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Wireless sensor networks (WSNs) are characterized by localized interactions, that is, protocols are often based on message
exchanges within a node’s direct radio range. We recognize that for these protocols to work effectively, nodes must have
consistent information about their shared neighborhoods. Different types of faults, however, can affect this information,
severely impacting a protocol’s performance. We factor this problem out of existing WSN protocols and argue that a notion
of neighborhood view consistency (NVC) can be embedded within existing designs to improve their performance. To this
end, we study the problem from both a theoretical and a system perspective. We prove that the problem cannot be solved in
an asynchronous system using any of Chandra and Toueg’s failure detectors. Because of this, we introduce a new software
device called pseudocrash failure detector (PCD), study its properties, and identify necessary and sufficient conditions for
solving NVC with PCDs. We prove that, in the presence of transient faults, NVC is impossible to solve with any PCDs, and
thus define two weaker specifications of the problem. We develop a global algorithm that satisfies both specifications in the
presence of unidirectional links, and a localized algorithm that solves the weakest specification in networks of bidirectional
links. We implement the latter atop two different WSN operating systems, integrate our implementations with four different
WSN protocols, and run extensive micro-benchmarks and full-stack experiments on a real 90-node WSN testbed. Our results
show that the performance significantly improves for NVC-equipped protocols; for example, the Collection Tree Protocol
(CTP) halves energy consumption with higher data delivery.
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) are distributed systems of resource-constrained embedded
nodes. Because of their characteristics, such as ease of deployment, WSNs have become a viable
tool to harvest fine-grained data from the physical world and to act on it.
Problem. Different types of faults may occur in WSNs. A node’s memory may be corrupted be-
cause of defective hardware [Werner-Allen et al. 2006; Finne et al. 2008], erroneous sensor read-
ings [Sharma et al. 2007], or software bugs such as buffer overflows [Chen et al. 2009; Huang et al.
2012; Cooprider et al. 2007]. The nodes may crash because of environmental factors or exhausted
batteries [Werner-Allen et al. 2006; Beutel et al. 2009; Barrenetxea et al. 2008; Hnat et al. 2011].
Moreover, due to the limited power that can be invested in radio transmissions, wireless links are
prone to failure due to, for example, external interference, environmental noise, and collisions on
the wireless channel [Baccour et al. 2012; Srinivasan et al. 2010].

To achieve better scalability and energy efficiency, the design of WSN protocols often favors lo-
calized interactions [Estrin et al. 1999]. This entails that a protocol’s operation is mainly based on
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interactions among nodes within direct radio range, in what is known as a node’s neighborhood.
As example, Figure 1 illustrates the operation of a simplified data collection protocol. These pro-
tocols support many-to-one traffic by building a tree-shaped routing topology towards a sink node.
The paths are determined based on a routing metric that every node periodically advertises to its
neighbors. In this example, we consider for simplicity the number of hops to the sink as the routing
metric. In Figure 1(a), every node chooses its next hop to minimize the hop distance to the sink.
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(b) After a link failure and
a data corruption occur.

Fig. 1. Example operation
of a data collection protocol
with node A as sink. Dashed
lines are bidirectional links.
Thick lines are links chosen
for routing. Numbers indicate
the perceived hop distance
from A.

WSN protocols must effectively deal with the possible faults to main-
tain good performance. If the link between node B and E fails in Fig-
ure 1(a), the protocol must recognize the topology change and reconfig-
ure the paths accordingly. However, if the information on a node’s neigh-
borhood is incorrectly represented in the program’s state, the protocol
operation may be misguided. For example, say that data advertised by
node C is corrupted at node E and in a way that C appears unreachable
from E. If the protocol is unable to recognize the data corruption, the
routes may be eventually sub-optimally reconfigured as in Figure 1(b).

As we elaborate in Section 2, erroneous neighborhood information
may generate severe problems in data collection protocols, such as rout-
ing loops [Iova et al. 2013; Gnawali et al. 2009; Romer and Ma 2009;
Keller et al. 2012; Burri et al. 2007]. These protocols are not the only ex-
ample: neighborhood information are at the core of most WSN protocols.
For example, incorrect information on a node’s neighbors may yield sys-
tematic packet collisions in MAC protocols [Saifullah et al. 2010; Saiful-
lah et al. 2011; Demirkol et al. 2006; Song et al. 2009; Rhee et al. 2008];
it may generate poor performance when using in-network processing al-
gorithms due to sub-optimal allocation of processing functions [Bonfils
and Bonnet 2003]; and tends to cause drastic inaccuracies in localization
protocols [Langendoen and Reijers 2003].

As we also discuss in Section 2, the design of WSN protocols often
overlooks these issues, adopting simplistic techniques to manage neigh-
borhood information. Some form of un-coordinated beaconing from ev-
ery node is typically used to signal the reachability of a device [Ko et al.
2011; Hansen et al. 2011; Levis et al. 2004; Dunkels et al. 2011; Gnawali
et al. 2009]. These techniques show several weaknesses: i) they induce
long delays before the nodes possibly acquire the correct topology infor-
mation, ii) they cannot detect data corruption affecting neighborhood in-
formation, and iii) they are unable to distinguish between different types
of faults, such as data corruption as opposed to node crashes or link fail-
ures, which may require distinct corrective actions.
Contribution and road-map. To remedy the issues above, we must en-
sure that the physical neighborhood of a node—defined in terms of the
underlying physical connectivity—is accurately reflected in that node’s logical states, that is, in
the program that governs a protocol’s operation. To achieve this, every time a fault occurs, nodes
must quickly and accurately identify a “consistent view” on their 1-hop neighbors. Consistency here
intuitively indicates that:

Given any two nodes n and m, all nodes within a single hop from both n and m must
always appear in both n’s and m’s logical states, namely, any 2-hop neighbors must
agree on their shared neighborhoods.

To the best of our knowledge, we are the first to recognize this problem—which we call neighbor-
hood view consistency (NVC)—and to factor it out the existing WSN literature. NVC indeed repre-
sents a primitive notion at the core of many WSN protocols. We claim that efficiently tackling NVC



can benefit a vast fraction of such protocols, and that one can embed algorithms providing NVC
within existing protocols to improve their performance. As an example, as soon as neighborhood
consistency is achieved at every node in Figure 1(b), node C would correctly appear in node E’s
logical state. Hence, node E would realize C is a better next hop than D.

In this paper, we investigate NVC from both a theoretical and a system perspective. In Section 3,
we define the necessary conceptual framework. Then, we provide the following contributions:

— We formally define in Section 4 the NVC problem in terms of safety and liveness, and prove that
the problem is impossible to solve using traditional failure detectors [Chandra and Toueg 1996]
combined with localized interactions in an asynchronous system. These results lay the basis for
the remainder of the work.

— Next, we split the problem along two dimensions: i) neighborhood monitoring, and ii) view con-
sistency enforcement:
— To solve i), Section 5 presents a (software) device stronger than traditional failure detectors,

which we call pseudocrash failure detector (PCD). We study its properties, and prove that they
can only be eventually guaranteed in the general case. We provide an algorithm implementing
such PCD, and show that PCDs are in general necessary, but not sufficient to provide NVC: a
synchronous system is also required.

— To solve ii), Section 6 investigates how to enforce NVC based on the output of PCDs, proving
again that NVC is impossible with the feasible PCDs. We thus define two weaker specifications
of NVC and: i) demonstrate that none of them can be solved with a localized algorithm if uni-
directional links are present, and ii) provide a global algorithm that solves both specifications
in the presence of unidirectional links, as well as a localized algorithm that solves the weakest
specification when links are bidirectional.

The last algorithm, which we call WeakC, can replace the un-coordinated beaconing used in most
WSN protocols based on localized interactions, which mostly operate over bidirectional links [Ko
et al. 2011; Gnawali et al. 2009; Kim et al. 2007a; Mottola and Picco 2011; Voigt and Österlind
2008; Burri et al. 2007]. Compared to existing solutions to manage neighborhood information, upon
the occurrence of faults, WeakC can reconcile the neighborhood information much earlier, reducing
the time a protocol operates in the absence of NVC. Moreover, it can do so in a consistent manner
across all involved nodes, easing a protocol’s reconfiguration in that the nodes’ neighborhood are
readily sound compared to each other. Finally, WeakC separates data corruption from node crashes
or link failures, giving protocols a chance to react differently depending on the fault.

As described in Section 7, we implement WeakC atop two different WSN operating systems. Our
implementations are designed to be sufficiently flexible to replace the neighborhood management
component in many WSN protocols with only limited memory overhead. To demonstrate this as
well as the benefits of NVC, we integrate our WeakC implementation with four different WSN
protocols and run extensive micro-benchmarks and full-stack experiments in a real-world 90-node
testbed, as reported in Section 8. The results indicate that: i) WeakC efficiently deals with different
types of faults, and ii) NVC significantly improves the performance of existing WSN protocols. For
example, NVC allows the Collection Tree Protocol (CTP) [Gnawali et al. 2009] to deliver more data
by halving the energy consumption.

We end the paper by surveying the existing related literature in Section 9, and with brief conclud-
ing remarks in Section 10.

2. MOTIVATION AND STATE OF THE ART
Ample evidence exists of the role that efficiently and correctly detecting a node’s neighbors plays in
WSNs. Despite the advancements achieved on the efficiency side, however, solutions to ensure the
correctness of these information are much less developed. Existing approaches tackle the problem
at the system level, yet theoretical analysis of the problem are also largely missing.



Applications. The literature includes plenty of experiences from WSN deployments that demon-
strate the issues in managing neighborhood information against possible faults. Since early anec-
dotal evidence [Langendoen et al. 2006], these experiences ultimately resulted in entire works re-
porting on the corresponding lessons learned, both in outdoor [Barrenetxea et al. 2008] and residen-
tial [Hnat et al. 2011] settings. For example, Barrenetxea et al. [2008] describe their experiences in
seven environmental monitoring deployments, each lasting several months, observing that an over-
hearing strategy to maintain the nodes’ neighbor tables is efficient in terms of energy consumption,
as it does not require proactively transmitting beacons. However, by doing so, the representation
of the physical topology in a node’s state may lag behind topology changes, yielding reliability
problems [Barrenetxea et al. 2008].

Additional evidence from real-world WSN installations comes from Dawson-Haggerty et al.
[2012]. Based on data collected from a 500 node indoor deployment of power metering devices
over one year, they observe that the vast majority of links are intermittent even in such a benign en-
vironment. Using a form of periodic un-coordinated beaconing, a node’s neighborhood information
is thus seldom on par with the underlying physical topology. Dawson-Haggerty et al. [2012] observe
that this may cause an increase in routing stretch by a factor of two, that is, twice the number of
messages are generated to reach the destination. This ultimately impacts the system’s scalability.

Arora et al. [2004] as well as Dutta et al. [2006] report similar observations, cast in the operation
of target tracking applications employing 500+ nodes. To offer sufficient accuracy in localizing the
target, the nodes must be precisely aware of their neighboring relations; otherwise, targets may be
represented as duplicates or false positives may be reported. To deal with inconsistent neighborhood
information, Arora et al. [2004] define a dedicated notion of logical neighbor based on the long-term
stability of wireless links. Even if this solves the specific problem they face in the given application,
it also results in ruling out many links that may be usefully employed if a dedicated solution to
manage neighborhoods against faults would be deployed.

In the volcano expedition of Werner-Allen et al. [2006], for about 37% of the time at least one
node out of nineteen was reported as crashed, and often multiple nodes were not responding. This
created continuous changes in the neighborhood information. In the same deployment, due to the
complexity of the software running on the nodes and the bugs therein, data corruptions occurred
frequently, hampering the operation of the system until a bug was fixed. The bug probably affected
neighborhood information as well, as the operation of the data collection protocol, in turn heavily
based on neighborhood information, was significantly impaired [Werner-Allen et al. 2006].

We also have first-hand experience of the impact of incorrectly maintaining neighborhood infor-
mation. To obtain a quantitative insight, we analyze the logs available from five distinct deployments
we carried out in past research efforts [Ceriotti et al. 2009; Mottola et al. 2010; Ceriotti et al. 2011].
Note that we did not obtain these logs explicitly for studying the NVC problem; thus, they only
include partial information compared to our goals in this paper and the following figures are prob-
ably quite optimistic1. In the Torre Aquila deployment [Ceriotti et al. 2009], we find out that about
43% of the packet lost on the way to the sink could be definitely traced back to nodes reasoning
upon inconsistent neighborhood information. The same figure amounts to about 41% for our road
tunnel deployments [Mottola et al. 2010; Ceriotti et al. 2011] and to about 40% for our vineyard
deployment [Mottola et al. 2010].

As technology evolves, we expect these issues to keep existing and possibly to worsen. For exam-
ple, as energy harvesting and wireless energy transfer find their way in WSNs [Bhatti and Mottola
2016; Sudevalayam and Kulkarni 2011; K. et al. 2015], the operating modes will drastically mutate.
Nodes will enter some form of deep hibernation to survive periods of energy unavailability, and will
later resume the previous state—as opposed to restarting from scratch—as soon as ambient energy
is newly available [Ransford et al. 2011]. This will require revisiting many assumptions about dis-
covering and communicating with neighbors [Pannuto et al. 2014]. Note that hibernating a node

1The deployments are unfortunately no longer accessible for further experimentation.



is, in fact, analogous to a node crashing and later recovering. Maintaining consistent neighborhood
information in this setting will present similar issues as those we tackle here.
Systems. Neighborhood information are at the core of many system functionality. A plethora of
works exist in this area, which however focus on achieving efficiency rather than correctness.

Besides the four protocols [Mottola and Picco 2011; Gnawali et al. 2009; Ko et al. 2011; Voigt and
Österlind 2008] we employ in Section 8, many other examples exist whose functioning relies upon
an accurate logical representation of a node’s physical neighborhood [Burri et al. 2007; Kim et al.
2007a; Iova et al. 2013; Ko et al. 2011; Schmid et al. 2010; Choi et al. 2009; Saifullah et al. 2010;
Saifullah et al. 2011]. One example is that of IP-enabled low-power wireless protocols, expected to
provide the communication backbone for the emerging “Internet of Things”. Multiple works gen-
erally observe that the efficiency of RPL-based networks is also a function of the “coherence” of
neighborhood information across nodes [Ko et al. 2011; Iova et al. 2013]. Another example are the
issues in computing the packet schedules in WirelessHART networks, due to conciliating different
neighborhood information at different nodes [Saifullah et al. 2010; Saifullah et al. 2011]. Some
works try and lessen the role of neighborhood information in the protocol operation; for example,
by employing opportunistic transmissions schemes [Duquennoy et al. 2013], by avoiding the use of
beacons for neighbor discovery [Puccinelli et al. 2012], or by employing multi-hop network-wide
flooding as the only communication primitive [Ferrari et al. 2012]. We aim at formally and practi-
cally solving the NVC problem to improve the performance of protocols relying on this information.

Consistent neighborhood information is instrumental not just to the operation of networking pro-
tocols, but also to underpin the operation of higher-level programming systems and applications.
Whitehouse et al. [2004] design a neighborhood abstraction to replicate data between 1-hop nodes,
whereas Costa et al. [2007] build a shared memory space across neighboring nodes. As node crash,
link fail, and data corruption occur, these programming systems need to be aware of these changes,
so that application programmers are minimally affected. Cases also exist where maintaining neigh-
borhood information is the application itself. Examples are mechanisms for quickly computing
the neighborhoods’ cardinality [Cattani et al. 2014], and neighbor discovery protocols for mobile
WSNs; for example, used in wildlife monitoring scenarios [Pásztor et al. 2010]. In the latter, several
solutions exist [Dutta and Culler 2008; Kandhalu et al. 2010; Zhang et al. 2012] that allow designers
to use radios as proximity sensors.

Two other research lines provide further evidence of the importance of the problem. On one
hand, the design of WSN monitoring and debugging tools [Romer and Ma 2009; Keller et al. 2012]
often centers on the ability to inspect the neighborhood information at a node. Reasoning upon this
information is regarded as a fundamental part of the testing process, as many bugs are ultimately
a function of how neighborhood information is acquired and maintained [Romer and Ma 2009;
Keller et al. 2012]. On the other hand, owing to the energy cost of managing multiple beaconing
processes of different protocols, software architectures exist to reduce such overhead [Dunkels et al.
2011; Hansen et al. 2011]. Here again, the focus is on efficiency, especially in terms of energy
consumption, rather than on the correctness of the neighborhood information.
Neighborhood view consistency. We argue that applying a notion of NVC in many of these sys-
tems would provide significant benefits. Many of them employ network functionality that closely
resembles the four protocols we consider in Section 8. For these, we quantitatively demonstrate
remarkable performance improvements, for example, in data yield and energy consumption. The
cost to gain these benefits using our implementations is a small increase in data and program mem-
ory due to replacing the neighborhood management component with an implementation of WeakC,
along with a limited network overhead. Importantly, the latter is only required whenever NVC must
be re-established: in the absence of faults, WeakC causes no additional traffic.

On the other hand, we also maintain that many of the systems we surveyed did not originally
employ a notion of NVC essentially because the problem was insufficiently understood. Especially
in real-world deployments, obtaining reasonable—albeit greatly sub-optimal—performance is often
deemed sufficient even when room for improvements is clearly available [Barrenetxea et al. 2008;
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Fig. 2. Intuitive representation of physical and logical neighborhoods. Thick dashed lines represent links in the physical
topology. Thin dashed lines represent how those links are reflected in the nodes’ logical states. The physical neighborhood
of node a is A = {b, c, d}. However, due to faults, Al = {c, d} 6= A. Therefore, WSN protocols running at a would think
they cannot communicate with b, although this is physically possible.

Hnat et al. 2011]. Formally fixing the notion of NVC, as we do in Section 4, provides the necessary
conceptual foundations. Moreover, splitting the problem between neighborhood monitoring and
view consistency enforcement, which we discuss separately in Section 5 and Section 6, offers the
opportunity to employ selected parts of our work, depending on the specific application setting.

Even though our work focuses on WSNs, worth noticing is that the problem of managing neigh-
borhood information, and thus possibly a notion of NVC, is not only germane to WSNs. In mo-
bile ad-hoc networks, for example, several protocols operate based on information about the 1-hop
nodes [Cornejo et al. 2014]. Specific solutions thus exist to ensure that these information is effi-
ciently collected despite mobility [Iyer et al. 2011; Cornejo et al. 2014].

3. PRELIMINARIES
We provide the necessary formal background, including the models we use, the program syntax and
semantics, the computation and communication models, as well as the types of failures we consider.

3.1. System Model

Topology and processes. A WSN node is a computing device associated to a unique identifier.
Communication in WSNs is typically modeled with a circular communication range centered on
a node, and assuming all nodes have the same communication range. With this model, a node is
thought as able to exchange data with all devices within its communication range. In reality, com-
munication between two nodes may be temporarily disrupted by a number of factors; for example,
interference from co-located wireless networks and environmental noise [Baccour et al. 2012; Srini-
vasan et al. 2010]. Hence, the network topology changes with time.

In graph-theoretic terms, we represent a WSN as a directed graph G = (V,A) with a set V of
vertices representing the nodes, and a set A of arcs representing the directed communication links
between pairs of nodes. We denote by γ the number of nodes in the network, that is, γ = |V |. To
model network dynamics, we denote the topology of the network at a time t by Gt = (Vt, At). We
assume, for simplicity, that all links are initially bidirectional, that is, the directed graph is initially
symmetric. We also assume that the network remains connected throughout, otherwise enforcing
NVC becomes impossible in the general case.

Localized interactions in WSN protocols require accurate physical neighborhood information. On
the other hand, a program running on a node only keeps—in its logical states—information about
its “perception” of the physical neighborhood. We call this the program’s logical neighborhood. We
indicate as N l

t node n’s logical neighborhood at time t, that is, the set of nodes that the program
running at n believes are neighbors of n at time t. Differently, for a given node n, we denote its



physical neighborhood at time t by Nt, namely, Nt is the set of nodes reachable from n with a
single transmission at time t, independently of whether they appear in n’s logical states. We will
simply denote the physical (logical) neighborhood of a node n by N (N l) when time is immaterial.

The physical and logical neighborhoods of a node may differ. Figure 2 intuitively represents the
concept. Node a’s physical neighborhood is A = {b, c, d}. However, because of different types of
faults, this information may be incorrectly reflected in node a’s logical states. For example, data
corruption may make node c appear as not reachable from a in a single transmission, hence the
logical neighborhood at a may differ from the physical one: Al = {c, d} 6= A. This is, in essence,
the source of the NVC problem we study.

The actions taken by the individual nodes are dictated by the process running on it. The system
thus consists of a finite set Π of γ > 0 processes p1 . . . pγ , where each node in the network runs
a process2. Adjacent processes, defined by the physical topology, are linked by unreliable wireless
channels, where a finite number of messages may be unpredictably lost. No spurious messages
are delivered. Each process contains a non-empty set of variables and actions, also called steps,
depending on an algorithm A. We denote a variable v of process p by p.v. An assignment of values
to variables in a program is called a state.
Program syntax and semantics. We write programs in the guarded command notation [Dijkstra
1974]. Hence, an action has the form 〈name〉::〈guard〉 → 〈command〉. In general, a guard is a
predicate defined over the set of a process’ variables. When a guard evaluates to true, the command
can be executed, which takes the program from one state to another. When the state transition is
complete, we say that event 〈name〉 has occurred. A command is a sequence of assignments and
branching statements. A guard or command can contain universal or existential quantifiers of the
form: 〈quantifier〉〈boundvariables〉 : 〈range〉 : 〈term〉, where range and term are Boolean
constructs. When a guard evaluates to true in a state, the corresponding action is enabled in that
state. A special timeout(timer ) guard evaluates to true when a timer variable reaches zero. A
set(timer , value) command sets the timer variable to a specified value.

We choose this notation for several reasons. First, it is usually simpler to formally reason on a
program execution in terms of what guards become true at a given point in the execution, rather than
following a specific control flow. Moreover, the guarded command notation makes programs more
compact, compared to the more traditional state transition or procedural representations. Finally,
the guarded command notation matches the programming style of many WSN software platforms,
which tends to be event driven [Hill et al. 2000]. In these cases, the binding of events to their
handlers is, in a sense, corresponding to the evaluation of guards.

The execution of a step of an algorithmA causes the process to update one or more variables and
moves the system from one state to another in one atomic step. In a given state s, several processes
may be enabled, and a decision is needed about which one(s) to execute. The subset of processes that
take a step when possible is chosen according to different scheduling policies. To ensure the system
makes progress, a notion of fairness is also required. Whenever any of the enabled processes can
take a step independent of all others, that is, a continuously enabled action is eventually executed,
we say the system is weakly fair [Dolev 2000] and runs in an asynchronous manner. This entails
there is no bound on relative process speeds and message transmission time. Differently, we say
the system is synchronous whenever all enabled processes take a step. This captures the fact that
processes execute in lock-step, thus, process speeds and message latency are bounded and known.
The notion of weak fairness never extends to faults.
Communication. Each process has a special channel variable, denoted by ch, modeling a FIFO
queue of incoming messages sent by other processes. This variable is defined over the set of (possi-
bly infinite) message sequences. An action with a rcv(msg ,sender ) guard is enabled when there is
a message at the head of the channel variable ch of a process. Executing the corresponding action
causes the message at the head of the channel to be dequeued, while msg and sender are bound

2We will use the terms node and process interchangeably where no ambiguity can arise.



to the content of the message and the sender identifier. Differently, the send(msg ,dest) command
causes message msg to be attached to the tail of the channel variable ch of processes in the dest
set. To capture the broadcast multi-hop nature of WSNs, the semantics of send when executed on
node n depends on the processes in dest :

— if all nodes in dest are in the physical neighborhood N of node n, that is, ∀i ∈ dest : i ∈ N , then
msg is simultaneously appended to the tail of the channel variable at all processes in dest ;

— if dest is a predefined value BCAST , then message msg is simultaneously appended to the tail
of the channel variable ch of all processes that are in n’s physical neighborhood: this implies
the message reaches processes that may not appear in the sender’s logical states, modelling the
semantics of physical broadcast in WSNs;

— if at least one node in dest is not in N , then message msg is appended to the tail of the channel
variable ch at all processes in dest possibly at different times, modeling multi-hop transmissions.

3.2. Faults
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not possible
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Fig. 3. Types of failures and their symptoms.

We consider three types of faults: i) process crash
faults, ii) omission faults, and iii) transient faults.
These are schematically shown in Figure 3 together
with their symptoms, that is, the way they manifest
from a program’s perspective.

A process crash occurs when a process stops exe-
cuting, for example, because a node runs out of en-
ergy or is physically damaged [Werner-Allen et al.
2006; Beutel et al. 2009; Barrenetxea et al. 2008; Hnat et al. 2011], whereas an omission fault
occurs when a node sends a message that fails to be delivered to at least one of the intended re-
cipients. This occurs due to, for example, interference and message collisions [Baccour et al. 2012;
Srinivasan et al. 2010]. Both types of failures manifest with the same symptom: communication is
prevented from one node to another. These failures are thus conceptually similar, and so is their
impact in determining the conditions under which we can provide NVC. In the rest of the paper, we
say a node n pseudocrashes if n crashes or n undergoes an omission fault.

Transient faults corrupt a process state by arbitrarily altering values of variables. They model
memory corruption due to, for example, bit-flips caused by defective hardware [Finne et al. 2008;
Werner-Allen et al. 2006] or software bugs such as buffer overflows [Chen et al. 2009; Cooprider
et al. 2007; Huang et al. 2012; McCartney and Sridhar 2006]. Due to the lack of memory protec-
tion in most WSN operating systems, the latter are particularly frequent [Cooprider et al. 2007].
Transient faults may also affect messages in transit. We assume that transient faults do not occur
infinitely often, otherwise the system’s liveness may be compromised. Transient faults manifest as
state inconsistencies in a program, that is, a given state in a program cannot be the result of any
execution of an algorithm A. For example, a state inconsistency may be due to conflicting values
in different variables, locally to a process or across different processes. As discussed next, transient
faults bear a unique effect on the conditions leading to solvable instances of NVC.

Worth noticing is that we do not make any assumption on the spatial or temporal correlation
of faults. The theoretical results and algorithms we discuss next do not rely on any such premise,
neither do the implementations we describe in Section 7, used to obtain the results in Section 8.
Pseudocrash failure patterns. To model pseudocrashes occurring during system execution, we
define a failure pattern F to be a function from τ to 2Π, where τ represents the range of output
from a fictional global clock3. Intuitively, F(t) denotes the set of nodes that are pseudocrashed at
time t. We say a node n is working at time t if n 6∈ F(t) and we say n is not working at time t if
n ∈ F(t). Hence, a node n pseudocrashes at time t if n is working at time t′ < t and not working

3The notion of a global clock simply serves to assign a timestamp to the output of a failure pattern, yet there is no actual
global clock in the system. This is simply a tool to simplify the presentation without compromising its formal coherence.



at time t. Dually, we say that a node n recovers at time t if n is not working at time t′ < t and n
is working at time t. We also consider a function F ′ from τ to bag Π that denotes the number of
times the nodes have pseudocrashed at time t, or how many pseudocrashes occurred in the network
until t. Thus, a node n can be in any of these states in a failure pattern F :

— Always working: node n never pseudocrashes in F .
— Eventually working: node n pseudocrashes at least once, but a time t exists when n recovers in F .
— Eventually not working: node n permanently pseudocrashes in F after a given time t.

When a node is eventually working, we do not require the node to work permanently after time t.
Rather, we require that it keeps working for a long enough time to allow progress to be made. A
pseudocrash failure can last for an arbitrary length of time. However, if a node alternates between
working and not working infinitely often, in what is an “unstable” state, then progress might be
compromised. Thus, to ensure liveness, we require the duration of a pseudocrash to be of a certain
minimum length. This means that the time between a node pseudocrashing and recovering is lower
bounded. In this model, a node crash is a pseudocrash with infinite duration.

We also define two sets including the processes that are always working in F and those that are
eventually not working in F , namely:

workingA(F) ≡ {n | ∀t ≥ 0 : n 6∈ F(t)}
notWorkingE(F) ≡ {n | ∃t.∀t′ ≥ t : n ∈ F(t′)}

Failure detectors. A failure detector is a (software) device responsible for the detection of node
crashes in a distributed system [Chandra and Toueg 1996]. A failure detector can be queried at any
time t ∈ τ . It returns the set of processes it suspects to have crashed at a time t. A failure detector
history H is a mapping from Π×τ to 2Π, where H(m, t) denotes the value of the failure detector
for process m at time t. In other means, if the failure detector at process m is queried at time t, then
H(m, t) contains the set of processes that m suspects to have crashed at time t. A failure detector
D maps a failure pattern F to a set of failure detector histories.

However, not all possible failure detector histories are useful or accurate. For example, failure
detector histories where node crashes are not detected are not accurate. In fact, there is not just one
type of failure detector, but many possible types depending on what properties they provide, that is,
depending on their strength. To reason on how useful a failure detector history is, failure detectors
are required to satisfy certain properties [Chandra and Toueg 1996]. The completeness property
captures the ability to detect crashes. On the other hand, the accuracy property captures the ability to
avoid wrong suspicions. Due to the uncertainty in an asynchronous system, these properties cannot
be taken for granted, giving rise to different degrees of completeness and accuracy. For example,
in a WSN, uncertainty can arise due to wireless interference. In such a case, a failure detector may
report that a node crashed when it is actually correct. Extending failure detectors to pseudocrashes,
we define strong accuracy and strong completeness as follows:

— Strong accuracy: no process is suspected before it pseudocrashes. Specifically,
∀F .∀H ∈ D(F).∀t ∈ τ . ∀m,n ∈ Π \ F(t).m 6∈ H(n, t)

— Strong completeness: a pseudocrashed process is eventually permanently suspected by all correct
neighbor processes. Specifically,
∀F .∀H ∈ D(F).∃t ∈ τ .∀m ∈ notWorkingE(F).∀n ∈ workingA(F),m ∈ N.
∀t′ ≥ t.m ∈ H(n, t′)

These properties characterize the strength of the completeness and accuracy properties of a specific
failure detector. The strong specification of these properties also entail that it is the strongest formu-
lation achievable, that is, a failure detector cannot offer a completeness (accuracy) property stronger
than strong completeness (strong accuracy). A failure detector that provides both strong accuracy
and strong completeness is called perfect failure detector. A perfect failure detector permanently
suspects a pseudocrashed node until it recovers.



3.3. Algorithms and Computation
Chandra and Toueg [1996] define a computation to be a tuple C = (F ,D, I, S, T ) where F is
a failure pattern, D a failure detector, I is the system’s initial state, S is a sequence of algorithm
steps, and T is a sequence of increasing time values when these algorithm steps are taken. In this
paper, we study algorithms that use devices similar to failure detectors. However, our definition of
computation will be slightly different [Gärtner and Pleisch 2002], but equivalent to that of Chandra
and Toueg [1996]. We define two functions: a step function As from τ to the set of all algorithm
steps, and a process function Ap from τ to Π. In other words, function Ap(t) denotes the process
that takes a step at time t and As(t) identifies the step that was taken.

To account for the possibility of transient faults, we augment our notion of computation with
a special process called environment and denoted by ε, which causes a further set Ftr of steps to
become possible. The actions in Ftr model transient failures [Arora and Kulkarni 1998]. Without
loss of generality, we assume that at any time, at most one process, including the environment, takes
a step. If no process takes a step at time t, both the step function and the process function evaluate
to ⊥. A computation in the presence of transient faults is thus C = (F ,D, I, As ∪ Ftr, Ap ∪ {ε}).

A specification is a set of computations. A program P satisfies a specification ¶ if every compu-
tation of P is in ¶; Alpern and Schneider [1985] state that every specification can be described as
the conjunction of a safety and liveness property. Intuitively, safety states that something bad should
not happen; liveness states that something good will eventually happen. Formally, the safety speci-
fication identifies a set of finite computation prefixes that should not appear in any computation. A
liveness specification identifies a set of computation suffixes that every computation should include.

4. NEIGHBORHOOD VIEW CONSISTENCY
As intuitively presented in Figure 2, the NVC problem arises when the physical neighborhood is
incorrectly or partially reflected in the nodes’ logical states. To solve this problem, the system must
detect what type of fault happens when. In this section, we show that this is in general impossible
to achieve using any of Chandra and Toueg’s failure detectors [Chandra and Toueg 1996].

First, we define how a node removes from its logical neighborhood the devices it suspects to have
pseudocrashed.

Definition 4.1 (Remove). Consider a physical topologyG = (V,A), a node n ∈ V and a logical
neighborhood N l of n. We say that node n removes a node q ∈ N l if N ′l = N l \ {q} where N ′l
represents the updated value of N l.

Next, we define the notion of localized algorithm, which is often only informally described in
the existing literature [Estrin et al. 1999]. Intuitively, an algorithm is said to be local whenever its
input data reside at nodes within some bounded hop distance from each other. For example, if an
algorithm running at a given node definitely employs information gathered at most within the 2-hop
neighborhood, then the algorithm is local. Differently, the algorithm is global whenever such bound
cannot be determined and, in principle, the algorithm may make use of data residing at any node in
the system, independent of the hop distance. We formally fix this notion as follows.

Definition 4.2 (Localized algorithm). Given a topology G = (V,A), problem specification ¶
for G, and an algorithm A that solves ¶ in G, algorithm A is said to be local if the complexity of A
varies with the size of an n-hop neighborhood; A is global otherwise.

With these definitions, we formally define the NVC problem, which we call strong view consis-
tency in its most general formulation.

Definition 4.3 (Strong view consistency). Given a network G = (V,A), and two nodes n,m ∈
V , a program provides strong NVC for G if every computation satisfies:

— (Safety): A working node is never removed.



— (Liveness): Every time a node m pseudocrashes, then eventually ∀n : m ∈ N : n removes m.

The liveness property of strong NVC states that every time a node m pseudocrashes, every other
node that lists m in its logical neighborhood eventually removes it. Differently, the safety specifi-
cation rules out nodes mistakenly removing working nodes from their logical neighborhoods. The
eventual removal of the liveness property basically means that the removal does not need to be
instant, but because of the safety aspect, it certainly needs to happen before a possible recovery.
Otherwise, a working node would be removed, violating the safety property.

This specification formally fixes the intuitive formulation of consistency given in Section 1, in-
cluding the mutual agreement of 2-hop neighbors on their shared neighborhoods. This notion applies
to arbitrary networks by ensuring that Definition 4.3 applies on every possibly 2-hop slice of the net-
work, independent of the overall depth. Note that strong NVC represents an “ideal” situation, in that
an algorithm providing NVC—provided one exists—would be able to perfectly reflect the physical
topology in the nodes’ logical states. Worth considering is also that the notion of strong NVC as
specified in Definition 4.3 is memoryless, that is, it does not depend on past occurrences of failures.
The specification only advocates the removal of pseudocrashed nodes from the logical state of the
program whenever such faults occur. From this point of view, the cases of a new node joining the
system and of an existing node recovering are analogous.

We initially investigate the problem of NVC in an asynchronous system. We prove that, in this
setting, it is impossible to provide strong NVC with any of Chandra and Toueg’s failure detec-
tors [Chandra and Toueg 1996]. The intuition behind this result is that, for an algorithm solving
strong NVC to exist, every node must be able to remove a pseudocrashed neighbor before it recov-
ers, that is, the removal needs to occur within a given upper bound. Therefore, whenever a node
pseudocrashes and then recovers, every neighbor of the pseudocrashed node must remove it before
it recovers, or removing the neighbor after it recovers would entail the removal of a working node,
violating the safety specification. However, assuming an upper bound for a process’ action implies
considering a synchronous system.

THEOREM 4.4 (IMPOSSIBILITY OF NVC WITH FAILURE DETECTORS). There exists no algo-
rithm that provides strong NVC with any failure detector D in an asynchronous system.

PROOF. We prove this by contradiction: we assume that there exists an algorithm A that solves
strong NVC with some failure detector D in an asynchronous system, and show a contradiction.

Consider first a failure pattern Fn where no pseudocrash occurs. Now, consider a run Rn =
(Fn,D(Fn), I, Ss, Sp) of A. Since A solves strong NVC, at every time instant, all nodes will
output ∅. Because A is correct and no pseudocrash occurs, all nodes remove no nodes.

Now, consider a failure pattern F1 where a node n pseudocrashes at time t and recovers at time
t′ > t. Now, consider a run R1 = (F1,D(F1), I, Ss, Sp) of A with same step function Ss and
process function Sp as Rn. Hence, R1 and Rn are indistinguishable. Since A solves strong NVC,
then in R1 all neighbor nodes of n must have removed n by t′ and must output {n}. However, if the
neighbor nodes of n do not remove n by t′, then they cannot ever do so. Indeed, after t′, node n is
working again and algorithm A, correctly solving strong NVC, cannot remove a working node due
to the safety property.

This leads to a contradiction, because requiring that all neighbor nodes of n to remove n by t′
entails the system is synchronous, contradicting the initial conjecture.

This proof, as well as several others in the following, uses the standard technique of proof by
contradiction to show impossibility results, as explained by Lynch [1996]. In such type of proofs,
it is shown that if something; for example, an algorithm A, exists, then two mutually contradictory
instances—that is, two different runs of A—would have the same result. This demonstrates that A
cannot exist [Lynch 1996]. When applying this technique, the key aspect is the construction of the
instances that show the contradiction.



5. PSEUDOCRASH FAILURE DETECTORS
Based on the fundamental result of Section 4, we split the problem along two dimensions: i) neigh-
borhood monitoring and ii) view consistency enforcement. For neighborhood monitoring, the key
issue is the detection of pseudocrashed nodes and of their 1-hop neighbors. Thus, we conceive a
device strictly stronger than a perfect failure detector, called a pseudocrash failure detector (PCD).
The PCD at a process j returns information on how j perceives its underlying physical neighbor-
hood J and on the neighborhoods of every node in J , that is, j’s 2-hop neighborhood. In contrast,
a perfect failure detector would only return information on a per-node basis, that is, the PCD gives
strictly more information than a perfect failure detector, as it also reaches further than the 1-hop
neighborhood of j. The process at j uses this information to update the logical neighborhood J l.

We formally define the concept of PCD, study its properties, and prove that, in the presence
of transient faults, its properties can only be eventually guaranteed. We provide an actual algorithm
implementing a PCD with eventual guarantees, and show that PCDs are in general necessary, but not
sufficient to provide NVC: a synchronous system is also required. We tackle the view enforcement
problem in Section 6.

5.1. Definitions
Each process has access to a local PCD device providing (possibly incorrect) information about
the failure pattern that occurs in an execution. A process p can query its local PCD at any time.
The local PCD returns a set of tuples (n, N̂) called suspects, containing the set of processes the
PCD at p suspects to have pseudocrashed at a given time, together with the most recent (logical)
neighborhood N̂ of each of the suspected processes. The most recent neighborhood N̂ of a node n
at a time t captures the most updated information n has about its neighborhood at time t′, which
equals the last known neighborhood at t′ only if no node is removed in the meantime. In other words,
for a node n at time t, N̂ is equal to the original neighborhood of n except the nodes pseudocrashed
at time t′. This notion is formally defined as follows.

Definition 5.1 (Most recent neighborhood). The most recent neighborhood mrn of a process n
at time t, which returns the set N̂ , is

mrn(n, t) : ∃t′ ≤ t.((N̂ = N \ F(t′) ∧ F(t′) 6= ∅)
∧(∀t′′ : t′ ≤ t′′ ≤ t.∀x ∈ N̂ .n does not remove x)

In Definition 5.1, the set N̂ = N \F(t′) builds N̂ by removing from N the nodes pseudocrashed
at time t′, as F(t′) 6= ∅ and so there is indeed at least one pseudocrashed node at time t′. Moreover,
time t′ is the last time that node n removes any neighbor from its logical states, because for any
time t′′ (t′ ≤ t′′ ≤ t), node n does not perform any remove action for any node x in N̂ . As a result,
mrn(n, t) is the most recent neighborhood for node n at time t.

Let R denote the set of all possible tuples that can be returned by a PCD. A PCD history HPCD

with range R is a function from Π× τ to R, where HPCD(p, t) is the output value of the PCD of
process p at time t. HPCD(p, t) denotes the set of processes that p suspects have pseudocrashed at
time t, along with their neighborhoods, and thus captures how p’s suspicions evolve over time. In
short, we say that p suspects q with a neighborhood Q at time t if (q,Q) ∈ HPCD(p, t). Therefore,
a PCD is a function that maps each failure pattern F to a set of PCD histories with range RPCD,
where RPCD denotes the range of output of the PCD. PCD(F) denotes the set of possible PCD
histories permitted by the PCD for the failure pattern F .
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its 1-hop neighbor m.
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a result of m’s pseudocrash.

Fig. 4. Pictorial example of a masking transient fault. Node n and m are 1-hop neighbors.

5.2. PCD Properties
A PCD that can be used to solve the strong NVC problem would satisfy the following two properties,
where count(n,F ′(t)) returns the number of times node n has crashed in F until t:

— (Strong accuracy) No working process n is incorrectly suspected to have pseudocrashed with
neighborhood N̂ . Formally,
∀F . ∀HPCD ∈ PCD(F). ∀t ∈ τ . ∀m 6∈ F(t) : (n, N̂) ∈ HPCD(m, t) ⇒ ∃t′, t′ < t. n ∈
F(t′) ∧ N̂ = mrn(n, t′) ∧ count(n,F ′(t′)) = count(n,F ′(t))

— (Strong completeness) Every time a process n pseudocrashes, it will eventually be suspected with
some neighborhood N̂ . Formally,
∀F . ∀HPCD ∈ PCD(F). ∀t ∈ τ .n ∈ F(t) ⇒ ∃t′, t ≤ t′. ∃m 6∈ F(t′), n ∈ M.(n, N̂) ∈
HPCD(m, t′) ∧ N̂ 6= ∅ ∧ count(n,F ′(t)) = count(n,F ′(t′))

Intuitively, strong accuracy requires that no working node is wrongly suspected with a possibly
wrong neighborhood, whereas strong completeness requires that every node that pseudocrashes is
eventually suspected before its next pseudocrash, that is, every pseudocrash is suspected. We call a
PCD that satisfies both properties a perfect PCD.

It is, however, impossible to implement such perfect PCD in the presence of transient faults.
The intuitive reason for this is that it is possible to construct executions where transient faults may
deceive a PCD to suspect a node even though that has not pseudocrashed. Dually, even if a PCD
may correctly suspect some node with the correct neighborhood, transient faults can corrupt this
information, creating a situation where it would appear the pseudocrash never occurred.

Figure 4 shows a graphical example. Node n and m are 1-hop neighbors; node n stores, some-
where in its memory, information about its neighbor m as shown in Figure 4(a). Consider m pseu-
docrashes due to the link between n andm failing. Now, nodem should be removed from n’s logical
neighborhood. However, a data corruption happens that overlaps with the memory area where in-
formation about m is stored, as shown in Figure 4(b). This fault modifies data structures such that it



appears as if m is still there. This causes n to keep m rather than removing it. Thus, we say that a
transient fault is “masking” the pseudocrash; we say transient faults are “non-masking” otherwise.

These situations are a result of a transient fault’s ability to arbitrarily corrupt the state of a pro-
gram, including ways that affect the same data that should be modified as a result of pseudocrashes.
In practice, these occurrences represent a quite unlucky situation: a pseudocrash and a transient
fault occur that impact overlapping data segments; plus, the transient fault “intelligently” corrupts
the state in a way that the pseudocrash goes undetected. Intuitively, this should represent a quite rare
situation. We analytically prove this statement in Appendix A.

Considering the definition of strong NVC, however, if masking transient faults may occur, the
pseudocrashed node may never be suspected, as it happens in Figure 4, violating strong complete-
ness of the perfect PCD. Hence, the following holds.

THEOREM 5.2 (IMPOSSIBILITY OF PERFECT PCD). In the presence of transient faults, it is
impossible to implement a perfect PCD.

For reason of space, we refer the reader to an extended technical report for the detailed
proof [Jhumka and Mottola 2014].

There may be different means to circumvent this result. A possible strategy is to consider guaran-
tees that can be provided once transients faults stop occurring, called eventual guarantees. Thus, we
weaken the definition of both strong accuracy and strong completeness to capture eventual proper-
ties. We denote by Σ such eventually perfect PCD:

— (Eventual strong accuracy) There is a time after which no working process n is incorrectly sus-
pected with neighborhood N̂ . Formally,
∀F . ∀HΣ ∈ Σ(F). ∃t′ ∈ τ. ∀t > t′. ∀m 6∈ F(t) : (n, N̂) ∈ HΣ(m, t) ⇒ ∃t′′, t′ ≤ t′′ < t, n ∈
F(t′′) ∧ N̂ = mrn(n, t′′) ∧ count(n,F ′(t′′)) = count(n,F ′(t))

— (Eventual strong completeness) There is a time after which, when a process n pseudocrashes,
eventually n will be suspected with some neighborhood N̂ . Formally:
∀F . ∀HΣ ∈ Σ(F). ∃t′ ∈ τ. ∀t ≥ t′.n ∈ F(t) ⇒ ∃t′′, t ≤ t′′. ∃m 6∈ F(t′′), n ∈ M.(n, N̂) ∈
HΣ(m, t′′) ∧ count(n,F ′(t)) = count(n,F ′(t′′))

It turns out that there exists a synchronous implementation of a PCD that is eventually perfect,
shown in Figure 5. This property is relevant for WSNs because, in the absence of transient faults,
the PCD is perfect. The key idea is to periodically exchange neighborhood information among
1-hop nodes so that all of them are eventually aware of their respective 2-hop neighborhoods. Once
transient faults stop happening, this information is sufficient to identify the suspected processes.

In action dissem of Figure 5 process j updates its logical neighborhood with the identifiers of
processes it believes to be still working; then it advertises its identifier and its current logical neigh-
borhood to the nodes in the physical neighborhood. Indeed, the send command with destination
BCAST reaches also 1-hop neighbors that may be unknown to process j, as outlined in Section 3.
Next, the algorithm sets a timeout ∆ for the next round of advertisement and a shorter timeout Θ to
process the received information. In action compute, process j collects the neighborhood informa-
tion. When the detect timeout expires, process j computes the set of suspects as the neighbors it did
not hear in the last round of advertisement, along with their logical neighborhoods.

Another possibility to circumvent the impossibility result of Theorem 5.2 is to consider a stronger
fault setting. One such option is to only allow transient faults that cannot mask pseudocrashes, that
is, we only consider non-masking faults. This rules out all situations akin to Figure 4. As demon-
strated in Appendix A, these cases are actually the vast majority. Under non-masking transient
failures, it can be proven that the PCD in Figure 5 satisfies strong completeness and eventual strong
accuracy. Strong completeness is guaranteed because in the absence of masking transient faults,
then all pseudocrashes are eventually detected, as there is no way for a transient fault to “hide” a
pseudocrash. As a result, the PCD is strong complete. The eventual strong accuracy follows from the



process j
variables

% logical neighborhoods of j’s neighbors, N [j] implements J l

N[]: array of set of ids, initially N [j] = J ;

% set of pseudocrashed nodes and their 1-hop neighborhood
suspects: set of (id, neighborhood) init ∅;

% identifier of nodes detected during a round
live: set of ids, initially J ;

% timers for exchanging neighborhoods and detection, Θ < ∆
neighborhoods, detect: timer init ∆,Θ;

actions
dissem:: timeout(neighborhoods)→

N[j], live, suspects := live, ∅, ∅;
send(〈j,N [j]〉,BCAST );
set(neighborhoods ,∆);
set(detect ,Θ);

compute:: rcv(〈p, P 〉,r)→
live, N[p]:= live ∪{p}, P ;

detect:: timeout(detect)→
suspects := {(i, N [i])|i ∈ N [j] \ live}

Fig. 5. A synchronous implementation of a PCD algorithm that is i) eventually perfect in the presence of transient faults,
and ii) perfect in their absence. Moreover, this PCD satisfies strong completeness with non-masking transient faults.

fact that the PCD of Figure 5 is eventually perfect. Strong accuracy, however, may be prevented as a
transient fault may still lead to wrong suspicions. The formal derivation of these results is available
in an accompanying technical report [Jhumka and Mottola 2014].

5.3. Solving Strong NVC with PCDs
We now study necessary and sufficient conditions for solving strong NVC with PCDs. For the
former, we prove that, if we can solve strong NVC, then we can implement a perfect PCD.

THEOREM 5.3 (PCDS NECESSARY FOR NVC). A perfect PCD is necessary for strong NVC.

PROOF. The strong accuracy property of the PCD follows from the safety property of the strong
NVC problem (no node is wrongly removed) and from the fact that all neighbors eventually remove
the pseudocrashed node (part of liveness). The strong completeness property of the perfect PCD
derives from the liveness property of strong NVC. Hence, if strong NVC can be solved, we can also
implement a perfect PCD.

As a matter of fact, Figure 6 shows an algorithm that emulates the output of a perfect PCD, given
the output of an algorithm solving strong NVC that we assume to exist. The output is stored in the
remove set, which contains the information about the pseudocrashed node to remove and about the
process that detects the pseudocrash. In action inform, process j tells process i, which detected the
pseudocrash, about its intention to remove the pseudocrashed node b. When the process detecting
the pseudocrash receives this message in action result, it keeps track of the pseudocrashed node b it
suspected, together with the set of its neighbors. The latter set is incrementally constructed as more
of these messages are received from neighbors of the pseudocrashed process.

Even though the PCD is a powerful device, it is unfortunately not sufficient to solve strong NVC.
The following result, which is dual to the necessary condition in Theorem 5.3, concludes that PCDs
cannot be used to provide strong NVC. This is captured as follows.



process j
variables

% logical neighborhoods of j, N [j] implements J l

N[]: array of set of ids, initially N [j] = J ;

% id of node to be removed and id of node that detected pseudocrash
remove: set of (id, id);

% output mimics the result of a pseudocrash failure detector
output: set of (id, neighborhood) init ∅;

actions
inform :: remove 6= ∅ →

∀(b, i) ∈ remove do
send(〈b, j〉, i) ;

remove := ∅ ;

result :: rcv((〈b, i〉,j)→
output:= output ⊕{(b,N [b] ∪ {i})};

Fig. 6. Emulating a perfect PCD using the output of an algorithm solving strong NVC.

THEOREM 5.4 (PCDS INSUFFICIENT FOR STRONG NVC). It is impossible to solve strong
NVC in an asynchronous system equipped with a perfect PCD.

PROOF. We prove this by contradiction. We assume that an algorithmA that solves strong NVC
with a perfect PCD in an asynchronous system exists, and show that no such A can exist.

Assume a failure pattern F1 where n ∈ F1(t) but n 6∈ F1(t′′) with t′′ > t. In a computation C
of A, assume that n is suspected, together with its correct neighborhood, at t′, t < t′ < t′′ and n
is eventually removed at t′′′ Since A is correct, then no working node is ever removed, and it must
necessarily be that t′′′ < t′′.

Now, assume the same failure pattern but with a different As and Ap in another computation C ′
ofA, where n is suspected at t′ (as inC) but is removed exactly at t′′. Both computations are feasible
forA. However, becauseA is correct, n should be removed before t′′, because n recovers at t′′. This
entails a lower bound on processes’ execution speed, hence the system must be synchronous, leading
to a contradiction.

The problem here is that the removal of a pseudocrashed node needs to happen before a node
recovers or pseudocrashes next. Since the duration of a pseudocrash is lower bounded, then the
system should be synchronous to guarantee that the time to remove a pseudocrashed node is upper
bounded. This result is fundamental, in that it establishes that strong NVC can only be offered in a
synchronous system. The next section builds upon this result.

6. VIEW CONSISTENCY ENFORCEMENT
We know that a synchronous system is required to solve NVC, and we are equipped with an eventu-
ally perfect PCD for such type of system, illustrated in Figure 5. Considering a synchronous setting
is not unreasonable for most real-world WSNs. Often, deployed systems rely on some form of time
synchronization. This is the case, for example, whenever sensor readings gathered at different nodes
need to be aligned to a common clock [Werner-Allen et al. 2006; Ceriotti et al. 2009; Kim et al.
2007b]. Time synchronization is nowadays achieved in WSNs through efficient protocols providing
errors in the microsecond range [Sundararaman et al. 2005; Maróti et al. 2004; Ferrari et al. 2011];
the corresponding implementations are also quite stable and often part of the standard distribution
of WSN operating systems [Dunkels et al. 2004; Hill et al. 2000]. The synchronized clocks that
such protocols provide can straightforwardly be used to run the system in a synchronous fashion.



First, we present two increasingly weaker specifications of NVC, which capture the impossibility
result for strong NVC in the presence of transient faults and the practical need to inform higher-level
protocols whenever such transient faults occur. Next, we present a global algorithm that solves both
specifications in networks where unidirectional links may be present, and a localized algorithm that
solves the weakest specification in networks with bidirectional links.

6.1. View Consistency Specifications

Strong view consistency. The strong NVC specification of Section 4 ensures that the logical view of
the topology is an accurate reflection of the relevant working part of the physical network. Specifi-
cally, the safety specification prohibits a node n from removing a working nodem from its neighbor-
hood, whereas the liveness specification states that any pseudocrashed node is eventually removed.

However, as in Figure 4, in the presence of transient faults it is generally impossible to discern real
pseudocrashes from transient failures, and thus to avoid wrong detections. For instance, a transient
fault may corrupt a node’s memory and make a node believe that communication is not possible
towards another device, even though this is not the case. This is as simple as overwriting some
memory space in a node’s neighbor table because of a software bug, a situation not unlikely in
WSNs [Chen et al. 2009; Cooprider et al. 2007]. This intuition, which precisely corresponds to the
example of Figure 1, leads to the following.

THEOREM 6.1 (IMPOSSIBILITY OF STRONG NVC). Given a network G = (V,A) where all
nodes are equipped with an eventually perfect PCD, there exists no algorithm providing strong NVC
when both transient faults and pseudocrashes can occur.

The intuition behind this result is based on the ability of transient failures to arbitrarily corrupt
a node’s state. When a pseudocrash is detected, the relevant nodes need to be informed so the
pseudocrashed node can be removed from their logical neighborhoods. However, this notification
may be wrong since the information about which node to inform may be corrupted due to transient
faults. This means that the detecting node may end up informing the wrong nodes; for example,
nodes that do not list the pseudocrashed node among their 1-hop neighbors. This evidently leads to
a violation of the problem specification.

This result applies to both localized and global algorithms, although the intuition above deals with
the localized case. For a global algorithm that has access to complete topology information [Ma-
suzawa 1995], this information itself may be corrupted due to incorrect information at multiple
processes, and thus strong NVC cannot be achieved even in this case. Additional details and formal
proofs are also available [Jhumka and Mottola 2014].
Stabilizing strong view consistency. To remedy this result, we allow nodes to finitely make mis-
takes by removing working nodes. This leads to the weaker specification of stabilizing strong NVC.

Definition 6.2 (Stabilizing strong view consistency). Given a network G = (V,A), and two
nodes n,m ∈ V , a program provides stabilizing strong NVC for G if every computation of the
program satisfies:

— (Eventual safety): There exists a time after which no working node is removed.
— (Liveness): Every time a node m pseudocrashes, eventually ∀n : m ∈ N : n removes m.

Intuitively, stabilizing strong NVC ensures that strong view consistency is eventually established
again. However, the issue with stabilizing strong NVC is that, from the perspective of higher-level
protocols, these protocols cannot adapt their behavior when transient faults occur; for example, to
obtain a sub-optimal, yet efficient configuration. This is because no feedback is provided to the
protocols whenever strong NVC cannot be achieved.



process j
variables

% the network topology returned by the discovery algorithm
top: set of tuples, initially {(j, J)}

% a timer variable for periodic topology discovery
discover: timer init ∆;

actions
discovery:: timeout(discover)→

top:=topology discovery();
set(discover ,∆);

detect:: (∃(q,Q) ∈ top : j ∈ Q ∧ (q 6∈ J))→ ∀i : i ∈ Q ∧ q ∈ I :
send(j cannot detect q,i);

remove:: rcv(p cannot detect b, j)→
top:= top⊕{(j, J \ {b})};

Fig. 7. A global algorithm that solves stabilizing strong NVC in a synchronous system and in the presence of unidirectional
links and transient failures.

Weak view consistency. To address this shortcoming, we present an even weaker problem spec-
ification, called weak NVC, which informs higher level protocols of a transient fault by raising a
〈fault〉 flag whenever that is possibly detected.

Definition 6.3 (Weak view consistency). Given a network G = (V,A), and two nodes
n,m ∈ V , a program provides weak NVC for G if every computation of the program satisfies:

— (Eventual safety): There exists a time after which no working node is removed.
— (Weak liveness): Every time a nodem pseudocrashes, then eventually ∀n : m ∈ N : n removesm

or a 〈fault〉 flag is raised.
— (Validity): A 〈fault〉 flag is raised only if there is a fault in the network.

Weak NVC, in essence, attempts to achieve strong NVC whenever possible. However, state in-
consistencies induced by transient faults may threaten the efficiency of the network. To remedy this
problem, it is beneficial that higher-level protocols are made aware of these inconsistencies. Thus,
we adopt a two-pronged approach: either there is no inconsistency and strong NVC can be achieved
or there is an inconsistency and a fault is detected. Thus, a 〈fault〉 flag is raised only if a fault exists
in the network, and higher-level protocols can react to such notification by taking appropriate coun-
termeasures. The specific actions to take are, in general, protocol-specific. Section 8 describes cases
where simple corrections, triggered by the 〈fault〉 flag, already provide significant improvements.

6.2. Stabilizing Strong NVC with Unidirectional Links
In WSNs, due to issues such as background noise and interference, links can become unidirec-
tional [Baccour et al. 2012]. This entails that only one of the nodes will be suspected by the other.
This creates an asymmetry in the pseudocrash suspicions that, as far as a node’s neighbors are con-
cerned, cannot be distinguished from a transient failure. We thus seek to understand the impact of
such link asymmetry on NVC.

THEOREM 6.4 (UNIDIRECTIONAL LINKS). There exists no localized algorithm that solves
weak NVC in a network with unidirectional links and using an eventually perfect PCD in the pres-
ence of transient faults.

PROOF. We assume a localized algorithm A that solves the weak view consistency exists and
show a contradiction.



Consider a failure pattern F such that a node i pseudocrashes at time t1 and t2, where t2 > t1.
Assume there is a link (i, j) in the network. At t1, the link becomes unidirectional, in the sense that
j can transmit to i, but not viceversa. Eventually, with the eventual strong completeness of the PCD
at j, (i, Î) ∈ HΣ(j, t′), t1 ≤ t′ ≤ t2.

Now, consider a computation C of A. Since A satisfies weak NVC, there exists a time t′′, t′ ≤
t′′ ≤ t2 where all neighbors of m, such that i ∈ M , remove i by t′′. At t2, i crashes and so, as far
as its logical neighbors are concerned, it pseudocrashes again and at t′′′ > t2 there will be a node h
that suspects i, thus ∃h.(i, Î) ∈ HΣ(h, t′′′). At t2, j ∈ I but i 6∈ J , since the link (i, j) becomes
unidirectional at t1.

Since A provides weak NVC, there exists a time t3, t3 > t2 where all nodes m, such that i ∈M ,
will remove i or raise a 〈fault〉 flag by t3 in C. The suspicion HΣ(h, t′′′) at h has indeed caused all
neighbors of i to do so. However, since j ∈ I but i 6∈ J , node j cannot remove i by t3; j thus raises
a 〈fault〉 flag to signal a transient fault. However, there is no transient fault in the computation C.
Hence a contradiction.

Theorem 6.4 incidentally indicates that specifications stronger than weak NVC cannot be solved
in networks with unidirectional links using localized algorithms. To address this problem, all the
neighbor nodes of a pseudocrashed node need to be informed about any potentially unidirectional
links, which cannot be achieved only using localized interactions. This hints at global algorithms,
able to reason on overall knowledge of the network topology.

We provide one such algorithm in Figure 7, which solves stabilizing strong NVC in the pres-
ence of unidirectional links. The algorithm generates notifications for all nodes suspected to have
pseudocrashed, based on a global view of the network topology obtained in action discovery. Such
global topology information, only eventually correct, is processed in action detect to generate pseu-
docrash notifications. We prove the correctness of the algorithm in Figure 7 in an extended technical
report [Jhumka and Mottola 2014].

Global algorithms are rarely used in practice, in that localized ones tend to be more energy effi-
cient [Estrin et al. 1999]. Because of this, our interest in the algorithm of Figure 7 is mainly theoret-
ical: it provides evidence that stabilizing strong NVC can be solved in the presence of unidirectional
links. In a system perspective, we focus on localized algorithms, as we illustrate in the following.

6.3. Weak NVC with Bidirectional Links
In networks of bidirectional links, either a link exists between two nodes or not. If an edge (a, b)
existed at some point in time and then node a appears pseudocrashed to node b; for example, due to
a link failure, then node b will also appear pseudocrashed at a. Therefore, in the absence of transient
faults, the eventually perfect PCDs at these two nodes suspect each other at some time t, that is,
(a, Â) ∈ HΣ(b, t) and (b, B̂) ∈ HΣ(a, t).

As a matter of fact, this is the setting that most WSN protocols base their operation upon. For
example, many of them employ packet retransmission schemes based on Automatic Repeat Request
(ARQ), that is, by sending explicit acknowledgments in case of a successful transmission. Similar
schemes, however, cannot easily work with unidirectional links. This means that such protocols
need to use only bidirectional links, and must rule out unidirectional ones [Ko et al. 2011; Gnawali
et al. 2009; Kim et al. 2007a; Mottola and Picco 2011; Voigt and Österlind 2008; Burri et al. 2007].
WeakC algorithm. Figure 8 describes a localized algorithm that solves weak NVC, using the even-
tually perfect PCD of Figure 5 in networks of bidirectional links. We call this algorithm WeakC.
In action notify the PCD is queried for suspects, and either a 〈fault〉 flag is raised if strong NVC
cannot be established due to a transient fault, or a pseudocrash notification is sent to the neighbors
of the suspected process. The notifications are processed in action remove. Depending on the logical
state at the receiver, the notification may indicate a transient fault, signaled by raising a 〈fault〉 flag,
or be added to the local suspects. When no more messages are in the incoming queue, the algorithm
enforces NVC in action update by removing the suspects from the local neighborhood.



process j
variables

% logical neighborhoods of j, N [j] implements J l

N[]: array of set of ids, initially N [j] = J ;

% set of pseudocrashed nodes and their 1-hop neighborhood
suspects: set of (id, neighborhood) init ∅;

actions
% the PCD returns some suspects
notify:: suspects6= ∅ →

∃(i, ∅) ∈ suspects: send (fault, BCAST);
∀(i, I) ∈ suspects.∀n ∈ I : send (j cannot detect i, n);

% adding the pseudocrashed node as suspects
remove:: rcv(p cannot detect b, j)→

if (b 6∈ N [j]) then
send (fault, BCAST);

elseif (b 6∈ {x|(x,X) ∈ suspects}) then
suspects := suspects ∪ {(b,⊥)};

fi

% dequeuing fault message
skip:: rcv(fault, r)→ skip;

% no more message, enforce NVC
update:: rcv〈〉 → N [j] := N [j] \ {i|(i, I) ∈ suspects};

Fig. 8. WeakC: a synchronous localized algorithm to solve weak NVC in a network of bidirectional links, using the output
of the PCD of Figure 5.

THEOREM 6.5 (ALGORITHM WEAKC). Algorithm WeakC of Figure 8 provides weak NVC.

A formal proof for Theorem 6.5 is included in an extended technical report [Jhumka and Mottola
2014]. Intuitively, the correctness of WeakC descends from the properties of the PCD algorithm in
Figure 5, used here to obtain the list of suspected pseudocrashes. The eventual safety property of
WeakC follows from the eventual strong accuracy property of the PCD. The weak liveness property
of WeakC follows from the strong completeness property of the same PCD. Finally, WeakC only
raises a flag when transient faults are detected in action notify or remove.

Transient faults are detected whenever nodes have conflicting states. Thus, when a state incon-
sistency is detected in WeakC, it is certainly because of a transient fault. The 〈fault〉 flag is a way
to inform higher-level protocols of this problem. Then, the protocols can use specific mechanism to
recover from this situation. This is one of the key differences between WeakC and existing solutions
such as periodic un-coordinated beaconing, which cannot discern transient faults from other kinds
of faults, even though they may require different countermeasures.

Despite the increasingly weaker definitions of NVC introduced in Section 6.1, note that the prob-
lem remains memoryless. According to Definition 6.3, weak NVC indeed only advocates the re-
moval of pseudocrashed nodes from a program’s logical state whenever such faults occur, or the
signalling of a 〈fault〉 flag if a transient fault does happen. This operation is independent of past
failures. As a result, algorithm WeakC keeps no history of past faults, and both new nodes joining
and existing nodes recovering are processed the same way4.

As we show next through sample executions, the processing of WeakC is sufficiently simple to
replace the neighborhood management functionality in many existing WSN protocols, including

4If applications require failure histories to be kept, this information has to be stored separately from WeakC; for example, by
keeping track of the number of times the 〈fault〉 flag is raised.
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Fig. 9. Comparison of periodic un-coordinated beaconing with WeakC in case of a node crash (times not to scale).
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Fig. 10. Comparison of periodic un-coordinated beaconing with WeakC in case of a masking failure (times not to scale).

those we discuss in Section 2. We design the APIs of the corresponding implementations, described
in Section 7, aiming at facilitating the integration of WeakC in existing code bases.
Sample executions. Figure 9 compares (simplified) executions of periodic un-coordinated beacon-
ing and WeakC in the case of a node crash with no transient faults, whereas Figure 10 shows the
same comparison in case of a transient fault. Node B is a shared neighbor of both node A and C.

Figure 9(a) shows a case with no transient faults. Node A and node C can remove node B from
their logical neighborhoods only at the end of the beaconing period, once they realize they miss the
beacon from node B. As the two beaconing periods may be arbitrarily aligned, the time the system
runs in the absence of NVC—shown by the shaded area in the picture—is upper bound by the
beaconing period. In contrast, once the detect timer of Figure 5 expires at node A in Figure 9(b), the
PCD at A starts suspecting node B, together with its logical neighborhood including both node A and
C. As a result, this makes the guard in action notify of Figure 8 evaluate to true, thus node A sends
a message “A cannot detect B” to node C and to itself. Because of the synchronous operation, both
nodes realize that no more messages are coming and execute action update. Thus, they remove node
B from their logical neighborhoods. The time the system spends in the absence of NVC is upper
bound by the message transmission time. This is likely orders of magnitude lower than the beaconing
period, which is typically set to tens of seconds or even minutes for saving energy [Gnawali et al.
2009; Mottola and Picco 2011; Dunkels et al. 2011; Hansen et al. 2011; Levis et al. 2004].

In a case of transient failures, shown Figure 10(a), node A removes node B from its logical neigh-
borhood similar to Figure 9(a). However, node C is subject to a transient fault that masks the pseu-
docrash of node B; for example, the identifier of node B in node C’s program state is rewritten so
that, as far as node C is concerned, node B never existed. Thus, node B cannot be removed from
node C’s logical neighborhood. From the point in time when node A removes B, the system is run-



ning without NVC. This condition persists until the transient fault on node C eventually clears and
the periodic un-coordinated beaconing eventually restores the correct neighborhoods. In contrast,
in Figure 10(b) WeakC executes the same as in Figure 9(b) at node A. However, whenever node C
receives “A cannot detect B”, it recognizes a state inconsistency: node C is not aware of any node
B, and it raises a 〈fault〉 flag. Node C proactively reacts to redress the problem. Thus, the time the
system spends in the absence of NVC is upper bound by the message transmission time plus the
time to react to the fault.

Unlike Figure 9, a direct comparison between the times spent in the absence of NVC is more dif-
ficult for Figure 10. However, let us consider the most benign transient fault, that is, one that clears
already at the next round of beaconing. In this case, it would take again tens of seconds or even min-
utes until periodic un-coordinated beaconing redresses the situation in Figure 10(a). In contrast, let
us consider the most elementary fault handling mechanism, that is, rebooting the node, even though
more sophisticated mechanisms already exist [Chen et al. 2009]. Upon rebooting, techniques such
as Trickle timers used in many modern protocols, will acquire complete neighborhood information
in a few seconds [Levis et al. 2004]. In the most unfavorable case for WeakC, again the time the
system spends in the absence of NVC is one order of magnitude smaller. This reasoning applies
also to the example of Figure 1(b), if the data collection protocol at all chooses to route through
node D because WeakC has not reacted yet, it will be for a very short amount of time. As a matter
of fact, in Section 8 we observe that transient faults rarely clear so quickly.

These simplified examples highlight one of the key differences between periodic un-coordinated
beaconing and WeakC. Once a fault is detected by the PCD of Figure 5, WeakC acts proactively.
Differently, periodic un-coordinated beaconing simply proceeds the same, eventually restoring NVC
if possible at all. This is the origin of most of the performance gains we observe in Section 8. The
corresponding impact becomes larger as more complex fault patterns and transient faults emerge.

7. IMPLEMENTATION
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Fig. 11. Network stack when
WeakC is integrated with higher-
level protocols.

In a system perspective, we focus on algorithm WeakC in that, com-
pared to the global algorithm of Figure 7, its localized nature en-
ables its integration with most existing WSN protocols. We imple-
ment WeakC as in Figure 8, including the eventually perfect PCD of
Figure 5, on top of both the Contiki [Dunkels et al. 2004] and the
TinyOS [Hill et al. 2000] operating systems. For Contiki, we inte-
grate our implementation with both Contiki’s IPv6 [Ko et al. 2011]
and the Rime [Dunkels et al. 2007a] stacks. In TinyOS, our WeakC
implementation targets the ActiveMessage stack.

Our implementations are lightweight. In Contiki, they occupy
1.3 KBytes of program memory and 352 bytes of data memory when
used with the IPv6 stack, or 1.2 KBytes of program memory and 312 bytes of data memory with
Contiki’s Rime stack. Our TinyOS implementation takes 1.45 KBytes of program memory and 328
bytes of data memory. The amount of data to keep track of a neighbor is 12 bytes in all cases but
in the IPv6 stack, where it is 18 bytes due to larger addresses. This allows our implementations to
scale efficiently also in dense networks.
Layering and APIs. Independently of the platform, WeakC sits between the higher-level protocols
that rely on NVC and the MAC layer, as shown in Figure 11. We choose this layering because of
two reasons. By sitting atop the MAC layer, the periodic exchange of neighborhood information
required by the PCD as well as the messages generated by WeakC can take advantage of the ra-
dio duty-cycling and collision avoidance mechanisms the MAC layer offers. As we demonstrate in
Section 8, a simple CSMA schema with random back-off suffices to handle packet collisions possi-
bly caused by and between our algorithms. In other words, randomly staggering the transmissions
in time makes collisions occur sparingly and, most importantly, not systematically that they can
be misinterpreted as pseudocrashes by the PCD. As a result, their impact on the performance be-



comes negligible. This layering also minimizes the disruption due to the network traffic generated
by WeakC against other concurrently-running protocols on the same node, as access to the radio
remains mediated by a single MAC protocol [Polastre et al. 2005].

Designing the API for higher-level protocols to rely on WeakC needs to strike a balance between
minimality—motivated by the resource-scarcity of the target devices—and ease of integration. We
eventually settle on six primitives:

uint8_t getCurrentViewId();
uint8_t getNeighborhood(uint8_t view_id, uint16_t* node_ids);
bool isNeighbor(uint8_t view_id, uint16_t id);

void setPeriod(uint16_t period);
void setPayload(uint8_t size, uint8_t* data);
void registerNeighborhoodInfo(void (*callback) (uint16_t neighbor,

uint16_t number, uint16_t* node_ids, uint8_t* data));

The first three operations are used to manage neighborhood views. Function getCurrentViewId
returns an identifier of the current neighborhood view. Higher-level protocols use this to detect
neighborhood view changes and as parameter to getNeighborhood and isNeighbor. The
former is used to query a neighborhood view; our WeakC implementation caches the current and
the past T neighborhoods views, T being a compile-time parameter. This is provided merely as a
convenience to higher-level protocols, as they often need to keep track of past neighborhoods views;
for example, to identify nodes that joined or disappeared. Rather than delegating this functionality
to the protocols, possibly duplicating it across concurrently-executing components, we choose to
implement it within WeakC and to make it available through our API. However, WeakC makes no
use of it, as the NVC problem is memoryless, as discussed in Section 6.3.

The last three operations serve to use WeakC as a replacement of the neighborhood management
functionality in existing protocols. These call setPeriod to control the rate of neighborhood in-
formation exchange, that is, to dynamically set the value of ∆ in the PCD of Figure 5. This is funda-
mental whenever a protocol uses adaptive beacon timers [Gnawali et al. 2009; Ko et al. 2011; Levis
et al. 2004]. Any additional data that needs to be exchanged is given with setPayload. Whenever
neighborhood information is received at a node, higher-level protocols are informed through a call-
back they previously registered using registerNeighborhoodInfo. The callback receives as
a parameter the identifier of the neighbor node, as well as the number and identifiers of its 1-hop
neighbors, plus any payload set at the sender side.
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Fig. 12. A case where pseudocrash
notifications need to travel more than
two hops to reach the 1-hop neighbors
of a pseudocrashed node.

Network support. In action notify of Figure 8, WeakC requires
to send pseudocrash notifications to all 1-hop neighbors of the
pseudocrashed node. This functionality needs to fulfill two re-
quirements. First, the notifications must be transmitted reliably
for NVC to be re-established correctly and quickly. If some of
the notifications are lost on the way; for example, because of in-
terference, the destinations may take much longer to re-establish
NVC, or possibly never do so in the case of transient failures.
Moreover, the destinations may be more than two hops away, as
exemplified in Figure 12. If node B crashes and node A first de-
tects the pseudocrash, the notification needs to reach node C so
that it can remove node B. However, node C is no longer reach-
able from A in two hops, as node B was the only intermediate device. In the general case, the des-
tination of pseudocrash notifications may lie at any number of hops away from the node detecting
the pseudocrash. Therefore, we require multi-hop relaying of notifications.

We address both requirements using a simple expanding-ring n-hop flooding. Delivery to the
intended receivers is determined by a list of destinations embedded within the packet. Processing
starts with n = 2 to cover the 2-hop physical neighborhood. The destinations reply with an ac-
knowledgment sent along the reverse path towards the sender, using reliable 1-hop unicast. If some



destinations do not acknowledge the packet, either because they lie beyond the n hops or the packet
is lost, the originator repeats the process by exponentially increasing n until all destinations send an
acknowledgement, or up to a maximum number of retries.

This mechanism provides reliable multicast with no control traffic and little memory overhead
compared to existing multicast protocols [Cao et al. 2007; Flury and Wattenhofer 2007]. These use
explicit routing tables to maintain originator-destination paths, which may become corrupted. In our
case, all nodes may be originators or destinations, which would yield significant memory overhead.
Routing tables also require constant maintenance as the may become unusable when nodes or links
fail, namely, precisely when WeakC needs reliable multicast.

On the other hand, embedding the list of destinations within the packet might become an issue in
case their number is large. As these notifications are solely sent to the 1-hop neighbors of a pseu-
docrashed node, however, we expect their number to remain within practical limits. Moreover, there
is plenty of space in the notification packets, as they only contain little control information, besides
the list of destinations. The influence of increased packet length on the reliability of transmissions
does not pose practical problems, as demonstrated in Section 8.

Our scheme may also occasionally experience high latency if the destinations are many hops
away, due to the many iterations until n reaches a sufficient value. Increasing n exponentially rather
than linearly [Jhumka and Mottola 2009] ameliorates the problem in exchange of a little energy
overhead. We also observe that pseudocrash notifications most often target a subset of the initial
2-hop neighbors of the originator. Indeed, as WSNs tend to be dense networks [Intanagonwiwat
et al. 2002], the distance to the former 2-hop neighbors is unlikely to increase drastically, if at all.
Thus, an increase of n beyond 2 is rarely needed, as we observe ourselves in Section 8.

8. SYSTEM EVALUATION
We analyze first the performance of our WeakC implementation in isolation. The study is instrumen-
tal to understand the impact of using NVC in a full stack. To assess this, we modify four existing
higher-level protocols to use WeakC for neighborhood management, and compare their performance
against the original versions. We carry out all experiments on Twist [Handziski et al. 2006], a real-
world WSN testbed of 90 TMote Sky nodes deployed in a university building, and hence naturally
subject to external phenomena such as interference from co-located WiFi networks and changes in
wireless propagation due to moving objects and persons. We use a -7 dBm transmit power, which in
Twist yields a 4 hop network depth. With this configuration, every node in Twist features between
5 and 25 neighbors, resulting in a challenging setting for our algorithms. Every data point is the
result of at least five 1-hour long runs. We totalled more than 700 hours of experiments in Twist.
We divide each run in 1-minute rounds. We start measuring after the first 5 rounds to let the system
acquire initial topology information.

8.1. Micro-Benchmarks
As the overhead of WeakC in the absence of faults is the same as periodic un-coordinated beaconing,
our analysis concentrates on the performance in handling view changes in response to faults.
Metrics. We consider the following metrics: i) the latency to establish NVC, that is, the time from
when a change in the physical topology is detected to when all affected nodes re-gain NVC or a
〈fault〉 message is sent: this is proportional to the time the system spends in the absence of NVC,
and is thus to be minimized; ii) the network overhead, defined as the total number of packets ex-
changed at the physical level to carry out a view change, including retransmissions: the more traffic
WeakC generates, the higher impact it has on the operation of higher-level protocols, therefore, this
metric needs to be minimized too; and iii) the total energy spent during a view change, accounting
for both processing and communication [Demirkol et al. 2006]: the energy spent by WeakC during
a view change may influence the system lifetime, and it is hence to be minimized as well.

To measure these quantities, we rely on a time-synchronized USB back-channel available in
Twist. Throughout the analysis, we use Contiki’s implementation of WeakC together with the Rime



stack, which is functionally equivalent to the Contiki/IPv6 and TinyOS implementations. We mea-
sure energy consumption using Contiki’s energy estimation mechanism [Dunkels et al. 2007b].
Settings. We explore three different failure scenarios, as follows:

(1) We artificially inject node crashes, link failures, and data corruption independently at every
node with probabilities from 2% to 16%. These probabilities apply on a per-round basis and on
a system-wide scale; for example, with a failure probability of 8%, every 1-minute round there
is an 0.08 probability that a uniformly chosen node crashes, or a link fails, or data is corrupted
in a node’s program state. These failure probabilities are not uncommon in real deployments, as
discussed in Section 2. To maintain a constant network density, node crashes and link failures
are artificially recovered with the same probabilities, starting with the round following the one
where the failure occurs.

(2) We artificially create situations where a failure impacts several nearby nodes. This models the
case of wireless interference originating from WiFi access points [Srinivasan et al. 2010]; of
physical accidents, such as fire in a room, that may cause multiple nearby nodes to crash almost
simultaneously; and of software bugs occurring because of conditions that affect close nodes,
such as a buffer overflow in the neighbor table caused by the addition of a new device [Cooprider
et al. 2007]. To emulate WiFi interference, we use the technique by Boano et al. [2009], which
allows us to create realistic repeatable interference patterns. With the same probabilities above,
we pick a random node and run Boano’s interferer on it for a round. Typically, this affects most
of the links among the 1-hop neighbors of the interferer, including a good fraction of those in
between these. To emulate multiple node crashes and co-located cases of data corruption, again
we select a random node with the same probabilities as above, and either force a shut down on
it and all of its current 1-hop neighbors, or inject a data corruption on the same nodes.

(3) We only consider the “natural” failures that would normally happen in Twist. To detect them, at
every round we checkpoint the state of every node and dump that on a base-station via the USB
back-channel [Österlind et al. 2009]. The base-station detects natural failures by comparing
consecutive checkpoints at the same node. Note that we cannot prevent natural failures from
happening in the first and second failure scenario as well. In these cases, the base-station records
the occurrence of the natural failures and instructs the affected node to skip the generation of an
equal number of artificial failures. This maintains the overall failure probabilities constant.

We use ContikiMAC as MAC layer, with the default parameter setting. Because of the layering
shown in Figure 11, ContikiMAC also takes care of handling collisions among the packets generated
by our algorithms at different nodes, using a CSMA with random backoff. Exchange of neighbor-
hood information occurs every 5 seconds, that is, ∆ = 5 s in Figure 5. We consider a link as failed
whenever at least 5 consecutive packets are lost over that link. Because at every node at most one
failure occurs in a 1-minute round, ∆ = 5 s ensures that failures are eventually detected before they
are possibly recovered in the next round, matching the conceptual framework of Section 3.2. The
timeout before re-trying the multicast send of pseudocrash notifications is 300 ms.
Failure scenario 1: spatially-uncorrelated artificial failures. Figure 13 summarizes the results.
Figure 13(a) shows the view change latency we measure depending on the type of failure, against
their probability. The absolute values are limited and always within one second, with little variabil-
ity across different runs. As demonstrated in Section 8.2, this allows protocols to quickly re-gain
NVC, which is beneficial to their performance. The values in Figure 13(a) do include the latency
that ContikiMAC introduces due to radio duty-cycle. With the default parameters, every packet
transmission takes an average 62 ms with ContikiMAC. A minimum of two packet transmissions
are necessary for every view change, counting one pseudocrash notification and the corresponding
acknowledgement. In practice, we count about 4 to 6 packet transmissions for every view change.
This means that 248 ms to 372 ms out of the values in Figure 13(a) are due to ContikiMAC alone.

Figure 13(a) also demonstrates that the failure probability bears no appreciable impact. The
system recovers from failures sufficiently rapidly that view changes are almost never concur-
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(a) View changes are rapid; higher-level protocols
quickly re-gain consistent neighborhood information.
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(b) The network overhead is minimal; higher-level
protocols are unlikely to be affected significantly.
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(c) The impact of WeakC on overall system lifetime is
negligible; it is comparable to transmitting a few addi-
tional radio packets.

Fig. 13. Performance of WeakC per view change: spatially-uncorrelated artificial failures.

rent, and hence the corresponding network traffic seldom interferes. Unlike our earlier simula-
tion results [Jhumka and Mottola 2009], the view latency is markedly higher in case of node fail-
ures. We attribute this to the network topology in Twist, fairly irregular because of physical con-
straints [Handziski et al. 2006]. Because of this, when a node fails, it may take more time to route
notifications around the “hole” created by the failed node. This effect was not evident in simula-
tions, where nodes were more uniformly deployed. Our measures of network overhead, illustrated
in Figure 13(b), confirm this reasoning. The failure probability again appears not to influence the
performance. In case of node crashes, about 22% more packets are transmitted around the “hole”
created by the failed node. The higher variability across runs also confirms that this behavior may
or may not manifest depending on where in the network a crash occurs.

Figure 13(c) reports the energy consumption for a view change, including computation and com-
munication. Given the values at stake, we argue that the impact of NVC on the overall system
lifetime is, in fact, negligible. To place this argument in context, consider that transmitting a single
50 byte packet with a TMote Sky node takes about 4 mJ at maximum power. Notably, the higher net-
work overhead for node failures seen in Figure 13(b) is, based on our experiment logs, spread across
more nodes than with other types of failures. This phenomena balances out the higher number of
transmitted messages, resulting in an energy consumption comparable to other types of failures.
Failure scenario 2: localized artificial failures. Figure 14 reports the results in the case of localized
failures. Compared to the performance with spatially-uncorrelated artificial failures, the latency is
only marginally higher, as shown in Figure 14(a). This is most likely caused by the additional pro-
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(a) The performance is only marginally worse than
Figure 13(a); the system suffers slightly more from link
failures than from other failures if these are localized.
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(b) Energy consumption is only slightly higher than
Figure 13(c); the system suffers more from localized
node failures, as more devices are involved at once.

Fig. 14. Performance of WeakC per view change: localized failures.

cessing required when the PCD of Figure 5 suspects multiple neighbors at once. In relative terms,
comparing Figure 13(a) against Figure 14(a) indicates that the added overhead for link failures and
data corruption is higher than for node crashes. In the latter case, multiple nearby nodes simultane-
ously crashing create a situation similar to the one of the spatially-uncorrelated case: again a “hole”
in the network is created, which is however larger than before, because it involves more nodes. Only
the nodes on the fringes of such a hole are involved in the view changes. Differently, localized link
failures create a variegated scenario, in that some packets may still go through some of the affected
links if these happen to be located in a favorable position compared to the interferer.

Our measures of network traffic, which we omit here for brevity, are comparable to Figure 13(b).
Even though the packets required to handle multiple concurrent view changes overlap in space,
possibly creating collisions at the physical layer, the network support described in Section 7 and
ContikiMAC handle the situation with no performance degradation. Figure 14(b) instead illustrates
the energy consumption for a view change in the case of localized failures. Again, the performance
is only marginally worse than in Figure 13(c). The relative performance penalty that a comparison
with Figure 13(c) indicates is here higher for the case of node failures. As the “hole” is larger than in
the case of spatially-uncorrelated failures, more nodes are involved in every view change, and each
of them needs to send packets and process information, thus making the impact of a single failure
more significant on the network-wide figure.
Failure scenario 3: natural failures. Some preliminary observations are in order about how natural
failures occur in Twist. First, we confirm that link failures occur routinely in WSNs [Baccour et al.
2012; Srinivasan et al. 2010], and are almost exclusively localized. We conjecture that they are
mainly caused by WiFi interference in the university building [Handziski et al. 2006]. Moreover,
we record a per-node 0.01% probability that a data corruption occurs at any round. Twist cannot be
physically accessed, so we are unable to trace with certainty the source of these faults. However, the
code on the nodes is minimal: it only includes the Contiki OS, ContikiMAC, our implementation
of WeakC, and custom logging functionality. Therefore, we conjecture that the data corruptions we
observe are due to phenomena such as bit flips; indeed, the nodes in Twist are totally unprotected
from electromagnetic radiations and static currents. Finally, unlike in real deployments, in Twist all
nodes are powered through the USB back-channel, and so we detect only two node crashes during
our tests, probably due to physical detaching of the node from the USB cable. We regard these cases
as statistically irrelevant. Compared to many WSN installations, Twist is anyways a fairly benign
environment. As a matter of fact, the failure rates above, especially for what concerns node crashes,
do underestimate the nature of real deployments, as illustrated in Section 2.



Failure Latency Network traffic Energy consumption
(ms) (packets) (mJ)

Link 768 15.04 25.32
Data corruption 722 14.89 25.89
Fig. 15. Performance of WeakC per view change: natural failures.

Figure 15 reports on the performance of WeakC in this setting. The absolute numbers are inline
with the previous results. As expected, the performance in the case of link failures resembles more
the results of Figure 14(a)—obtained with (artificial) localized failures—than those of Figure 13(a),
produced with uniformly distributed failures. The performance in the case of data corruption actu-
ally indicates the opposite, as the values in Figure 15 are closer to those in Figure 13(c) than Fig-
ure 14(b). Also according to the checkpoints collected at the sink, natural data corruptions tend not
to show any spatial correlations. Based on the same information, we also confirm that data corrup-
tion faults actually persist for up to tens of minutes, that is, our worst-case analysis of Section 6.3
does underestimate the reduction of the time spent without NVC when using our algorithms.

8.2. Full-stack Performance
We assess the benefits brought by NVC to higher-level protocols. We replace the existing neighbor-
hood management in four existing routing protocols with our WeakC implementation, and compare
their performance with the original designs.
Metrics. We consider two metrics commonly used for evaluating WSN protocols [Gnawali et al.
2009]: i) data yield, that is, the fraction of application packets successfully received at the destina-
tion(s) over those sent, and ii) radio duty cycle, that is, the fraction of time a node keeps the radio on
to deliver packets to the destination(s). The former is an indication of the level of service provided
to applications, whereas the latter provides a measure of a protocol’s energy efficiency. We measure
energy consumption using Contiki’s energy estimation functionality [Dunkels et al. 2007b] and a
similar mechanism in TinyOS.

Protocol #sources #sinks packet interval
CTP 89 1 1 min
MUSTER 18 4 1 min
RPL 10 10 5 min
COREDAC 10 1 5 min

Fig. 16. Tested protocol settings.

Protocols and settings. We use four markedly dif-
ferent protocols to show the general applicability of
NVC and to experiment with different traffic patterns
and loads. Figure 16 summarizes the settings. Note
that the performance of the protocols we consider
cannot be directly compared with each other, because
every protocol addresses a sharply different set of application requirements. Rather, we aim at
demonstrating that equipping a diverse set of protocols with NVC is beneficial. The comparison
is thus between the original design and the NVC-equipped version of the same protocol.

The Collection Tree Protocol (CTP) [Gnawali et al. 2009] for TinyOS is a staple data collection
protocol. CTP builds many-to-one routes by minimizing a routing metric based on ETX [Baccour
et al. 2012]. Differently, MUSTER [Mottola and Picco 2011] is a many-to-many TinyOS protocol
that builds multi-hop routes by minimizing a routing metric that combines ETX and the expected
node lifetime. In MUSTER, the pairing of sources and sinks is decided randomly and differently
for every run. Both CTP and MUSTER run atop the Low-Power Listening MAC layer found in the
TinyOS distribution, using settings in line with earlier experiments with either protocol [Gnawali
et al. 2009; Mottola and Picco 2011].

The Routing Protocol for Low-Power and Lossy Networks (RPL) [Ko et al. 2011] with the IPv6
stack runs on Contiki. RPL is a IETF-standardized distance-vector protocol for IP-based commu-
nications in low-power wireless. We use RPL in a one-to-one scenario, randomly choosing ten dis-
joint source-sink pairs. The higher packet interval compared to CTP and MUSTER is because RPL
was not able to sustain higher traffic loads in our experiments, independently of the use of NVC.
COREDAC [Voigt and Österlind 2008] also runs on Contiki with the Rime stack. Unlike the other
protocols—all based on opportunistic medium access—COREDAC supports many-to-one traffic



with TDMA scheduling. In COREDAC, only ten sources generate packets; a higher load easily
generates queue overflows at the intermediate nodes, regardless of the use of our algorithms.

All protocols heavily rely on neighborhood information, maintaining knowledge on both the cur-
rent next-hop nodes and about potential alternatives; for example, in case of a link failure. They all
employ similar schemes for managing neighborhood information, all based on uncoordinated bea-
coning. Because of different traffic patterns and routing techniques, however, every protocol exhibits
peculiar behaviors. The resulting diversity shows the general applicability of NVC. The integration
of WeakC in all protocols follows the layering shown in Figure 11; the existing MAC layer handles
the traffic generated by our algorithms in addition to the traffic generated by the original protocols.
Specifically, the former only amounts to the notification messages possibly generated by WeakC
upon suspecting a fault. The network traffic, as measured in number of packets, is otherwise equal
to periodic un-coordinated beaconing.
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(b) NVC-equipped protocols consume far less energy.
Fig. 17. Performance of NVC-equipped protocols
against the original designs.

All protocols run with their default parameters. The
parameters of WeakC are as in Section 8.1 but ∆,
which is driven by the protocol that employs WeakC
using the API described in Section 7. For exam-
ple, CTP exchanges neighborhood information using
Trickle timers [Gnawali et al. 2009]. In all cases,
∆ < 1 min, ensuring that failures never go unde-
tected before they are possibly recovered already in
the next round, in accordance with the framework of
Section 3.2. As already mentioned, the protocols we
study, as well as the majority of WSN protocols, apply
techniques to rule out unidirectional links. Therefore,
the link failures we discuss next are to be considered
as failures that prevent communication in both direc-
tions. If a link failed in only one direction, the proto-
col would just exclude the link from processing and
pretend it did not exist.

In all protocols, sending or receiving a 〈fault〉
message in WeakC triggers a node reboot, as the state
is now considered untrusted. We choose this strat-
egy merely for simplicity. Note, however, how this
places the NVC-equipped protocols in the worst case:
whenever a fault is detected, the entire state is lost
and needs to be reacquired. As a result, any gain we
demonstrate by employing NVC is to be considered
as a lower bound. Protocol-specific mechanisms to
deal with data corruption may, indeed, determine that
only a part of the state needs to be discarded and that
rebooting is unnecessary [Chen et al. 2009]. In these cases, the NVC-equipped versions would likely
show even greater performance improvements compared to the original designs.

We let the nodes be subject only to natural failures to analyze the most realistic settings. These
notably include localized phenomena, such as interference from WiFi access points, that impacts
multiple nearby nodes at once. We keep recording the occurrence of failures as in Section 8.1, to
provide an indication of what failures occurred and with what frequency.
Results. The experiments again confirm that link failures routinely occur in WSNs. Moreover, sim-
ilar to Section 8.1, we detect only one node failure in Twist, which we deem statistically immaterial.
Differently, in these experiments data corruption happens with an overall ∼0.1% probability on a
per-round and per-node basis. The same figure was ∼0.01% in Section 8.1, which prompts fur-
ther investigation. We eventually find out that RPL and COREDAC contain bugs that overwrite



random portions of the memory, including neighborhood information5. Not considering these two
protocols in the estimation of the data corruption probability brings this figure back to the one of
Section 8.1. Incidentally, this strengthens the motivation and value of our work. It is sad reality that
WSN implementations tend to be buggy; many of these bugs are memory violations [Chen et al.
2009; Cooprider et al. 2007] that corrupt data in a node’s memory.

Figure 17(a) shows the protocols’ data yield with link failures only, as well as when both link fail-
ures and data corruption occur. Already in the first case, NVC-equipped protocols perform markedly
better: the RPL protocol, for example, yields over 20% more data. Compared to the original way of
managing neighborhood information, indeed, NVC proactively deals with link failures. This entails
that the system gains updated knowledge of the physical topology both earlier and in a consistent
manner across the involved nodes. This reduces the time the system spends in the absence of NVC
and facilitates reconfigurations involving several nodes at once, in that these can readily reason on
the same set of information. In addition, the ability to discern data corruption allows protocols to
apply ad-hoc countermeasures—a simple reboot in our case—to discard corrupted state. As such,
the NVC-equipped RPL protocol yields over 36% more data in the presence of transient faults.

The gains in data yield also correspond to a general reduction of radio duty-cycle, shown in
Figure 17(b). WeakC allows protocols to operate with more accurate information, and hence their
control traffic reduces. In MUSTER, for example, the radio duty-cycle is more than halved. Again,
when data is corrupted, it is often more efficient for a protocol to perform a node reboot than to
continue with corrupted neighborhood information.

Based on the logs of our experiments we can also draw protocol-specific considerations:

— in CTP, corruption in neighborhood information often causes a node to keep using unreliable
links although better links would be available; it takes significant time before CTP re-acquires
correct information. WeakC triggers a node reboot in this case, and hence the routing tables start
afresh and are rapidly filled with correct information due to CTP’s Trickle timers [Gnawali et al.
2009; Levis et al. 2004] for route discovery.

— in MUSTER, link failures and data corruption tend to misguide the route construction; it happens
that MUSTER concentrates too many routes on the same nodes and packets are lost because
of queue overflows. Using NVC greatly helps build near-optimal routes, which prevents queue
overflows. We indeed record no queue overflows for the NVC-equipped version of MUSTER.

— in RPL, data corruption significantly affects the route maintenance: it causes a ripple effect
whereby almost every node downstream of the data corruption changes upstream node. Using
WeakC triggers a node reboot that, as in CTP, results in more efficient performance than the orig-
inal behavior. A single node rebooting indeed typically causes only a few links to reconfigure.

— in COREDAC, data corruption and link failures likely lead to incorrect synchronization of trans-
missions from different nodes, and packets are lost because of systematic collisions. Using
WeakC, COREDAC recovers from these situations more quickly than with the original mech-
anisms, which are unable to recognize the data corruption.

Ultimately, these observations demonstrate that by equipping protocols with NVC, and yet by
applying simple counter-measures against transient faults, one can reap significant performance
improvements across diverse scenarios, substantiating our initial claims.

9. RELATED WORK
Our work spans different fields, ranging from WSNs to fault detection and self-stabilizing algo-
rithms, that arguably seldom cross-fertilize.

5The main developers of either protocol have confirmed the existence and extent of these bugs, as well as the fact that a
simple fix is not straightforwardly identifiable.



WSN fault detection and diagnosis. To the best of our knowledge, we are the first to recognize
the NVC problem in WSNs, even though a body of work exists in the field of fault detection and
diagnosis for WSNs [Paradis and Han 2007; Yu et al. 2007].

In WSNs, several works provide surveys and general assessments on a variety of fault tolerance
techniques. For example, Yu et al. [2007] and Paradis and Han [2007] present a general survey
of failure management, including detection and recovery, while a survey of fault diagnosis is due
to Mahapatro and Khilar [2013]. On the other hand, Alwan and Agarwal [2009] present a survey of
fault-tolerant routing in WSNs. Cinque et al. [2013] present an overview of reliability assessment
techniques for WSNs, considering various failure models, such as battery exhaustion, to evaluate the
resiliency of WSNs. Munir et al. [2015] conduct simulations to analyze the synergy between fault
detection and fault tolerance and develop Markov models to characterize the reliability of WSNs.

Specific works cover a range of aspects. For example, Lee and Choi [2008] use a failure diagnosis
technique to detect faulty nodes by comparing their behavior with their neighbors. They show that
permanently faulty nodes can be identified with high accuracy, which is intuitive since the continu-
ous “bad” behavior of the node becomes a prominent feature in a node’s history. Ould-Ahmed-Vall
et al. [2012] develop a fault-tolerant event detection approach that enable nodes to detect erroneous
decisions by leveraging the decisions of their neighbors. We share the same distributed approach at
identifying faults; for example, in the way we recognize transient failures in WeakC.

In our work, a message failure is considered as a pseudocrash. This detection is possible as a node
continuously monitors its neighbors [Mahapatro and Khilar 2013; Jhumka et al. 2014]. The failure
may stem from several factors but we do not discriminate between them, since they all display the
same symptom. For example, we do not determine whether the lack of a message arrival is due to a
node crash or a message collision. This significantly eases the problem of view enforcement, since
we can use a simple periodic exchange of neighborhood information to detect pseudocrashes.
Data faults. Techniques to detect pseudocrashes do not extend to error detection as the nodes or
the network may display a normal behavior except for the sensor readings. In general, these types
of errors are handled through an after-deployment calibration [Balzano and Nowak. 2007]. This is
possible as the data is typically expected to fit a given model [Ni et al. 2009; Sharma et al. 2010].
On the other hand, Sharma et al. [2010] also mention the use of time-series analysis, estimation
methods, and learning techniques at run-time to detect errors in sensor readings.

In FIND, Guo et al. [2014] focus on the detection of data errors that are either biased or random,
in what can be termed termed as Byzantine data faults. They propose a detection technique based
on the discrepancy between a sensor data rank and the distance rank, that is, FIND ranks the nodes
based on their readings and their physical distances from the event and any significant discrepancy
between these two metrics is characterized as a fault. Thus, this technique is only applicable for
systems where the measured signal attenuates with distance. Such a technique does not extend to
deal with WSN protocols, which is the focus of our work.
System approaches. Several works investigate fault-tolerant mechanisms at the operating system
level. Cooprider et al. [2007] develop SafeTinyOS: a set of compile-time tools to instrument stan-
dard TinyOS code so that memory corruption errors are explicitly signaled to the programmer; for
example, by blinking a node’s LEDs. Chen et al. [2009] augment the TinyOS operating system
with mechanisms to restore selected parts of the application upon recognizing state inconsistencies.
These works are complementary to ours. For example, in Section 8, we choose to completely re-
boot the node whenever our WeakC implementation raises a 〈fault〉 flag. Using the work by Chen
et al. [2009], we could restore only the relevant part of the application, possibly further improving
performance in NVC-equipped systems.

Topology control protocols [Santi 2005], which adjust a radio’s transmission power to fulfill
given connectivity requirement, are also complementary to solving the neighborhood issues. While
the latter stem from an inaccurate perception of the underlying connectivity, topology control may
proactively manipulate the connectivity to reduce the chances that neighborhood issues arise.



Failure detectors and fault-tolerant protocols. In this work, we consider three fault models,
namely: i) node crashes, ii) message omissions, and iii) transients faults. There exist several works
that address the problem of tolerating permanent failures and transient faults of a subset of processes,
as opposed to self-stabilization approaches, which focus on tolerating transient faults on all pro-
cesses [Anagnostou and Hadzilacos 1993; Dolev 2000; Beauquier and Kekkonen-Moneta 1997]. In
other related work, Beauquier et al. [1998] focus on detecting transient failures in a self-stabilizing
way based on temporal and spatial locality. In contrast, we consider pseudocrashes and transient
faults. On the other hand, Nesterenko and Arora [2002] study the problem of dining philosophers in
the presence of malicious crashes, which is a special form of crash and transient failures where the
latter eventually lead to a crash. Compared to their work, we tackle NVC as opposed to predicate
detection, and do so under a different fault model.

Failure detectors are extensively used in the study of fundamental problems in distributed system,
such as consensus [Chandra and Toueg 1996]. Gärtner and Pleisch [2002] show that failure detec-
tors are inadequate to solve the global predicate detection problem in the presence of crash failures.
The authors then introduce a stronger device, called a failure detector sequencer, which provides
sufficient information to solve global predicate detection. Delporte-Gallet et al. [2005] introduce a
device named Ω that solves the consensus problem in the presence of both crash and message omis-
sion failures. Aguilera et al. [2000] prove the limitations of failure detectors in solving consensus in
the crash-recovery model. Our work is similar in that we also recognize that perfect failure detectors
are insufficient to provide NVC and develop a new device to address the problem.

10. CONCLUSION
We identified and studied the NVC problem in WSNs. We proved that strong NVC cannot be en-
forced, even with a perfect failure detector. We then analyzed the problem from two angles: i) neigh-
borhood monitoring, and ii) view enforcement. We developed a novel device called PCD and ana-
lyzed its properties, especially with transient faults. We then studied the problem of view enforce-
ment in a synchronous system where nodes are equipped with the relevant PCDs. We provided
a local algorithm that solves weak view consistency where higher-level applications are notified of
failures. We showed that our approach improves the performance of existing protocols; for example,
CTP [Gnawali et al. 2009] shows increased yield, with half the average energy usage.

A. MASKING VS. NON-MASKING TRANSIENT FAILURES
We back up our focus on non-masking transient faults in Sec. 4.2 by showing that this type of fault
is much more likely to occur than masking ones; hence, the chances that a transient fault makes the
system miss a pseudocrash are low overall.

Given a network G = (V,A), we assume that transient faults follow a Poisson distribution with
rate λtf and pseudocrashes follow a Poisson distribution with rate λpc. We focus on a given round
with duration ψ and assume that a single pseudocrash occurs in that round. We denote the size of a
neighborhood by η. For a PCD to miss the detection of a pseudocrashed node n, n should be in the
live variable in the algorithm of Figure 5:

Pr{detection of n missed}
= Pr{n pseudocrashed &∃ entry in m.live corrupted to n} =

= Pr{n pseudocrashed} · Pr{an entry in m.live corrupted to n}

≈ (
e−ψλpcψλpc

γ
)(η

e−ψλtfψλtf
γ2

) (1)

Differently, the probability that node n has pseudocrashed and a non-masking transient fault
occurred is equal to:



Pr{n pseudocrashed & non-masking transient fault occurred}
≈ Pr{a pseudocrash and a transient fault occurs in ψ})

≈ (ψ2λpcλtfe
−ψ(λtf+λpc)) (2)

It is, indeed, definitely the case that (1)� (2).
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