
1

Automata over Infinite Alphabets
Register Automata

Andrzej Murawski Nikos Tzevelekos
University of Warwick Queen Mary University of London

http://warwick.ac.uk/amurawski/esslli15

ESSLLI 2015

http://warwick.ac.uk/amurawski/esslli15

Finite alphabets

2

� formal language theory
� theory of computation
� software verification

Chomsky hierarchy

regular, context-free, context-sensitive, recursively enumerable

Automata models

finite automata, pushdown automata, linear bounded
automata, Turing machines

Other models

counter machines, queue machines, vector addition systems,
Petri nets, higher-order pushdown automata

Infinite alphabets

3

What is a “reasonable” definition of automata over infinite alphabets?

Criteria

� finitariness (”finite-state”)
� good closure properties
� decision procedures (emptiness, equivalence, etc)
� minimisation
� connections to logic

DFA
δ : Q× Σ → Q

Why infinite alphabets?

4

� To model computational/mathematical/linguistic situations involv-
ing finite values that get so large/abstract that they are best viewed
as infinite.

� To model computational/mathematical/linguistic situations involv-
ing infinite values.

� To preserve decidability, one needs to restrict the range of allowable
operations. This will also allow us to prevent encodings. Therefore,
in a typical scenario, only equality will be available.

� Computational significance: identifiers, references (pointers), ob-
jects, XML.

ML

5

Objective Caml version 3.12.0

let v=ref (0);;

val v : int ref = {contents = 0}

let vv=ref(v);;

val vv : int ref ref = {contents = {contents = 0}}

!vv==v;;

- : bool = true

!vv==ref (0);;

- : bool = false

Pointers and references

6

C

int arr[10] ;

... = arr [6];

... = *(arr +6);

Java

Object obj1 = new Object ();

Object obj2 = new Object ();

result = obj1.equals (obj2);

XML

7

<menu >

<menu -item >

<portion unit ="mL">250</ portion >

<name >Small soft drink </name >

</menu -item >

<menu -item >

<portion unit ="g">500</ portion >

<name >Sirloin steak </name >

</menu -item >

</menu >

� XML documents support attributes: they are intended to be
peripheral to the main communication and meant to help
applications process the main communication (application-specific).

� XML queries can perform tests on attribute values. For formal
analysis, it makes sense to regard them as elements of an infinite set.

Abstract syntax with binding

8

∀x.(P (x) ⇒ ∀y.Q(y) ∧ ∃z.S(z))

λx.xy(λz.z(λv.vz))(λv.v)

fun fact 0 = 1

| fact n = n * fact (n - 1)

void copy(int i) { return (i+1); }

Register automata (informally)

9

� A basic model of computation over an infinite alphabet D.
� Elements of D are referred to as names or data values.

Features

� finitely many states
� bounded number of D-valued registers

Let r be the number of registers. Let us write [r] for {1, · · · , r}.

� By an r-register assignment we mean an injective map from [r] to
D + {#}.

� We write Reg ir for the set of all such assignments.

1 2 3 4
d d′

Register automata

10

An r-register automaton (r-RA) is a tuple A = 〈Q, qI , τI , F, δ 〉,
where:

� Q is a finite set of states,
� qI ∈ Q is the initial state,
� τI ∈ Reg ir is the initial register assignment,
� F ⊆ Q is the set of final states,
� δ ⊆ Q × Opr × Q is the transition function, where Opr =

{1, · · · , r} ∪ {1•, · · · , r•}.

Intuition

� i ∈ Opr represents reading the letter in the ith register
� i• ∈ Opr represents reading a letter that is not currently in any of

the registers. It will overwrite the current value in register i.

Examples

11

Consider the following 1-register automata 〈Qi, qI , [#], Fi, δi} 〉
(i = 1, 2, 3, 4).

qI

1

qI

1•

qI

1, 1•

qI q
1•

1

� Q1 = {qI}, δ1 = {(qI , 1, qI)}, F = {qI}
� Q2 = {qI}, δ2 = {(qI , 1

•, qI)}, F = {qI}
� Q3 = {qI}, δ3 = {(qI , 1, qI), (qI , 1

•, qI)}, F = {qI}
� Q4 = {qI , q}, δ4 = {(qI , 1

•, q), (q, 1, q)}, F = {qI , q}

Configurations of A = 〈Q, qI , τI , δ, F 〉

12

Set of configurations

Conf ir = Q× Reg ir

Initial configuration

κI = (qI , τI) ∈ Conf ir

Evolution of configurations (successor configurations)

(q1, τ1)
d

−→ (q2, τ2)

� (q1, i, q2) ∈ δ, τ1 = τ2, d = τ1(i)
� (q1, i

•, q2) ∈ δ, d 6∈ τ1([r]), d = τ2(i), ∀j 6=i τ1(j) = τ2(j)

Runs and languages

13

A run of A is a sequence κ0, · · · , κk of configurations such that

� κ0 = κI ,

� for all 0 ≤ i < k, κi
di−→ κi+1 for some di ∈ D.

A run is accepting if κk = (qk, τk) for some qk ∈ F . In this case we
say that A accepts d0 · · · dk ∈ D∗.

The set of all sequences w ∈ D∗ accepted by A is called the language
of A and denoted by L(A).

A language L ⊆ D∗ is called an RA-language (or a quasi-regular
language) if there exists an RA that accepts it.

More RA’s

14

Consider the following 2-register automata (τI = [#,#]).

qI q
1•

2, 2•

qI q1 q2
1•

2, 2•

1
qI q1 q2

1, 1•

1

2•

2, 2•

1

1, 2, 2•

RA languages

15

k ranges over the set of natural numbers (including 0).

� {ǫ}

� {d1 · · · dk ∈ D∗ | ∀1≤i<k di 6= di+1}

� D∗

� {d1 · · · dk ∈ D∗ | ∀1≤i<k di = di+1}

� {dd1 · · · dk | ∀1≤i≤k di 6= d}

� {dd1 · · · dkd | ∀1≤i≤k di 6= d}

� {d1 · · · dk | ∃i 6=j di = dj}

Name invariance

16

Note that the one-step successor relation is invariant with respect to
permutations on names. Let σ be a permutation of D.

Abusing notation, we shall also apply σ to various other objects
containing elements of D, e.g. σ([d1, d2]) = [σ(d1), σ(d2)].

Suppose κ
d

−→ κ′. Then

σ(κ)
σ(d)
−→ σ(κ′).

Consider a run κI
d0−→ κ1

d1−→ · · ·
dk−→ κk+1 and a permutation σ of D.

If σ(κI) = κI then the following is also a run of A.

κI = σ(κI)
σ(d0)
−→ σ(κ1)

σ(d1)
−→ · · ·

σ(dk)
−→ σ(κk+1)

Invariance theorems

17

Let A = 〈Q, qI , τI , δ, F 〉 be an r-RA.

� Let τI = [#, · · · ,#] and σ be a permutation of D.

If d1 · · · dk ∈ L(A) then σ(d1) · · · σ(dk) ∈ L(A).

� Let τI be arbitrary and σ be a permutation of D such that σ(τI) =
τI , i.e. for all 1 ≤ i ≤ r, if τI(i) ∈ D then σ(τI(i)) = τI(i).

If d1 · · · dk ∈ L(A) then σ(d1) · · · σ(dk) ∈ L(A).

Register automata do not distinguish specific names (other than those
provided in the initial assignment).

Motto

18

An important facet of our theory is a certain indistinguisha-
bility view of the finite alphabet embedded in the modus
operandi of the automaton. Languages are only unique up
to automorphisms of the alphabet. Thus the actual letters
occurring in the input are of no real significance. Only the
initial and repetition patterns matter.

Francez & Kaminski

New letters can be compared only with what the automaton has seen so
far.

Bounded alphabet property

19

Consider an accepting run

κI
d0−→ κ1

d1−→ · · ·
dk−→ κk+1.

Suppose DI = τI([r]) ∩ D = {d1, · · · , dh}. Then h ≤ r. Pick r + 1− h

different elements dh+1, · · · , dr+1 of D disjoint from DI . Let
Db = {d1, · · · , dr+1}.

Observe that the above accepting run can be transformed into another
accepting run that features only elements of the finite set Db.

Crucial property

An r-RA can store at most r values from D. Consequently, we can
always implement the i• transitions by drawing a letter from Db.

Boundedness

20

Theorem. Let A be an r-RA. There exists a finite subset Db of D such
that if w ∈ L(A) then there exists w′ ∈ (Db)

∗ such that w′ ∈ L(A)
and |w| = |w′|.

If an r-RA A accepts a word then it accepts a word consisting of at most
r + 1 letters.

Corollary. No register automaton will accept the language

{d1 · · · dk ∈ D∗ | k ∈ N,∀i 6=j.di 6= dj}.

No r-register automaton will accept {d1 · · · dr+2 ∈ D∗ | ∀i 6=j di 6= dj},
but there exists an r-register automaton that accepts

{d1 · · · dr+1 ∈ D∗ | ∀i 6=j di 6= dj}.

Complementation

21

No register automaton will accept

L1 = {d1 · · · dk ∈ D∗ | k ∈ N, ∀i 6=j.di 6= dj}.

But there exists a register automaton that accepts

L2 = {d1 · · · dk ∈ D∗ | k ∈ N, ∃i 6=j.di = dj}.

Note that the languages complement each other:

L1 = D∗ \ L2 and L2 = D∗ \ L1.

Conclusion. Languages accepted by register automata are not closed
under complementation.

Closure properties

22

RA-languages turn out to be closed under union, intersection and con-
catenation, though.

To show this, we are going to rely on a more flexible notion of automata.

For a start, let us relax the injectivity requirement for register assign-
ments and set

Regr = [r] → D + {#}.

Accordingly, configurations will be defined by

Conf r = Q× Regr.

M-automata

23

An r-register M-automaton (r-RA(M)) is a tuple A =
〈Q, qI , τI , δ, F 〉, where:

� Q is a finite set of states,
� qI ∈ Q is the initial state,
� τI ∈ Regr is the initial register assignment,
� δ ⊆ Q× P([r])× P([r])×Q is the transition function,
� F ⊆ Q is the set of final states.

Intuition

(q1, X, Y, q2) ∈ δ represents

� reading a letter currently stored exactly in registers listed in X ,
� writing it to registers listed in Y .

Runs of M-automata

24

Evolution of configurations (successor configurations)

(q1, τ1)
d

−→ (q2, τ2)

� (q1, X, Y, q2) ∈ δ

� X = {i | τ1(i) = d}
� ∀i∈Y τ2(i) = d

� ∀i 6∈Y τ2(i) = τ1(i)

Previous model

q1
{i},{i}
−→ q2 q1

∅,{i}
−→ q2

Definition of runs and accceptance analogous to RA.

Equiexpressivity

25

Theorem. For any r-register M -automaton A = 〈Q, qI , τI , δ, F 〉,
there exists an (r+1)-register automaton A′ = 〈Q′, q′I , τ

′
I , δ

′, F ′ 〉 such
that L(A) = L(A′).

Ideas

� We cannot store multiple names. Instead we shall maintain a map
that tells us in which (possibly multiple) registers each name would
occur in the corresponding M -automaton, e.g. {1, 5, 7}.

� M -automata can overwrite multiple registers in a single step. In
register automata we can achieve the same effect by writing to a
single register and updating the above-mentioned map.

� M -automata can read a letter without recording it. Register
automata can’t. We shall use an extra register to handle such cases
(we shall write to that register but it will be mapped to ∅).

Proof sketch

26

In order to keep track of the original locations of names we introduce
partitions.

A partition of [r + 1] is a map

π : [r + 1] → P([r])

such that ∀i 6=j π(i) ∩ π(j) = ∅.

We shall write Partr for the set of all partitions and take

Q′ = Q× Part r

The initial state q′I will be (qI , πI), where πI is defined next.

Proof sketch (initial state, assignment)

27

� Let X = { i ∈ [r] | τI(i) ∈ D }.

� Let X1, · · · , Xn be the equivalence classes on X determined by

i1 ∼ i2 ⇐⇒ τI(i1) = τI(i2).

� Let x1, · · · , xk be the respective representatives. We define
πI ∈ Part r by

πI(x) =

{

Xi x = xi

∅ otherwise

and let the initial assignment τ ′I be

τ ′I(x) =

{

τI(x) x = xi

otherwise.

Proof sketch (transitions)

28

Given

q1
X,Y
−→ q2

for any i ∈ [r + 1] and π1 ∈ Part r such that π1(i) = X ,

add

(q1, π1)
i

−→ (q2, π2)

where

π2(j) =

{

π1(j) \ Y j 6= i

π1(i) ∪ Y j = i

Proof sketch (transitions)

29

In addition, given

q1
∅,Y
−→ q2,

for any π1 ∈ Part r, take some i ∈ [r + 1] such that π1(i) = ∅ (i must
exist because values of π1 are disjoint), and

add

(q1, π1)
i•

−→ (q2, π2)

where

π2(j) =

{

π1(j) \ Y j 6= i

π1(i) ∪ Y i = j

Finally, take F ′ = F × Part r.

Union

30

Theorem. Given an r1-RA(M) A1 = 〈Q1, q1I , τ
1
I , δ

1, F 1 〉 and an r2-
RA(M) A2 = 〈Q2, q2I , τ

2
I , δ

2, F 2 〉 there exists an (r1+ r2)-RA(M) A =
〈Q, qI , τI , δ, F 〉 such that

L(A) = L(A1) ∪ L(A2).

Idea. Create a new initial state qI , merge initial assignments and make
it possible for A to explore both A1 and A2.

Q = {qI}+Q1 +Q2

τI = [τ 1I , τ
2
I]

F = {qI | q1I ∈ F 1 or q2I ∈ F 2}+ F 1 + F 2

Proof sketch (embed A1 into A)

31

� Given q
X,Y
−−→ q′ from δ1, add

q
X∪Z2,Y
−−−−−→ q′

to δ for any Z2 ⊆ {r1 + 1, · · · , r1 + r2}.

� Given q1I
X,Y
−−→ q′ from δ1, add

qI
X∪Z2,Y
−−−−−→ q′

to δ for any Z2 ⊆ {r1 + 1, · · · , r1 + r2}.

Proof sketch (embed A2 into A)

32

Notation. We write r +X for {r + x |x ∈ X}.

� Given q
X,Y
−−→ q′ from δ2, add

q
Z1∪(r1+X),r1+Y
−−−−−−−−−−→ q′

to δ for any Z1 ⊆ {1, · · · , r1}.

� Given q2I
X,Y
−−→ q′ from δ2, add

qI
Z1∪(r1+X),r1+Y
−−−−−−−−−−→ q′

to δ for any Z1 ⊆ {1, · · · , r1}.

Intersection

33

Theorem. Given an r1-RA(M) A1 = 〈Q1, q1I , τ
1
I , δ

1, F 1 〉 and an r2-
RA(M) A2 = 〈Q2, q2I , τ

2
I , δ

2, F 2 〉 there exists an (r1+ r2)-RA(M) A =
〈Q, qI , τI , δ, F 〉 such that

L(A) = L(A1) ∩ L(A2).

Idea. Run A1 and A2 in parallel.

Q = Q1 ×Q2

qI = (q1I , q
2
I)

τI = [τ 1I , τ
2
I]

F = F 1 × F 2

Proof sketch (synchronisation)

34

Given

q11
X1,Y1

−−−→ q12 ∈ δ1

and

q21
X2,Y2

−−−→ q22 ∈ δ2,

add

(q11, q
2
1)

X1∪(r1+X2), Y1∪(r1+Y2)
−−−−−−−−−−−−−−−−→ (q12, q

2
2)

to δ.

Concatenation

35

Theorem. Given an r1-RA(M) A1 = 〈Q1, q1I , τ
1
I , δ

1, F 1 〉 and an r2-
RA(M) A2 = 〈Q2, q2I , τ

2
I , δ

2, F 2 〉 there exists an (r1+ r2)-RA(M) A =
〈Q, qI , τI , δ, F 〉 such that

L(A) = L(A1) · L(A2).

Idea. Run A1 until (local) acceptance, then move on to A2 and again
continue until acceptance.

Q = Q1 +Q2

qI = q1I
τI = [τ 1I , τ

2
I]

F = F 2 ∪ {f ∈ F 1 | q2I ∈ F 2}

Proof sketch

36

� Given q11
X,Y
−−→ q12 ∈ δ1 add

q11
X∪Z2,Y
−−−−−→ q12

to δ for any Z2 ⊆ {r1 + 1, · · · , r1 + r2}.

� Given q21
X,Y
−−→ q22 ∈ δ2 add

q21
Z1∪(r1+X),r1+Y
−−−−−−−−−−→ q22

to δ for any Z1 ⊆ {1, · · · , r1}.

� Given q2I
X,Y
−−→ q2 ∈ δ2, for any f ∈ F 1, add

f
Z1∪(r1+X),r1+Y
−−−−−−−−−−→ q2

to δ for any Z1 ⊆ {1, · · · , r1}.

Kleene star

37

Theorem. For any r-RA(M) A = 〈Q, qI , τI , δ, F 〉 there exists a 2r-
RA(M) A′ = 〈Q′, q′I , τ

′
I , δ

′, F ′ 〉 such that L(A′) = L(A)∗.

Idea. Use the extra r registers to store τI , which is needed to restart A.
After the restart, use the first r registers to run the new iteration,
keeping track of which registers have outdated content (filled with
names from the previous iteration). Redirect accesses to outdated
registers to the initial assignment (second set of r registers).

Q′ = {q′I}+ (Q× P([r]))
q′I = q′I
τ ′I = [τI , τI]
F = {q′I}+ (F × P([r]))

Proof sketch

38

Z ⊆ [r] corresponds to the indices of the first r registers that are
consistent with the current iteration of the automaton.

� Given q1
X,Y
−−→ q2 ∈ δ, for any Z ′ ⊆ [r] \ Z and any Z ′′ ⊇ X \ Z, add

(q1, Z)
(X∩Z)∪Z′∪(r+Z′′),Y
−−−−−−−−−−−−→ (q2, Z ∪ Y)

to δ. Z ′ corresponds to outdated content, which can be ignored.

� Transitions from the initial state need extra treatment: we need to
accept ǫ (hence the need for the new initial state) as well as creating

loops supporting iteration. Given qI
X,Y
−−→ q ∈ δ,

– add q′I
X∪(r+X),Y
−−−−−−−→ (q, [r]) to δ,

– for any f ∈ F and Z,Z ′ ⊆ [r], add (f, Z)
Z′∪(r+X),Y
−−−−−−−→ (q, Y) to

δ.

Classic decision problems

39

� emptiness
L(A) = ∅

� universality
L(A) = D∗

� equivalence
L(A1) = L(A2)

� inclusion
L(A1) ⊆ L(A2)

Emptiness

40

Let A = 〈Q, qI , τI , δ, F 〉 be an r-RA.

� Recall the boundedness property: if w ∈ L(A) then there exists a
finite set Db ⊆ D and w′ ∈ D∗

b such that w′ ∈ L(A).
� More concretely, one take Db to be an arbitrary superset of

τI([r]) ∩ D of size r + 1.

Observation

Emptiness of an RA can be verified by searching through words from
D∗

b . This is a finite alphabet, so the problem is reduced to one for a
finite automaton.

Reduction to FA

41

It suffices to consider A′ = 〈Q′,Σ, q′I , δ
′, F ′ 〉, where

Q′ = Q× ([r] → Db + {#})
Σ = Db

q′I = (qI , τI)
F ′ = F × ([r] → Db + {#})

and δ′ is defined to be the subset of the successor relation for A

(q1, τ1)
d
−→ (q2, τ2)

where d ∈ Db and τ1, τ2 ∈ ([r] → Db + {#}).

FA emptiness amounts to a simple reachability test (of a final state from
the initial state). Thus, RA emptiness is decidable.

Universality

42

L(A) = D∗

� In presence of closure under complementation, universality can be
reduced to emptiness.

� But RA are not closed under complementation.
� In fact, universality for RA turns out undecidable.
� It follows that equivalence and inclusion are not decidable either.

Proof idea Reduction from Post Correspondence Problem:

given xi, yi ∈ {a, b}∗ (i = 1, · · · , n) do there exist k ≥ 1 and
1 ≤ i1, · · · , ik ≤ n such that

xi1 · · · xik = yi1 · · · yik .

Representation scheme

43

Fix Daux = {&,#, 1, 2, · · · , n, a, b} ⊆ D. A solution i1, · · · , ik to a PCP
instance can be represented by a string of the form

u#v

where u, v have the following shape.

� u consists of k segments of the form

& idu
j i

u
j δ

u
1 c

u
1 · · · δupu

j
cupu

j
,

where idu
j , δ

u
h ∈ D \ Daux, i

u
j ∈ {1, · · · , n} and cuh ∈ {a, b}.

� v consists of k segments of the form

& idv
j i

v
j δ

v
1 c

v
1 · · · δvpvj c

v
pvj
,

where idv
j , δ

v
h ∈ D \ Daux, i

v
j ∈ {1, · · · , n} and cvh ∈ {a, b}.

Correctness conditions

44

· · ·& idu
j i

u
j δ

u
1 c

u
1 · · · δupuj c

u
puj
· · ·# · · ·&idv

j i
v
j δ

v
1 c

v
1 · · · δvpvj c

v
pvj
· · ·

� xij = cu1 · · · c
u
puj

and yij = cv1 · · · c
v
pvj

� idu
j ’s and δuh ’s are pairwise different.

� Ditto for idv
j ’s and δvh’s.

� u ↾ id = v ↾ id

� u ↾ iuj = v ↾ i vj
� u ↾ δuh = v ↾ δvh
� u ↾ cuh = v ↾ cvh

Key idea
For each condition above, we can construct a register automaton that
will detect a violation (use nondeterminism).

Universality

45

� Each kind of violations can be detected by an RA.
� Overall, because RA’s are closed under union, there exists an RA A

that can recognise all kinds of violations in the representation of a
PCP solution.

Key observation

If a PCP instance has no solution then all words are bound to contain a
violation. Consequently

L(A) = D∗ ⇐⇒ PCP instance has no solution.

Because PCP is not decidable, RA universality must be undecidable.

Bibliography

46

� Register automata [KF94, NSV04]
� Pushdown register automata [CK98, Seg06, MRT14]
� More [NSV04, Seg06, BS07, BKL14]

[BKL14] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Logical Methods in Computer

Science, 10(3), 2014.

[BS07] H. Björklund and T. Schwentick. On notions of regularity for data languages. In Proceedings of FCT, volume 4639 of
Lecture Notes in Computer Science, pages 88–99. Springer, 2007.

[CK98] E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets. Acta Inf., 35(3):245–267, 1998.

[KF94] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363, 1994.

[MRT14] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Reachability in pushdown register automata. In Proceedings of MFCS,
LNCS, pages 464–473. Springer, 2014.

[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets. ACM Trans. Comput.

Log., 5(3):403–435, 2004.

[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proceedings of CSL, volume 4207 of
Lecture Notes in Computer Science. Springer, 2006.

	Finite alphabets
	Infinite alphabets
	Why infinite alphabets?
	ML
	Pointers and references
	XML
	Abstract syntax with binding
	Register automata (informally)
	Register automata
	Examples
	Configurations of A="426830A Q,qI,I,,F "526930B
	Runs and languages
	More RA's
	RA languages
	Name invariance
	Invariance theorems
	Motto
	Bounded alphabet property
	Boundedness
	Complementation
	Closure properties
	M-automata
	Runs of M-automata
	Equiexpressivity
	Proof sketch
	Proof sketch (initial state, assignment)
	Proof sketch (transitions)
	Proof sketch (transitions)
	Union
	Proof sketch (embed A1 into A)
	Proof sketch (embed A2 into A)
	Intersection
	Proof sketch (synchronisation)
	Concatenation
	Proof sketch
	Kleene star
	Proof sketch
	Classic decision problems
	Emptiness
	Reduction to FA
	Universality
	Representation scheme
	Correctness conditions
	Universality
	Bibliography

