, \epsilon\right)
$$

since neither push(i), nor $\operatorname{pop}(j) / p o p{ }^{\bullet}$ change the registers.

Case II

It follows from the induction hypothesis that there are sequences:

$$
\rho_{1}=\left(q_{0}, \tau_{0}^{\prime}, \epsilon\right) \vdash^{k}\left(q_{k}, \tau_{k}^{\prime}, \epsilon\right) \quad \rho_{2}=\left(q_{k}, \tau_{k}^{\prime}, \epsilon\right) \vdash^{n-k}\left(q_{n}, \tau_{n}^{\prime}, \epsilon\right)
$$

with $\tau_{0}^{\prime}=\tau_{0}, \tau_{n}^{\prime}=\tau_{n}, \tau_{k}^{\prime}=\tau_{k}$ and which each, individually, use no more than $3 r$ names.

- Let $N \supseteq \nu\left(\tau_{0}\right) \cup \nu\left(\tau_{k}\right) \cup \nu\left(\tau_{n}\right)$ be a set of names of size $3 r$. We aim to map $\nu\left(\rho_{1}\right)$ and $\nu\left(\rho_{2}\right)$ into N by injections i and j respectively.
$\square \quad$ For i we set $i(a)=a$ for any $a \in \nu\left(\tau_{0}\right) \cup \nu\left(\tau_{k}\right)$ and otherwise choose some distinct $b \in N \backslash\left(\nu\left(\tau_{0}\right) \cup \nu\left(\tau_{k}\right)\right)$.
$\square \quad$ Similarly, for j we set $j(a)=a$ for any $a \in\left(\nu\left(\tau_{k}\right) \cup \nu\left(\tau_{n}\right)\right)$ and otherwise choose some distinct $b \in N \backslash\left(\nu\left(\tau_{k}\right) \cup \nu\left(\tau_{n}\right)\right)$.
Note that these choices are always possible because $\left|\nu\left(\rho_{1}\right)\right|,\left|\nu\left(\rho_{2}\right)\right| \leq|N|$. Finally, we extend i and j to permutations σ_{i} and σ_{j} on \mathcal{D}.

Final step

Since transition sequences are closed under permutations

$$
\rho=\left(q_{0}, \sigma_{i} \cdot \tau_{0}, \epsilon\right) \vdash^{k}\left(q_{k}, \sigma_{i} \cdot \tau_{k}=\sigma_{j} \cdot \tau_{k}, \epsilon\right) \vdash^{n-k}\left(q_{n}, \sigma_{j} \cdot \tau_{n}, \epsilon\right)
$$

is a valid transition sequence with
$\square \quad \sigma_{i} \cdot \tau_{0}=\tau_{0}$,

- $\quad \sigma_{j} \cdot \tau_{n}=\tau_{n}$,
- $\quad \nu(\rho) \subset N$.

Closure properties

```
;
\square union
\square concatenation
\square star
```


©

- complementation
- intersection

Related topic: data languages

$$
\text { data word }=\text { tag }+ \text { data value }
$$

To come: more models of computation over infinite alphabets!

Decision problems

PDRA emptiness/reachability is decidable thanks to the $3 r$ result.

Complexity table

register assignments	injective filled	injective with \#	non-injective
RA	NL	NP	PSPACE
PDRA	EXPTIME	EXPTIME	EXPTIME

Bibliography

- Register automata [KF94, NSV04]Pushdown register automata [CK98, Seg06, MRT14]
More [NSV04, Seg06, BS07, BKL14]
[BKL14] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Logical Methods in Computer Science, 10(3), 2014.
[BS07] H. Björklund and T. Schwentick. On notions of regularity for data languages. In Proceedings of FCT, volume 4639 of Lecture Notes in Computer Science, pages 88-99. Springer, 2007.
[CK98] E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets. Acta Inf., 35(3):245-267, 1998.
[KF94] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329-363, 1994.
[MRT14] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Reachability in pushdown register automata. In Proceedings of MFCS, LNCS, pages 464-473. Springer, 2014.
[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log., 5(3):403-435, 2004.
[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proceedings of CSL, volume 4207 of Lecture Notes in Computer Science. Springer, 2006.

