
Predictive Analysis and Optimisation of
Pipelined Wavefront Applications Using

Reusable Analytic Models

by

Gihan Ravideva Mudalige

A thesis submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

University of Warwick

July 2009

Abstract

Pipelined wavefront computations are an ubiquitous class of high performance parallel algo-
rithms used for the solution of many scientific and engineering applications. In order to aid
the design and optimisation of these applications, and to ensure that during procurement plat-
forms are chosen best suited to these codes, there has been considerable research in analysing
and evaluating their operational performance.

Wavefront codes exhibit complex computation, communication, synchronisation pat-
terns, and as a result there exist a large variety of such codes and possible optimisations. The
problem is compounded by each new generation of high performance computing system,
which has often introduced a previously unexplored architectural trait, requiring previous
performance models to be rewritten and reevaluated.

In this thesis, we address the performance modelling and optimisation of this class of
application, as a whole. This differs from previous studies in which bespoke models are ap-
plied to specific applications. The analytic performance models are generalised and reusable,
and we demonstrate their application to the predictive analysis and optimisation of pipelined
wavefront computations running on modern high performance computing systems.

The performance model is based on the LogGP parameterisation, and uses a small
number of input parameters to specify the particular behaviour of most wavefront codes. The
new parameters and model equations capture the key structural and behavioural differences
among different wavefront application codes, providing a succinct summary of the operations
for each application and insights into alternative wavefront application design.

The models are applied to three industry-strength wavefront codes and are validated
on several systems including a Cray XT3/XT4 and an InfiniBand commodity cluster. Model
predictions show high quantitative accuracy (less than 20% error) for all high performance
configurations and excellent qualitative accuracy.

The thesis presents applications, projections and insights for optimisations using the
model, which show the utility of reusable analytic models for performance engineering of
high performance computing codes. In particular, we demonstrate the use of the model for:
(1) evaluating application configuration and resulting performance; (2) evaluating hardware
platform issues including platform sizing, configuration; (3) exploring hardware platform de-
sign alternatives and system procurement and, (4) considering possible code and algorithmic
optimisations.

ii

to my parents and grandmother
with love and gratitude

iii

Acknowledgements

I am indebted to many people for the help, advice, guidance, support and friendship they
have provided me during the course of this work. Several have made special contributions,
influencing not only my thesis work but also my technical and professional development in
research and computer science. It is a privilege to acknowledge them here.

My supervisor, Dr. Stephen Jarvis, first guided me to conduct research in this area,
giving me the opportunity to work in the High Performance Systems Group at Warwick and
provided a never-ending source of optimism, good-will and guidance. I am truly grateful for
his support, advice and encouragement.

Prof. Mary Vernon, my advisor, during the research fellowship year at the University
of Wisconsin-Madison has been an inspiration for developing analytic models. I am sincerely
indebted to her for giving me the opportunity to work at Madison and for the many long hours
of discussions, advice and motivation.

I am grateful to Dr. Daniel Spooner for acting as my second supervisor, particularly
for his advice during the early years of my degree.

A special vote of thanks should go to my colleague and fellow labmate, Simon Ham-
mond for his relentless hard work, support and the many hours of discussions during our
research collaborations.

I would like to acknowledge and thank Jon Holt, Andy Herdman, Ash Vadgama and
Ben Ralston of the Parallel Technology Support team at AWE for providing us with access
to the Chimaera benchmark code as well as supporting our research with valuable com-
ments. Additionally I am thankful to Patrick H. Worley for giving us access to the ORNL Cray
XT3/XT4 under the PEAC project, Howard Pritchard for his comments on the Cray XT3/XT4
and David Sundram-Stukel for his comments during the development of the reusable analytic
model.

It is a pleasure to acknowledge the many members and colleagues of the High Perfor-
mance Systems Group both past and present including, Dr. Ligang He, Dr. Guang Tan, Dr.
David Bacigalupo, Dr. Graham Nudd, Dr Nathan Griffiths, Dr Arshad Jhumka, Dr. Elizabeth
Ogston, Dr. Tongcheng Guo, Jonathan Smith, Justin Dyson, Xenu Chen, Peter Wong, Jonathan
Byrd, Brian Foley, Paul Isitt, Lei Zhao, James Wen Jun Xue, Adam Chester, Matthew Leeke,
Alistair Mills and Mohammed Al Ghamdi.

I would also like to acknowledge the support of my many friends, particularly Dr.
Dhammika Widanage and Matthew Higgins for the supportive discussions and guidance dur-
ing my PhD years.

Finally, my profound appreciation goes to my parents and my grandmother. My father
whose perfectionism in his work will be a continuing source of inspiration to me, my mother
whose love, support and limitless optimism shatters the daunting perception of even the most
impossible undertaking and my grandmother who brought me up during my school days
with love and unending compassion. I dedicate this thesis to them, with love and gratitude.

iv

Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of
Philosophy. It has been composed by myself and has not been submitted in any previous
application for any degree. The work described in this thesis has been undertaken by myself
except where otherwise stated.

Portions of this work have been published in the following publications:

Parts of Chapter 2 in [1] :
S.A. Jarvis, D.P. Spooner, G.R. Mudalige, B.P. Foley, J. Cao, and G.R. Nudd. Performance
Evaluation of Parallel and Distributed Systems, chapter Performance Prediction Techniques for
Large-scale Distributed Environments. Mohamed Ould-Khaoua and Geyong Min Eds. Nova
Science, 2005.

Chapters 3, 4 and 5 in [2]:
G.R. Mudalige, M.K. Vernon, and S.A. Jarvis. A Plug-and-Play Model for Evaluating Wave-
front Computations on Parallel Architectures. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008). April, 2008. IEEE Computer Society.

Chapter 6 in [3]:
G.R. Mudalige, S.A. Jarvis, D.P. Spooner, and G.R. Nudd. Predictive Performance Analysis of
a Parallel Pipelined Synchronous Wavefront Application for Commodity Processor Cluster
Systems. In Proc. IEEE International Conference on Cluster Computing - Cluster2006, Barcelona,
September 2006. IEEE Computer Society.

Parts of Chapter 7 in [4]:
S.D. Hammond, G.R. Mudalige, J.A. Smith, and S.A. Jarvis. Performance prediction and
procurement in practise: Assessing the suitability of commodity cluster components for
wavefront codes. In Proc. Performance Engineering Workshop 08 (UKPEW), Imperial College,
London, July 2008. Also accepted for publication in IET Software 2009.

and in [5]:
G.R. Mudalige, S.D. Hammond, J.A. Smith, and S.A. Jarvis. Predictive Analysis and Optimi-
sation of Pipelined Wavefront Computations. In Proc. 11th Workshop on Advances in Parallel
and Distributed Computational Models (APDCM 2009), held as part of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2009), Rome, Italy, May 2009. IEEE
Computer Society. Also invited for publication in the International Journal of Parallel, Emergent
and Distributed Systems (IJPEDS), 2010. Taylor and Francis Publications.

v

-1. SPONSORSHIP AND GRANTS

Other work that has been conducted as part of this research has been published in:

[6] S.D. Hammond, G.R. Mudalige, J.A. Smith, and S.A. Jarvis. WARPP - A Tool Kit for
Simulating High-Performance Parallel Scientific Codes. In Proc. 2nd International Conference on
Simulation Tools and Techniques (SIMUTools 2009), Rome, Italy, March 2009. ACM Press.

[7] S.D. Hammond, J.A. Smith, G.R. Mudalige, and S.A. Jarvis. Predictive Simulation of
HPC Applications. In The IEEE 23rd International Conference on Advanced Information Net-
working and Applications (AINA 2009), Bradford, U.K., 26-29 May 2009. IEEE Computer Society.

vi

Sponsorship and Grants

The research in this thesis was part-sponsored by research grants from:

The University of Warwick Department of Computer Science Fellowship (2004-2005), The
Warwick Postgraduate Research Fellowship (WPRF) (2005-2006 and 2007-2008), The Overseas
Research Student Fellowship (ORS) by the Government of the U.K. (2004-2006 and 2007-2008),
The Warwick, Wisconsin-Madison Research Fellowship (2006-2007) and The National Science
Foundation (NSF), U.S. under grant CNS-0435437.

Access to the Chimaera benchmark was provided by the Atomic Weapons Establishment
(AWE) U.K. under grants CDK0660 (The Production of Predictive Models for Future Computing
Requirements) and CDK0724 (AWE Technical Outreach Program).

This research work used resources at the National Centre for Computational Sciences (NCCS)
at the Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of
the U.S. Department of Energy (DOE) contract DE-ASC05-00OR22725 under the Performance
Evaluation and Analysis Consortium (PEAC).

This research also made use of resources at the Centre for Scientific Computing (CSC) at the
University of Warwick under the Science Research Investment Fund and Joint Research Equip-
ment Initiative under grant JR00WASTEQ.

vii

Abbreviations

API - Application Programming Interface
ASC - Advanced Simulation and Computing Program
AWE - Atomic Weapons Establishment (U.K)
BLAS - Basic Linear Algebra Subprograms
BSP - Bulk Synchronous Parallel (model)
CFDs - Computational Fluid Dynamics
CHIP3S - Characterisation Instrumentation for Performance Prediction of Parallel Systems
CMP - Chip Multi-Processor
CNL - Compute Node Linux
CRCW - Concurrent Read Concurrent Write
CREW - Concurrent Read Exclusive Write
DMA - Direct Memory Access
EPCC - Edinburgh Parallel Computing Centre
EREW - Exclusive Read Exclusive Write
FFT - Fast Fourier Transforms
FLOPS - Floatingpoint Operations per Second
HMCL - Hardware Model Characterisation Language
HPC - High Performance Computing
HPF - High Performance FORTRAN
IMB - Intel MPI Benchmark
ILP - Instruction level parallelism
LAN - Local Area Network
LANL - Los Alamos National Laboratory (U.S)
LAPACK - Linear Algebra Package
LU - Lower and Upper triangular system solution application benchmark in NPB
MFLOPS - Millions of Floating-Point Operations per Second
MIMD - Multiple Instruction (stream) Multiple Data (stream)
MIPS - Millions of Instructions per Second
MISD - Multiple Instruction (stream) Single Data (stream)
MTU - Maximum Transmission Unit
MPI - Message Passing Interface
MPMD - Multiple Program Single Data
MPP - Massively Parallel Processor
MTU - Maximum Transmission Unit
MVA - Mean Value Analysis
NPB - NASA’s Aerodynamic Simulation Parallel Benchmarks
NIC - Network Interface Card
NoW - Network of Workstations

viii

0. NOTATIONS

NUMA - Non Uniform Memory Access
ORNL - Oak Ridge National Laboratory (U.S)
PACE - Performance Analysis and Characterisation Environment
PAPI - Performance Application Programming Interface
PBB - Purpose Bases Benchmarks
PGAS - Partitioned Global Address Space
PRAM - Parallel Random Access Machine
PSL - Performance Specification Language
PVM - Parallel Virtual Machine
QoS - Quality of Service
SDR - Single Data Rate
SIMD - Single Instruction (stream) Multiple Data (stream)
SISD - Single Instruction (stream) Single Data (stream)
SMP - Symmetric Multi Processor
SPEC - Standard Performance Evaluation Corporation
SPMD - Single Program Multiple Data
SSOR - Successive Over-Relaxation
UMA - Uniform Memory Access
WAN - Wide Area Network
WarPP - Warwick Performance Prediction toolkit

ix

Notations

C Number of cores on a CMP(section 4.3.3)

Cx Number of cores in the x dimension on a CMP (section 4.6)

Cy Number of cores in the y dimension on a CMP (section 4.6)

G LogGP parameter: Gap per byte defined as the time taken to transmit a
byte on to the network (section 2.3.4)

Gcopy Gap per byte for a memory copy on-chip (section 4.3.2)

Gdma Gap per byte for a DMA transfer on-chip(section 4.3.2)

Htile(cells) Height of the tile in the z dimension (section 4.2)

it, jt, kt Number of grid cells in x, y and z dimension for Sweep3D (section 3.1.2)

I NIC contention (interference) time (section 4.6)

L LogGP parameter: the upper bound on the latency of the network
the flight time for a message from one point of the network to another
(section 2.3.4)

m Number of processors along the y dimension of the 2D processor array
(section 3.1.2)

mmi Number of angles solved per sweep step in Sweep3D (section 3.2.2)

mk Height of the tile in the z dimension for Sweep3D (section 3.2.2)

MessageSizeEW Message size (East-West or West-East) (section 4.2)

MessageSizeNS Message size (North-South or South-North) (section 4.2)

n Number of processors along the x dimension of the 2D processor array
(section 3.1.2)

ndiag Number of sweeps that completes from corner up to and including the
main diagonal (section 4.2)

nfull Number of sweeps that completes fully (from corner to opposite corner)
(section 4.2)

no of Kblocks Number of tiles on a processor stack in the Sweep3D analytic model in
[8] (section 4.2)

x

0. NOTATIONS

nsweeps Total number of sweeps (section 4.2)

Nx, Ny, Nz Number of grid cells in x, y and z dimension (section 3.1.2)

o LogGP parameter: the overhead time taken by a processor to trans-
mit/receive a message. (section 2.3.4)

oc2NIC Time to setup a, DMA or other, copy of the message data between
kernel memory and the NIC and to prepare or process the message
header (section 4.3.1)

ocopy Processing time before and after the message copies on the sender and
the receiver on-chip (section 4.3.2)

odma Overhead of setting up a DMA or other, copy of the message data be-
tween kernel memory and the NIC on-chip (section 4.3.2)

oh The processing time for a handshake request or reply, including the
time to prepare a new message header (section4.3.1)

oinit Overhead for a message copy between application and kernel (sec-
tion4.3.1)

P LogGP parameter: number of processors (section 2.3.4)

Pr Probability that a processor takes Wr time to complete a block of cells
of height Htile (section 7.4.1)

R Execution time for a single simulation (section 5.2)

Receive Time to obtain a message from the network (section 4.2)

Send Time to release a message to the network (section 4.2)

StartPi,j Time to begin the main computation on processor (i, j) (section 4.2)

Tallreduce Time to complete an MPI allreduce operation (section 4.3.3)

Tdiagfill Time gap between starting a sweep at a corner processor and the first
wavefront of that sweep reaching up to the main diagonal processors
(section 4.2)

Tfill Time for a wavefront operating on a 1D processor array to arrive from
one end processor to the opposite side processor (section 4.5)

Tfullfill time gap between starting a sweep at a corner processor and the
first wavefront of that sweep reaching the opposite corner processor
(section 4.2)

Tnonwavefront Time to complete non-wavefront portions (section 4.2)

Total Comm End to end communication time (section 4.2)

xi

0. NOTATIONS

Tstack Time taken by a processor to solve its stack of tiles (section 4.2)

Wg A grid cell computation time (main computation block) (section 4.2)

Wg,pre A grid cell computation time (pre-computation block) (section 4.2)

Wg,rhs A grid cell computation time (LU RHS computation block) (section
4.7.1)

X Total number of simulations that complete per unit time (throughput)
(section 5.2)

η Number of overlapping simultaneous sweeps (section 7.3.2)

xii

Contents

Abstract ii

Acknowledgements iv

Declarations v

Sponsorship and Grants vii

Abbreviations viii

Notations x

Contents xv

List of Figures xvi

List of Listings xviii

List of Tables xix

Chapter 1 Introduction 1
1.1 Motivation and Problem Statement . 2

1.1.1 Analytic Modelling . 4
1.1.2 Reusable Performance Models . 6

1.2 Thesis Contributions . 7
1.3 Thesis Limitations . 9
1.4 Thesis Overview . 9

Chapter 2 Performance Analysis and Prediction 11
2.1 Introduction . 11
2.2 Parallel Computing and Parallel Programs . 11

2.2.1 Parallel Computing Architectures . 12
2.2.2 Parallel Programming Models and Languages 13
2.2.3 Parallel Decompositions . 14

2.3 Performance Engineering Methodologies . 15
2.3.1 Amdahl’s Law and Gustafson’s Law . 16
2.3.2 Parallel Random Access Machine (PRAM) Model 18
2.3.3 Bulk Synchronous Parallel (BSP) Model 19
2.3.4 LogP and LogGP Models . 21

2.4 Performance Engineering and the HPC Lifecycle 22
2.4.1 Benchmarking and Profiling . 24

2.4.1.1 Low-level Benchmarks, Kernels and Microbenchmaks 24
2.4.1.2 Synthetic Benchmarks, Application Benchmarks and Bench-

mark Suites . 25
2.4.1.3 Profiling . 26

2.4.2 Statistical Analysis . 28
2.4.3 Simulation . 28
2.4.4 Analytic Modelling . 30
2.4.5 Hybrid and Other Methods . 31

xiii

0. CONTENTS

2.5 Discussion . 32

Chapter 3 Pipelined Wavefront Computations 35
3.1 Pipelined Wavefront Sweeps . 35

3.1.1 Wavefront Sweeps on 2D Data Grids . 35
3.1.2 Wavefront Sweeps on 3D Data Grids . 37

3.2 Pipelined Wavefront Applications . 41
3.2.1 NPB - LU . 41
3.2.2 Sweep3D and Chimaera . 44

3.3 Related Work . 47

Chapter 4 A Plug-and-Play Reusable Analytic Model 51
4.1 Application Parameters . 51
4.2 Reusable Model : Single Core . 54
4.3 The Cray XT3/XT4 and MPI Communications Performance 59

4.3.1 MPI Send/Receive: Off-node . 62
4.3.2 MPI Send/Receive: On-chip . 64
4.3.3 MPI Allreduce . 65

4.4 Measuring Computation Performance . 68
4.5 Deriving a Model for 2D Regular Orthogonal Grids 70
4.6 Extending the Reusable Model to CMP Nodes on the XT4 71
4.7 Model Validations . 74

4.7.1 NPB - LU . 74
4.7.2 Sweep3D . 75
4.7.3 Chimaera . 76
4.7.4 Discussion on Validation Results . 78

4.8 Summary . 79

Chapter 5 Wavefront Application and Platform Design 80
5.1 Application Design: Htile . 80
5.2 Platform Sizing and Configuration . 83
5.3 Platform Design: Multi-core Nodes . 87
5.4 Application Bottlenecks . 88
5.5 Sweep Structure Re-design . 91
5.6 Summary . 93

Chapter 6 Wavefront Simulation Models 94
6.1 The PACE Discrete Event Simulation System . 94
6.2 A PACE Model for Sweep3D . 97
6.3 Enhancing the Predictive Accuracy of PACE for Modern HPC Systems 103
6.4 The WarPP Simulation Toolkit . 107
6.5 Summary . 109

Chapter 7 Optimisations and System Procurement 111
7.1 Introduction . 111
7.2 Shifting Computation Costs . 111
7.3 Multiple Simultaneous Sweeps . 113

7.3.1 Multiple Simultaneous Sweeps on Separate Cores 114
7.3.2 Multiple Simultaneous Sweeps on All Cores 115

7.4 Model Extensions for Heterogeneous Resources and Irregular/Unstructured
Grids . 118
7.4.1 Homogeneous Cells, Structured Grid and Heterogeneous Resources . . 119
7.4.2 Heterogeneous Cells, Structured Grid and Homogeneous Resources . . 121
7.4.3 Homogeneous Cells, Unstructured Grid and Homogeneous Resources . 122

7.5 System Procurement and Bottleneck Analysis . 122
7.5.1 Larger Problem Sizes . 122

xiv

0. CONTENTS

7.5.2 Computation, Latency and Bandwidth 123
7.6 Summary . 125

Chapter 8 Conclusions and Future Work 126
8.1 Contributions and Conclusions . 126
8.2 Future Work . 128

8.2.1 Further Validations and Model Extensions 128
8.2.2 Future Work on Wavefront Computations 129

Bibliography 141

Appendix A Modelling Contention on CMPs 142
A.1 Dual Core CMP . 142
A.2 Quad Core CMP . 143
A.3 8 Core CMP . 144
A.4 16 Core CMP . 144

Appendix B Model Validations 147
B.1 Chimaera Validations . 147
B.2 Sweep3D Validations . 148

Appendix C cflow work from sweep.x 150

Appendix D Wavefront Model and Extensions 153
D.1 Model Parameters . 153
D.2 Single Core Model . 153
D.3 2D Model . 153
D.4 Extensions for Cray XT3/XT4 CMP Nodes . 154
D.5 Model Extensions for Simultaneous Multiple Wavefronts 154
D.6 Model Extensions for Heterogeneous Resources 155
D.7 Model Extensions for Irregular/Unstructured Grids 155

Appendix E Model Parameter Error Propagation 156
E.1 General Case . 156
E.2 Error Model for Chimaera . 156

xv

List of Figures

1.1 Operation of a Wavefront computation . 3

2.1 Speedups projected by Amdahl’s law . 16
2.2 A superstep in the BSP model . 20
2.3 LogGP parameters . 22
2.4 Stages in the HPC lifecycle . 23
2.5 Performance Engineering Methodologies . 33

3.1 A 2D pipelined wavefront operation on a 1D processor array 36
3.2 Hyperplanes on a 3D grid of data . 37
3.3 3D data grid mapping on to a 2D processor array 38
3.4 Pipelined wavefronts on the 2D processor array 39
3.5 Fine-grained messaging and agglomerated messaging 40
3.6 LU pipelined wavefront operation on the 2D processor array 43
3.7 Sweep3D and Chimaera pipelined wavefront operation on the 2D processor array 45

4.1 Pipelined wavefront operation on a 2D processor array 56
4.2 Measured and modelled Cray XT4 off-node MPI end-to-end communication times 61
4.3 Measured and modelled Cray XT3 off-node MPI end-to-end communication times 61
4.4 Measured and modelled Cray XT4 on-chip MPI end-to-end communication times 64
4.5 MPI allreduce operation on dual-core nodes . 67
4.6 MPI allreduce operation on quad-core nodes . 67
4.7 Wavefront operation on a 2D data grid . 70
4.8 Wavefront application mapped to multi-core nodes 72
4.9 Wavefront operation and collisions on dual core nodes 72
4.10 Wavefront operation and collisions on quad core nodes 73

5.1 Execution time vs. Htile: Sweep3D 20 Million cell problem 81
5.2 Execution time vs. Htile: Chimaera 240× 240× 240 cell problem 81
5.3 Execution time vs. Htile: Sweep3D 1 Billion cell problem 82
5.4 Execution time vs. Htile: Chimaera 240× 240× 960 cell problem 82
5.5 Execution time vs. System size: Sweep3D Billion cell problem, 104 time steps,

30 energy groups, 120 iterations, Htile = 2 . 83
5.6 Execution time vs. System size: Chimaera 2403 cell problem, 104 time steps, 16

energy groups, 419 iterations, Htile = 2 . 84
5.7 Throughput vs. Partition Size (Sweep3D 109 Cells, 104 time steps, 30 energy

groups 120 iterations, Htile = 2) . 84
5.8 Throughput vs. Partition Size (Chimaera 2403 Cells, 104 time steps, 16 energy

groups 419 iterations, Htile = 2) . 85
5.9 Optimising Partition Size (Sweep3D 1 Billion Cells, Total number of available

processors = 128K) . 86
5.10 Optimising Partition Size (Chimaera 2403 Cells, Total number of available pro-

cessors = 32K) . 86
5.11 Execution time on multi-core nodes (Sweep3D 1 Billion Cells, 104 time steps, 30

energy groups, 120 iterations, Htile = 2) . 87
5.12 Execution time on multi-core nodes (Chimaera 2403 Cells,104 time steps, 16 en-

ergy groups 419 iterations, Htile = 2) . 88

xvi

0. FIGURES

5.13 Computation and communications cost breakdown (Sweep3D 1 Billion Cells,
104 time steps, 30 energy groups, 120 iterations, Htile = 2) 88

5.14 Computation and communications cost breakdown (Chimaera 2403 Cells, 104

time steps, 16 energy groups 419 iterations, Htile = 2) 89
5.15 Communications cost breakdown (Sweep3D 1 Billion Cells, 104 time steps, 30

energy groups, 120 iterations, Htile = 2) . 90
5.16 Communications cost breakdown (Chimaera 2403 Cells,104 time steps, 16 en-

ergy groups 419 iterations, Htile = 2) . 90
5.17 Pipeline fill and steady state cost breakdown (Sweep3D 1 Billion Cells, 104 time

steps, 30 energy groups, 120 iterations, Htile = 2) 91
5.18 Pipeline fill and steady state cost breakdown (Chimaera 2403 Cells,104 time

steps, 16 energy groups 419 iterations, Htile = 2) 91
5.19 Pipeline fill and steady state cost breakdown (Sweep3D 4 × 4 × 1000 Cells per

processor, 104 time steps, 30 energy groups, 120 iterations, Htile = 2) 92
5.20 Sweep structure redesign - pipelining 30 energy groups (Sweep3D 4× 4× 1000

Cells per processor, 104 time steps, 30 energy groups, 120 iterations, Htile = 2) . 92

6.1 Overview of the PACE simulator and toolset . 95
6.2 Layers in a PACE model . 96
6.3 Layered objects for PACE Sweep3D model . 101

7.1 Optimisation by shifting computation costs to pre-computation - strong scal-
ing (Speculative Chimaera type application, 240x240x240 Cells, 1 time step, 16
energy groups 419 iterations, Htile = 1) . 112

7.2 Optimisation by shifting 100% of computation costs to pre-computation - weak
scaling (Speculative Chimaera type application, 8x8x1000 Cells/PE, 1 time step,
16 energy groups 419 iterations, Htile = 1) . 113

7.3 Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 2403 total prob-
lem size, Htile = 1) . 114

7.4 Multiple simultaneous sweeps on separate cores 115
7.5 Simultaneous Sweeps on Separate cores (Speculative Chimaera type applica-

tion, 240x240x240 Cells, 1 time step, 16 energy groups 419 iterations, Htile =
1) . 115

7.6 Simultaneous multiple wavefronts overlapping steps 116
7.7 Simultaneous sweeps on all cores (Speculative Chimaera type application,

240x240x240 Cells, 1 time step, 16 energy groups 419 iterations, Htile= 1) 118
7.8 Parallel efficiency of larger problem sizes (Chimaera, 1 time step, 16 energy

groups 419 iterations) . 123
7.9 Change in runtime due to improved computation performance (Chimaera

240x240x240, 1 time step, 16 energy groups 419 iterations) 124
7.10 Change in runtime due to reduced network latency (Chimaera 240x240x240, 1

time step, 16 energy groups 419 iterations) . 124
7.11 Change in runtime due to increased network bandwidth (Chimaera

240x240x240, 1 time step, 16 energy groups 419 iterations) 125

A.1 Wavefront operation and collisions on dual core nodes 142
A.2 Wavefront operation and collisions on quad core nodes 143
A.3 Wavefront operation and collisions on 8 core nodes 144
A.4 Wavefront operation and collisions on 16 core nodes 145
A.5 Wavefront operation and collisions on quad core nodes 146

xvii

List of Listings

3.1 A simple sequential loop operating on a 2D data array 35
3.2 Parallelised loop for a 2D data array using pipelined wavefronts 36
3.3 A simple sequential loop operating on a 3D data array 37
3.4 Parallelised loop for a 3D data array using pipelined wavefronts 38
3.5 General pipelined wavefront algorithm . 40
3.6 LU sequential algorithm . 43
3.7 LU parallel algorithm . 43
3.8 The pipelined wavefront algorithm in LU . 44
3.9 The pipelined wavefront algorithm in Sweep3D 46
3.10 The pipelined wavefront algorithm in Chimaera 46
4.1 Timer instrumentation of a wavefront code . 68
6.1 Application object:sweep3d . 97
6.2 Subtask object:sweep . 99
6.3 Parallel template object:pipeline . 99
6.4 Hardware model for a Pentium 3 2-way SMP Myrinet2000 cluster 102
6.5 Modified clc for the serial computation work from subtask object sweep 104
C.1 sweep.x . 150

xviii

List of Tables

2.1 Pros and cons of performance prediction methodologies 33

4.1 Plug-and-Play Reusable Model Application Parameters 52
4.2 Plug-and-play LogGP Model: One Core Per Node, on 3D Data Grids 59
4.3 The ORNL Jaguar : System Details . 60
4.4 XT4 Communication Parameters . 65
4.5 LogGP Model of XT4 MPI Communication . 65
4.6 Validations for the LogGP MPI allreduce model on a Cray XT4 66
4.7 Plug-and-play LogGP Model for Wavefront Codes on 2D Data Grids 70
4.8 Re-usable Model Extensions for CMP Nodes . 73
4.9 LU Model Validation on Jaguar (Cray XT3) - 643 cells per processor 75
4.10 LU Model Validation on Jaguar (Cray XT3) - 1023 cells per processor 75
4.11 Sweep3D Model Validation on Jaguar (Cray XT4) - 10003 total problem size,

Htile = 2, mmi = 6 . 76
4.12 Sweep3D Model Validation on Jaguar (Cray XT4) - 20 × 106 total problem size,

Htile = 2, mmi = 6 . 76
4.13 Chimaera Model Validation on Jaguar (Cray XT4) - 2403 total problem size . . . 77

6.1 Model Validation Systems . 105
6.2 Sweep3D simulation model validations on an Intel Pentium-3 2-way SMP clus-

ter with a Myrinet 2000 interconnect . 105
6.3 Sweep3D simulation model validations on an AMD Opteron 2-way SMP cluster

interconnected by a Gigabit Ethernet . 106
6.4 Sweep3D simulation model validations on an SGI Altix Intel Itanium-2 56-way

SMP . 106
6.5 Intel InfiniBand (CSC-Francesca) Cluster - Key Specifications 108
6.6 Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 1203 total prob-

lem size . 108
6.7 Chimaera Model Validation on a Intel Xeon-InfiniBand luster - 2403 total prob-

lem size . 108
6.8 InfiniBand network model parameters . 109

7.1 Predictions for a system with heterogeneous processors (Chimaera 240x240x240
Cells, 1 time step, 16 energy groups 419 iterations, Htile = 1) 120

B.1 Chimaera Model Validation on Jaguar (Cray XT4) - 603 problem size, Htile = 1 147
B.2 Chimaera Model Validation on Jaguar (Cray XT4) - 1203 problem size, Htile = 1 147
B.3 Chimaera Model Validation on Jaguar (Cray XT4) - 2403 problem size, Htile = 1 147
B.4 Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 1203 problem size147
B.5 Chimaera Model Validation on a Intel Xeon-InfiniBand luster - 2403 problem size 147
B.6 Sweep3D Model Validation on Jaguar (Cray XT4) - 10003 total problem size,

Htile = 2, mmi = 6 . 148
B.7 Sweep3D Model Validation on Jaguar (Cray XT4) - 20 × 106 total problem size,

Htile = 2, mmi = 6 . 148
B.8 Sweep3D Model Validation on Jaguar (Cray XT4) - 5 × 5 × 400 per processor

problem size, Htile = 5, mmi = 6 . 148
B.9 Sweep3D Model Validation on Jaguar (Cray XT4) - 14× 14× 255 per processor

problem size, Htile = 2.5, mmi = 6 . 149

xix

0. TABLES

B.10 Sweep3D Model Validation on Jaguar (Cray XT4) - 20× 20× 1000 per processor
problem size, Htile = 5, mmi = 6 . 149

B.11 Sweep3D Model Validation on Jaguar (Cray XT4) - 45× 45× 1000 per processor
problem size, Htile = 5, mmi = 6 . 149

xx

1 Introduction

The use of computational methods is now an essential research methodology that propels
modern science, medicine and engineering. The scientific methods of computational mod-
elling and simulation are now as ubiquitous as the traditional theoretical and experimentation
approaches to scientific research. Particularly through computational modelling and simula-
tion, domain scientists and researchers in these fields have been able to conceptualise, discover,
design and produce more innovative solutions and solve highly complex problems than was
ever possible with traditional paper and pencil methods. Thus, such computational methods
have established themselves as a third pillar of scientific investigation, comparable to experi-
mental and theoretical approaches. In the last decade, the use of these techniques has grown
rapidly, due to the increasing availability of efficient and large-scale computational resources.

High Performance Computing (HPC) or its more popularly known designation - super-
computing - is concerned with the research, design, development, manufacturing, deployment
and usage of such high-end computer systems. It is more specifically characterised by the
use of parallel processing for running advanced application programs quickly, efficiently and
reliably. HPC systems can be of the form of a high-end server, or a massively parallel super-
computer with thousands of processors interconnected by high speed networks or a large dis-
tributed system that is spread across a building, city, country or even continents.

As the name implies, performance is key to HPC and the goal is to achieve the best
performance in a cost-effective and resource efficient manner. Analysis and evaluation of per-
formance as well as its prediction and speculating about future behaviour have therefore been
key aspects of HPC. These activities - collectively referred to as performance engineering - are
particularly invaluable, as these systems and software often require a large investment not
only from the end user and owners but also from the designers, developers and vendors. The
advantages of performance engineering also extend beyond this, allowing efficient schedul-
ing by anticipating a workload’s behaviour prior to execution [9, 10], which in turn allows
efficient utilisation of resources and sustainable levels of Quality of Service (QoS) [11]. It has
been recognised that performance engineering techniques can be used throughout the life-
cycle of a system [9, 12]. For example, at the design stage they can serve to quantify the ad-
vantages and disadvantages of different architectural options. When procuring systems, users
can utilise performance predictions to compare alternative systems and at the implementation
stage predictions based on an implemented prototype can serve as a forecast for the final sys-
tem [13]. After installation, predicted results can be used to validate whether the installation
was successful, and whether the system is configured accurately to obtain optimum system ef-
ficiency. Additionally, during maintenance such performance analysis data can indicate faults
that affect the system behaviour and also quantify the possible benefits that can be gained by
upgrading. On the application side, for example, performance engineering enables applica-

1

1. INTRODUCTION

tion scientists to design near optimal application code by exposing software bottlenecks [14]
and hardware facilities that should be exploited to obtain maximum efficiency and resource
utility [15].

Due to these significant benefits, performance engineering has been and continues to
be an important research area in the field of HPC. But understanding the performance as-
pect of an HPC application when running on various parallel high performance systems and
architectures still remains to be a significantly difficult task. The complexity of the HPC ap-
plications and systems, the rapid pace of technology development and the lack of expertise in
performance engineering make it highly non-trivial and labour intensive.

The underlying objective of this work is to assist the complex and demanding task of
performance engineering for HPC. To this end, the dissertation investigates the performance
of a significantly important, non-trivial and ubiquitous class of HPC computations - Pipelined
Wavefront Computations - on modern HPC systems. We conduct a performance engineering
study of these codes by developing a reusable analytic model, attesting it as a technique that
simplifies the task of performance engineering, and then utilise the model for comprehensively
assessing the quantitative and qualitative performance of pipelined wavefront computations
on modern HPC systems.

1.1 Motivation and Problem Statement

Pipelined Wavefront Computations, originally described as hyperplane methods [16] by Lam-
port form a major portion (up to 80 % [17]) of the high performance scientific computing work-
load at institutes such as the Los Alamos National Laboratories (LANL) in the U.S [18] and the
Atomic Weapons Establishment (AWE) [19] in the U.K. The communication primitives used
in these parallel benchmark codes are the blocking send, receive, and group communication
primitives in the Message Passing Interface (MPI) [20]. To aid the design, procurement and
optimization decisions of these applications on high-end computers, there has been and con-
tinues to be considerable research interest in performance engineering of these codes.

Pipelined Wavefront Computations, generally operates on a 3D grid of data cells (al-
though the algorithm extends equally well on to 1D and 2D grids), where the parallel process-
ing of the computation can be viewed as a wavefront originating from a corner of the data grid
propagating to the oppisite corner of the data grid. Figure 1.1 illustrates this operation. Here,
a 3D data grid of size Nx ×Ny ×Nz is decomposed onto a 2D array of m× n processors. Each
partition of data cells assigned to a processor can be viewed as a stack of tiles, each of 1 cell
high. The data dependency of the cells held in processors results in a sequence of wavefronts
(or a sweep) that starts at one of the corner processors, computing over the cells of its topmost
or bottommost tile and propagating to the opposite processor’s bottommost or topmost tile.
The shaded tiles in Figure 1.1 depict three basic steps of the general wavefront operation. It
illustrates the tiles that are processed during the nal three wavefronts (or final three sweep
steps) - light Gray, then medium Gray, then dark Gray - belonging to a sweep that originated
at the bottommost tile on processor (1, 1), ending at the topmost tile on (n, m).

There have been several previous performance engineering studies on pipelined wave-
front computations. In [14], Yarrow et al. develop analytic models of two different versions
of the NAS parallel benchmark [21], LU. LU employs pipelined wavefront computations to

2

1. INTRODUCTION

z

y

x

N

(1, m) (n, 1)(1, 1) (n ,m)

Nx/n
Ny/m

Figure 1.1: Operation of a Wavefront computation

solve a compressible Navier-Stokes equation used in computational fluid dynamics (CFDs).
The model elucidates the differences in communications structure and predicts performance
with a maximum of 30% error compared with measured LU execution time on an IBM SP sys-
tem. Sundaram-Stukel and Vernon [8] develop an analytic model based on LogGP [22] for the
pipelined wavefront application Sweep3D [23] on an IBM SP/2 system. This model has high
accuracy with less than 10% error for up to 128 processors. Mathis et al. [24] develop a general
analytic performance model for Sweep3D and apply the model to explore two possible alter-
native domain decompositions. Hoisie et al. [17] develop analytic models for a single sweep of
the wavefront code based on Sweep3D, while Kerbyson et al. [25] use the single sweep equa-
tion to model the total Sweep3D runtime. In [26], Hoisie et al. detail the contention arising in
wavefront computations when executed on clusters of SMPs where processors in a node share
router links to communicate with processors in other nodes.

Non-analytic performance engineering work on wavefront codes include the Sweep3D
simulation model developed and evaluated using PACE [27, 28] and MPI-SIM [29, 30] which
was part of the POEMS [31] system. PACE uses a layered performance characterisation
method and provides tools that model and evaluate (using discrete-event simulation) the com-
putation and communication activities in an application by linking serial code graphs with a
template that models the message passing and concurrency behaviour. MPI-SIM simulates an
application by direct execution of computation and parallel discrete even simulation for com-
munication and I/O operations. Other tools of note that have been used to evaluate Sweep3D
include Kojak [32] and PTI [33].

Other related work on wavefront codes includes a study on the best methods to
present them to the compiler for effective generation of parallel codes [34]. In this work
the wavefront algorithm is parallelised using three approaches: message passing, compiler
driven automatic parallelisation and programmer defined explicit parallel language features.
The work assesses the efficiency of these approaches for parallelising wavefront algorithms.

3

1. INTRODUCTION

In spite of all the above work, we believe that three key issues continue to make per-
formance engineering of wavefront applications important:

Firstly, the complex synchronisation pattern of computation and communications in
wavefront codes brings with it a considerable amount of structural variations and optimisa-
tion possibilities. Each of the previous performance engineering studies are specific to LU or
Sweep3D and require significant and unspecified restructuring to apply them to other wave-
front codes of interest. As will be seen in the applications that are analysed in this dissertation,
each have considerable differences in domain decompositions, operational characteristics, par-
allel overlappings and optimisations. Therefore one of the key difficulties has been that each
new wavefront application has had to be performance engineered from scratch.

Secondly, the above problem was confounded by each generation of HPC systems,
introducing a previously unexplored aspect that made previous studies of wavefront com-
putations require a considerable (sometimes almost entire) re-evaluation. For instance, the
typical approach to performance engineering of new wavefront applications or evaluating a
new HPC system was to modify existing performance studies to reflect the behaviour of the
new code or the new systems. However, the modification process is error-prone and thus each
new model must be extensively validated. One of the underlying goals of this dissertation
is to develop methods that reduce this effort, alleviating the above problems and assisting in
future performance engineering work of wavefront applications.

Finally and more importantly, all the previous performance studies on wavefront ap-
plications have only addressed (in most cases through customised models) the performance
and thus the optimisation of a specific application has not explored or investigated the class
of applications as a whole. A considerable motivation for us, therefore, is the open question
of what optimisations are possible given this important class of parallel applications. Particu-
larly, one of the interesting questions, is that if the underlying scientific or numerical solution
permits, what the optimal software design for this class of application is and how best it can
be run on a particular HPC system. Moreover, we want to develop tools that address per-
formance questions posed by application domain scientists who are required to develop their
own wavefront codes and need to understand the optimal design possibilities, given their sci-
entific and numerical boundaries. The aim is to develop techniques that not only answer the
above questions, but also motivate and expose new questions and at the same time enable us
to obtain solutions in a speedy, efficient and low cost manner.

Thus, motivated by the above key open issues, this dissertation develops analytic per-
formance models that are generalised or reusable and demonstrate, their use for predictive
analysis and optimisation of pipelined wavefront computations running on modern HPC sys-
tems. In the remainder of this section, we discuss the incentives for using analytic methods
and motivate the idea of reusable performance model development.

1.1.1 Analytic Modelling

An analytic performance model is a mathematical construct that represents key aspects of a
computer system and/or program. The analytic model is made up of parameters that ab-
stractly represent the inputs, outputs, and the system. Given the required input parameters,
performance predictions are extracted as solutions of this mathematical expression. It is one

4

1. INTRODUCTION

of the four broad performance engineering methodologies. The others being Benchmarking
(or direct measuring/monitoring), Statistical Analysis, and Simulation.

Performance measurement or monitoring is the most direct and straightforward form
of performance analysis. In the simplest case, a program of interest (a collection of programs
or a workload) is executed on the system of interest and quantitative values such as execution
time and floating point operation rates are monitored. The workload plays an important part
here. In order to compare systems the workloads executed on them should be compatible
for comparison. A benchmark is such a workload that is developed to assess systems. Also
related to benchmarking is the use of profiling tools that enables one to instrument a code and
extract measures and behaviours of the code as it runs dynamically.

Based on measurements taken on a working system, statistical methods can be used to
understand expected behaviour of systems. Statistical methods such as regression and curve
fitting are used to make speculations for possible future systems. For example data from a
relatively small cluster running an HPC application may provide an initial idea of how the ap-
plication will scale to a larger cluster made up of similar nodes and communication channels.

In contrast, simulation techniques seek to capture application behaviour by executing a
representation of the application’s control flow, communication structure and synchronisation
behaviour. In effect they model the application running on a real-world system as a computer
program, also called a simulator. The events that occur during execution, such as computation,
memory access and communications, are represented as events in the simulator. Simulation
allows one to model the events of the system at any level of detail from low-level instruction
simulations to high-level transactions.

The previous performance engineering work for wavefront applications consists of
research, based on all of the above methodologies, where in most cases they employ multiple
or a hybrid of these techniques. Especially for analytic and simulation based methods, there
is a need to benchmark a system to obtain initial performance behaviour, system parameter
values etc. Additionally, the initial insights gained from some basic statistical technique can
be an integral part of model/simulator development, testing and validation.

In [35], three requirements that a performance evaluation technique for parallel com-
puting must accomplish are detailed. (1) Provide an understanding of the fundamental prin-
ciples of parallel program behaviour and their impact on program performance, (2) enable the
evaluation of the performance of a particular program on a particular system and thus obtain
insights that can suggest potential improvements and (3), predict the impact (on program per-
formance) of design changes in the program or changes to the underlying system or system
configuration.

In this dissertation, we use analytic modelling to assert all these requirements in our
performance engineering research of wavefront codes. Previous research using analytic mod-
elling, that comprehensively satisfies the above requirements can be found. For example in
[36, 37, 38] we see how the development of performance models of several scientific appli-
cations yields insights into the parallel program behaviour. In [8, 14] the analytic models
expose possible improvements and identify bottlenecks, while in [25] they provide the ability
to predict both qualitatively and quantitatively the performance of the application when the
underlying system is changed. Analytic models provide the most insights into the various
parameters and their interactions. It is possible to use simulation to search the space of pa-

5

1. INTRODUCTION

rameters for the best possible combination but usually the trade-off between the parameters is
not clear [39].

Further motivation for using analytic modelling extensively in this research is its low
cost when compared to direct measuring and benchmarking, the speed in which models can
be evaluated when compared to simulation, the flexibility when compared to pure statistical
methods and the high levels of accuracy that can be attained. During the course of this thesis,
the results will show further evidence for the advantages of utilising this methodology. This is
particularly true in facilitating the development of reusable performance engineering charac-
terisations for wavefront computations by, (1) enabling one to gain an understanding of which
performance optimisations are possible, (2) determining quantitatively how much benefit each
possible optimisation is likely to attain, and (3) allowing one to evaluate qualitatively which
combination of optimisations are worthwhile.

Although the majority of this work uses analytic models, it should be noted that we
supplement and reinforce our findings using both application benchmarking, in the form of
actual validations, as well as results obtained by extensive simulations of these codes. Multi-
ple evaluation techniques, including simulation studies, are invaluable when an actual system
is unavailable or infeasible for validating the analytic predictions. When making critical deci-
sions such as in the procurement of highly expensive HPC systems, assessment of the suitable
system requires guarantees of predicted performance through multiple methodologies.

1.1.2 Reusable Performance Models

Performance Engineering - the understanding, analysing, evaluating and predicting of per-
formance - on HPC systems is a highly complex task. An HPC application’s performance on
a high-end computer system is determined by many variables including, but not limited to,
application algorithm, compiler, compiler optimisations, operating system, memory hierarchy
and network. Thus it is difficult to find the optimal convergence point of all these variables.
Furthermore, when the requirement to be cost effective and economical in managing the above
resources to obtain the best performance per unit cost is included into the evaluation, the un-
dertaking becomes significantly complex. Three additional concerns make this task even more
laborious and demanding:

Firstly, the formidable size of HPC application codes demands analysis of many hun-
dreds, thousands and hundreds of thousands of lines of source code, in many cases written
using a number of different programming languages and development tools, incorporating
many third party libraries and legacy codes. This imposes considerable demand on the per-
formance engineer in terms of time, effort and resources.

Secondly, the pace at which the computing industry changes, not only the hardware
and software technologies, but also the practices and sometimes the semantics is difficult to
follow and elucidate in terms of their affect on overall performance for a given application. In-
corporating new technological developments into previously understood performance char-
acteristics for an application is highly non-trivial as now the performance engineer needs to re-
evaluate the new characteristics and examine methods of extrapolating performance profiles.
The next generation of development will demand a repeat of this cycle. Thus the performance
engineer is forced to pursue a moving target.

Thirdly there is generally a significant lack of performance engineering techniques

6

1. INTRODUCTION

and expertise. This is compounded very much as a result of the previous concerns. Moreover,
the knowledge of performance engineering has not usually been the forté of domain scientists
who are most often concerned firstly with solving the scientific or engineering problem and
then second in improving the performance of the application.

Therefore, there is a significant need for developing efficient performance engineering
methodologies and expertise.

In a recent white paper The Landscape of Parallel Computing Research: A View From Berke-
ley [40] the idea of using a number of computation-communication patterns (called dwarfs)
that commonly occur in HPC codes as an abstract set of behavioural patterns was presented.
The concept is to not be overly specific to individual applications, implementations, optimi-
sations or hardware platforms, but to use the computation-communication patterns to draw
an abstract view of their performance and underlying hardware and system requirements.
The white paper [40] argues that these computation-communication “dwarfs” have consis-
tently appeared in parallel applications persisting the significant technological changes that
have occurred since the inception of this field. As an example of the existence of ubiquitous
computation-communication patterns, the authors of [40] present the existence of numerical
libraries such as BLAS [41] and LAPACK [42] which encompass commonly occurring code as
reusable software.

Inspired by this idea, we believe that commonly occurring computation-
communication patterns provide an excellent basis to develop reusable performance charac-
terisations. During the course of this thesis we show the significant benefits and flexibility of
developing such characterisations, particularly as an ideal tool that aids exploration of the key
open issues that has motivated this research.

1.2 Thesis Contributions

More specifically, the principal contributions of this thesis are as follows.

• We develop a reusable (plug-and-play type) analytic model that reflects the functional
behaviour of existing and imaginable wavefront computations that use MPI on a regu-
lar orthogonal 3D grid of data. The model, based on LogGP [22], uses a small number
of input parameters to specify the particular behaviour of most (if not all) wavefront
codes. A key advantage of these parameters is that they are neither complex nor diffi-
cult to obtain. The new parameters and model equations capture the key structural and
behavioural differences among different wavefront application codes, providing a suc-
cinct summary of operation for each application and insights into alternative wavefront
application design. To our knowledge, this is the first plug-and-play reusable model for
wavefront computations and perhaps the first such model for a class of HPC applications
with a highly complex computation, communication and synchronisation pattern.

• We extend our reusable models to address issues that arise when performance predicting
wavefront applications running on multi-core (CMP) nodes. This includes a more precise
model of message contention on multi-core nodes, particularly related to a large Cray
XT4 system, giving significant insight into performance bottlenecks on CMP nodes and

7

1. INTRODUCTION

possible solutions to alleviate them. Additionally, we develop simple extensions to the
reusable model so that it can be applied to model wavefront codes based on irregular
grids of data, HPC systems with heterogeneous resources, as well as 2D grids of data.

• We apply the reusable plug-and-play model to three different 3D wavefront codes of in-
terest - NPB-LU, ASC Sweep3D and AWE’s Chimaera. The resulting model for Chimaera
is the first analytic model for this application. Then the models are validated on several
systems including a large Cray XT3/XT4 and an InfiniBand commodity cluster. Model
Predictions show high quantitative accuracy (less than 20% error) for all high perfor-
mance configurations of LU, Sweep3D and Chimaera and excellent qualitative accuracy.

• As part of the modelling process and for validation, we develop highly accurate MPI
communication models for on-chip and off-chip Send, Receive and All-reduce opera-
tions for the Cray XT3/XT4, and an InfiniBand based Cluster. These models provide
insights into the MPI protocol operation on the respective networks and contribute to
elucidating the contention arising on CMPs particularly on the Cray XT3/XT4. The
communications models can be re-used in other analytic models that model applications
running on these machines and use the same communication operations.

• Using the model, we present applications, projections and insights for optimisations that
shows the utility of reusable analytic models for performance engineering HPC codes.
Particularly, we demonstrate its ability to assist in evaluating (1) software configura-
tion performance, (2) hardware platform questions including platform sizing, configu-
ration and a case study that uses the performance engineering insights to assess system
procurement decisions, (3) hardware platform design alternatives such as the optimal
number of processor cores per node, and (4) optimisations and performance bottlenecks
for wavefront computations demonstrating quantitatively and qualitatively the perfor-
mance improvements from the optimisations. We validate these with the use of a discrete
event simulator. The bottleneck analysis shows the most important contributors (hard-
ware and software) to a wavefront code’s runtime. To our knowledge, this is the first
such extensive optimisation study conducted for wavefront applications.

• Finally, we provide further evidence for the validity of the results from the analytic mod-
els for the predicted performance behaviour of wavefront codes, by using a contrasting
performance engineering methodology: namely simulation. To that end, we demon-
strate an additional advantage of our analytic model development process, in which the
insights obtained are used to enhance and drive the development of automation and
simulation systems. In this context we show how the PACE [12] system is enhanced to
performance predict wavefront computations on modern HPC systems and the devel-
opment of the new WarPP [43, 6] simulation toolkit and the utility of analytic models
to aide its design. We increase the predictive accuracy through coarse grained compu-
tation simulation as opposed to fine-grained (instruction level) simulation and in turn
enable the simulation of over 100K processing elements in tractable time. We use the
WarPP discrete event simulation systems to present the alignment between the analytic
model results with that of predictive simulation, demonstrating further validations of
the insights gained in this research.

8

1. INTRODUCTION

1.3 Thesis Limitations

Computer performance is measured in various forms. In many scientific and engineering
problems, it is concerned with the wall clock time taken for an application to run on a com-
puter system or more specifically the time to solution. This could also be interpreted as
throughput or the number of solutions per time unit. Other important measures involve,
speedup of an application (which is the ratio of the time to solution on a single processor to
the time to solution of a parallelised - or enhanced version of the same program), resource
usage (such as the amount of memory, disk space used or the rate at which power is con-
sumed) and the rate at which operations are performed (such as transactions, mathematical
operations, etc). Additional performance measures include measures related to fault tolerance,
reliability and dependability. Finally, all of these criterion are usually viewed in the context of
cost and economic viability or more specifically as the performance per unit cost.

This thesis is solely concerned with the performance measures of (1) time to solution
as well as throughput, (2) scalability including speedup and efficiency. Performance related to
power consumption, system reliability or dependability are not addressed. Additionally, we
only discuss performance per unit cost in a qualitative context. However, recent applications
of this work and feedback from the sponsors of this research have shown that the techniques
developed in this research can be readily used to obtain specific evaluations of cost, for exam-
ple during the procurement process for an HPC system.

1.4 Thesis Overview

This chapter detailed the underlying goals, open questions and motivations for the research
presented in this dissertation. The remainder of this thesis is organised as follows:

Chapter 2 presents a detailed account of (1) the basic concepts, components, terminol-
ogy and implementations of high performance computing, (2) the basic laws and principles
related to performance engineering and (3) the state of the art in performance engineering
methodologies for HPC. In general this chapter provides a survey of the literature related to
HPC performance engineering and provides a critique of the existing methodologies.

Chapter 3 details the operational behaviour of pipelined wavefront computations as a
mandatory preliminary to develop a general reusable analytic performance model. We investi-
gate three 3D wavefront codes of interest - NPB-LU, ASC Sweep3D and AWE’s Chimaera. We
describe in detail the research carried out in support of understanding of the complexities of
these computations in terms of both the algorithm and the application execution on a target
platform.

Chapter 4 develops the reusable (plug-and-play) analytic model that reflects the
functional behaviour of existing and imaginable wavefront computations that use MPI.
This chapter also includes details of the development of MPI sub-models that characterise
the message passing performance for the Cray XT3/XT4 system (Jaguar) at the Oak Ridge
National Laboratory (ORNL) in the US and representative validations of the reusable analytic

9

1. INTRODUCTION

model applied to NPB-LU, Sweep3D and Chimaera on this system.

Chapter 5 uses the analytic model to investigate speculative performance of wavefront
codes on the Cray XT4 system including (1) software configuration performance, (2) hardware
platform questions including platform sizing and configuration (3) hardware platform design
alternatives such as the optimal number of processor cores per node (4) application bottleneck
analysis and (5) application redesigns to alleviate bottlenecks.

Chapter 6 details an alternative investigation of the performance of pipelined wave-
front computations through the use of a discrete event simulator. As part of this work, the
application of the insights gained through analytic model development for enhancing the
predictive accuracy of a discrete event simulator system is presented.

Chapter 7 further demonstrates the utility of the models developed in this research
by analysing the performance of several key optimisation possibilities which include model
extensions and a comprehensive bottlenecks analysis in the context of answering performance
engineering questions to assist system procurement decisions. The accuracy of the results of
this chapter is reinforced by detailed predictive simulation.

Finally, Chapter 8 summarises the conclusions of the research, and details several re-
lated questions that could be addressed in future research.

10

2 Performance Analysis and Prediction

2.1 Introduction

In order to provide a clear context and a consistent perspective for this work, in this chapter
we present a detailed account of (1) the basic concepts, components, terminology and imple-
mentations of high performance computing that are inherently based on parallel computing
and parallel programs, (2) the basic laws and principles related to performance engineering
and (3) the state of the art in performance engineering methodologies for HPC at the time of
this research.

2.2 Parallel Computing and Parallel Programs

Any computing system that makes use of simultaneous execution of some set of instructions
on data can be classified as a parallel computer system. Since the inception of the modern dig-
ital computer, computer architects have been exploring parallelism and concurrency at many
levels as a form of improving efficiency and increasing the throughput of systems. The idea is
that large problems can be separated into smaller parts and these smaller parts can be solved
simultaneously, or in parallel, usually using multiple processing units or entities. In mod-
ern HPC systems, high performance is almost always achieved by some parallel computing
methodology. Therefore in this dissertation, all systems or applications termed to be in the do-
main of high performance computing are implicitly taken to be a subset of parallel computing
unless stated otherwise.

There are several forms of parallelism. Bit level parallelism - is concerned with in-
creasing the processor word size, which then, for instance, reduces the number of processor
clock cycles needed to carry out instruction movements between processor and memory [44],
pp15. The shift to 64 bit words from 32 bit computing is an example of increasing bit level
parallelism.

Instruction level parallelism (ILP) - re-orders computer instructions such that they can
be combined to execute in parallel without changing the result of the program. A well known
form of ILP is the use of pipelining where the basic fetch-decode-execute cycle of successive
instructions are overlapped by delegating each stage to a separate hardware unit. Other ex-
amples for ILP methods are superscalar execution, where multiple execution units are used to
process instructions in parallel, out-of-order execution of instructions, speculative execution,
in which instructions are executed before being certain of its occurrence and branch prediction
which involves for instance, taking a conditional branch to avoid blocking control flow.

Data Parallelism - allows a computer to distribute data across several processors that
can then be processed in parallel, for example vector operations. Alternatively, task parallelism

11

2. PERFORMANCE ANALYSIS AND PREDICTION

- distributes different tasks or functions across processors to be executed in parallel. When
parallelising an application or when writing parallel code, it is data and task parallelism that
are dominantly exploited either by a parallelising compiler or a programmer, while bit level
and ILP are well exploited by modern compiler technology on single processor architectures.

2.2.1 Parallel Computing Architectures

Considering the systems that are used for parallel computing, a broader and abstract clas-
sification was provided in Flynn’s taxonomy [45]. Flynn categorises computer architectures
based on whether it operates on multiple instructions and/or multiple data. The simplest
sequential computer is observed to be a Single Instruction stream, Single Data stream (SISD)
system where one instruction stream operates on one data stream at any instance. The second
category - Multiple Instruction stream, Single Data stream (MISD) can be viewed as ILP based
on the pipelining method. But it can be argued that pipelining changes the data stream at each
stage and therefore is not a single data stream. The pure form of MISD has not been explored
significantly and as such is not implemented in modern systems. Data Parallelism is classified
into the Single Instruction stream, Multiple Data stream (SIMD) where an operation of a single
instruction is applied on many data elements, similar to a vector operation. Finally Multiple
Instruction stream, Multiple Data stream (MIMD) covers the case where different instruction
sets are operated on different (independent) data sets.

While SISD categorises non-parallel systems and MISD represent only a limited level
of parallelism or represents a class of architecture that has not been explored or have proved
to be note-worthy to solve modern problems, it is SIMD and MIMD architectures that have be-
come the prevalent parallel architectures in modern HPC systems. Even then MIMD machines
are by far the most dominant as the SIMD operational model could be easily implemented on
MIMD machines. However, specialised SIMD systems do exist for instance in the form of
vector machines that are developed solely to solve inherently data parallel problems. The
MIMD architecture, on the other hand has been the most popular parallel architecture due to
its sufficiency to support all forms of parallel programming models.

MIMD architectures can be further classified based on the distribution of memory hi-
erarchy. Shared memory MIMD machines are the earliest form, where one block of memory
is shared between many processing elements. All processors share a global address space
and shared data variables are operated on by many processors using consistency mechanisms
and synchronisation to arrive at the desired solution. When implementing shared memory
systems, the simplest have been the Symmetric Multi Processor (SMP), also called Uniform
Memory Access (UMA) where each memory location takes the same amount of time to be ac-
cessed by any processor. With the advent of multi-core processor chips (Chip Multi-Processors,
CMPs), SMP style memory accessing is used when the processing cores access a shared main
memory. But CMPs are mostly used as clusters to implement distributed memory MIMD sys-
tems. Alternatively the Non-Uniform Memory Access (NUMA) systems take different times
to access different areas of memory. Due to the consistent memory access requirement, SMPs
cannot be too large and range from about 2 to 64 processors. NUMA machines, on the other
hand can be scaled to larger numbers of processors in the order of 1024.

The distributed memory MIMD implementation, in contrast, is built with each pro-
cessing element having its own local memory. Processors have to then communicate with

12

2. PERFORMANCE ANALYSIS AND PREDICTION

each other through a network passing explicit variables during execution. Distributed mem-
ory machines scales to larger numbers of processors while at the same time remain relatively
cheap. The disadvantage is that the latency to communicate variables is higher than on a
shared memory architecture. This latency is dictated by the interconnection network. Based
on the level of coupling or distribution of processors, distributed memory MIMD systems,
range from the Massively Parallel Processor (MPP) Systems, computer clusters to computer
Grids. MPPs are closely coupled systems where a large number of processors, typically from
1K to more than 100K are interconnected by a very high speed network. Each processor works
in tight synchrony with each other and the interconnection is highly reliable. Clusters on the
other hand share similar characteristics to MPPs but the interconnect is generally slower and
there are fewer processors than an MPP machine. A typical example of a low-end cluster is a
Network of Workstation (NoW) where several workstations are grouped as a MIMD system, to
perform parallel processing utilising a LAN. A popular system architecture that’s commonly
used in modern HPC is clusters of SMPs, or the more recent version - a cluster of CMPs. Each
node in these systems is made up of a SMP or CMP while the nodes are interconnected by
a very high speed network. Both MPPs and clusters are usually located in one location such
as a single room or building. In contrast Grid computing interconnects systems spread across
many buildings or are in different cities, countries or even continents. Processors in such a
widely distributed system are much more independent than in MPPs or a cluster. Commu-
nication between them is kept to a minimum as the interconnection latency and bandwidth
between two different locations on a computer Grid are relatively poor.

2.2.2 Parallel Programming Models and Languages

In addition to the parallel architectures classification, the programs written for these systems
can have several parallel programming models [44],pp26-47. These models exist as an ab-
straction of the above hardware and memory architecture and are not specific to any parallel
architecture. Theoretically they can be implemented on any underlying hardware.

The earliest form of parallel programming was achieved through the Shared Memory
programming model. Tasks share a common memory space which facilitates communication
between tasks. Data consistency and synchronisation is managed by well understood mech-
anisms such as semaphores, critical sections and locks [46, 47, 48] avoiding, for instance, race
conditions, deadlocks and starvation. Parallelism is achieved by a parallelising compiler that
uses clues provided by the programmer as compiler directives, and automatically generates
parallel tasks that can be assigned to multiple processors. The OpenMP consortium [49] has
developed the most popular programming specification for the shared memory programming
model. Compilers implementing this specification allocate parallel areas of the code such as in-
dependent loop iteraterations to separate threads of execution. The multiple threads or groups
of threads are executed simultaneously, where each thread or group is normally assigned to
a single processor. The communication between threads is achieved through shared memory.
As such, the parallelism is said to be fine grained and has low overhead.

The Message Passing programming model uses explicit data movements between
tasks (also called processes) that are assigned to processors. The data movements are explicit
in the sense that the programmer should specify which information should be conveyed be-
tween a specific sender and a receiver. However, in contrast to the shared memory model,

13

2. PERFORMANCE ANALYSIS AND PREDICTION

there is no shared memory location that is accessible to all processors. Particularly each task
or process operates on a separate block of memory. Message passing models have been usually
implemented as a set of routines packaged into a library that can be called by sequential pro-
gramming languages. The programmer is responsible for specifying parallelism. In this sense,
message passing parallelism is coarser grained than shared memory parallelism. The most
common message passing specification is the Message Passing Interface (MPI) [20] which can
be considered the de facto industrial standard for production work. The commonly used MPI
bindings are for the Fortran, C and C++ languages while bindings for Java, Perl, Python as well
as .NET and MATLAB [50] have been implemented but have not yet been used significantly
for production work. The pipelined synchronous wavefront applications investigated in this
dissertation are all based on message passing and use MPI. Therefore significant consideration
needs to be taken regarding the performance aspects of MPI operation on HPC systems, when
developing these models.

Finally, the Data Parallel programming model uses a more strictly regulated form of
concurrency where multiple processing units perform an operation on separate elements of
data simultaneously. At the end of each parallel execution block an information exchange
might occur to re-organise the data. Such a re-organisation is implemented on shared mem-
ory or by message passing. Therefore the data parallel model could be considered a more
abstract model than shared memory or message passing. Such a programming model is said
to implement a Single Program Multiple Data (SPMD) programming model. The data parallel
programming model is implemented by languages such as High Performance Fortran (HPF)
[51] and the OpenMP shared memory directives. Additionally, message passing programs can
be written implementing the strict step-wise data parallel execution model.

2.2.3 Parallel Decompositions

Another related parallel programming concept is the parallel decomposition implemented in a
program. The simplest of these is the trivial or embarrassingly parallel decomposition where
it involves running the same sequential program on many processors without need for any
dependency or communication between the tasks.

The data parallel decomposition takes a large data set and splits it into smaller parts
and then distributes them across a set of processors. Each processor may then apply a set of
instructions on its local data and communicate with other processors to exchange data that has
dependencies in order to arrive at the desired solution. The set of instructions that is executed
by all processors can be the same (Single Program Multiple Data - SPMD) or different (Multiple
Program Multiple Data - MPMD). When a large data grid is split into regular sub-grids of data
the decomposition is termed to be a regular domain decomposition. That is, each processor
will work on an equal (or almost equal) number of data elements. If each data point in the
global grid requires a similar amount of processing then we say that the grid is regular. If the
number of grid points cannot be distributed equally (or almost equally) then we say that the
grid is unstructured. In both unstructured and irregular grids, the amount of work done per
processor will in most cases have large variations.

The task parallel decomposition (also called Functional decomposition), splits the
problem according to different functions and assigns each one to a different processor to be
run in parallel. An example of functional decomposition is pipelining where each stage is

14

2. PERFORMANCE ANALYSIS AND PREDICTION

processed by an independent processing unit and the data flows through the stages to finally
produce the desired solution. Other notable parallel decompositions include task farming,
divide and conquer and speculative parallelism [52].

2.3 Performance Engineering Methodologies

From a performance analysis point of view, the type of application, programming model or
parallel decomposition, which is best suited to be run on the various physical hardware sys-
tems varies considerably. For example, message passing programs can be run on both shared
memory systems as well as distributed memory systems. On shared memory systems the
messages are “passed” as memory copies. On the other hand, shared memory programming
models can be implemented on distributed memory systems where each processor will access
a virtual shared memory space. But in this case the shared memory program will perform
significantly worse on the virtual shared memory than on an actual shared memory system as
now communication between tasks/threads/processors are done via a network. Similarly for
instance, the performance to cost ratio may dictate that a given data parallel program is best
implemented on a MIMD architecture as opposes to a SIMD machine. A trade-off between
runtime and scalability may dictate that for a small number of parallel tasks, a shared memory
MIMD machine will give better performance for this application. While for larger numbers of
tasks, a distributed memory system could appear to be far more cost efficient.

It is these types of trade-offs that a performance engineer must consider. Ultimately,
the objective is to identify the architecture that gives the best performance-cost trade-off for
a given HPC application. In addition, the insight obtained will enable one to answer more
significant design questions such as the programming model and/or the data decomposition
best suited for the underlying scientific and numerical algorithm. In this section we give a
detailed account of the state of the art and discuss key established laws, methodologies, tools
and techniques that aid the performance engineer in addressing these issues.

As noted in Section 1.1.1, performance engineering techniques fall in to four broad cat-
egories - benchmarking (or direct measuring/monitoring), statistical analysis, simulation and
analytic modelling. Since the inception of parallel computing and then high performance com-
puting in the 1960s and 1970s, there has been a wealth of performance engineering research
and studies conducted using techniques based on the above categories.

We begin our discussion of previous performance engineering work with two laws,
namely Amdahl’s Law [53] and Gustafson’s Law [54]. These laws form two of the most signif-
icant principles in the design and analysis of parallel computers. This will be followed by the
most notable early attempts at developing a framework for designing and developing parallel
programs. Then in section 2.4 we return to the discussion of the four categories of performance
engineering with detailed examples of significant previous research. We believe that this will
provide the necessary definitions for the key terminology used later in the dissertation, and
provide a background and a clear perspective to the contributions made in this thesis.

15

2. PERFORMANCE ANALYSIS AND PREDICTION

1

4

16

64

256

1024

4096

16384

65536

1 4 16 64 256 1024 4096 16384 65536

S
pe

ed
up

Number of Processors (P)

Parallel fraction= 1.0
Parallel fraction= 0.95
Parallel fraction= 0.90

Figure 2.1: Speedups projected by Amdahl’s law

2.3.1 Amdahl’s Law and Gustafson’s Law

In 1967, Amdahl presented a paper [53] that states the maximum limit of the speed improve-
ment that can be achieved in a parallel program. The parallel speed improvement, is usually
given as a ratio based on the runtime of the parallel version and the run time of the serial
version of the program. This is called the speedup, and is given in (2.3.1).

Speedup(n) =
(

Execution time of the serial version of the program

Execution time of the parallel version of the program on n processors

)
(2.3.1)

A related measure to speedup is parallel efficiency, which is obtained by dividing the speedup
by the number of processors.

Parallel Efficiency(n) =
Speedup(n)

n
(2.3.2)

Any parallel program can be viewed as having two parts: a potentially parallel part
and an inherently sequential part. Amdahl’s law states that the maximum speedup that can
be achieved in a parallel program is limited by the runtime of the sequential portion of the
program as given in (2.3.3).

Speedup(P) ≤

 1

fs −
fp

P

 (2.3.3)

P is the number of processors, fs + fp = 1 and fs represent the fraction of the sequen-

16

2. PERFORMANCE ANALYSIS AND PREDICTION

tial portion of the program. It is apparent that when P goes to infinity - i.e. when the parallel
portion can be infinitely parallelisable, the speedup is still limited by the sequential runtime.
The conclusion from [53] therefore was that “the effort expended on achieving high parallel
processing rates is wasted unless it is accompanied by achievements in sequential process-
ing rates of very nearly the same magnitude”. Thus when fp/P is small compared to fs the
bottleneck is the serial portion of the program.

Amdahl’s law is not specific to constant problem sizes, although it has sometimes been
interpreted over the years in such a way. In this case it assumes that the problem size or the
portions of the program that is serial and parallel remain constant. Then (2.3.3) predicts di-
minishing returns when improving the parallel section’s runtime. Theoretically (2.3.3) shows
that the maximum speedup that can be achieved on P processors is P - i.e. linear speedup and
is obtained when the limit fs reaches zero. Figure 2.1 shows the diminishing returns projected
by Amdahl’s law and the ideal case of obtaining linear speedup when the serial part of the
program is negligible.

There are, however cases when superlinear speedup is achieved. For example, this can
occur when the parallelised code improves the serial execution of the code. In other words the
speedup is not only due to the parallelisation (i.e. increase of processors and distributing the
work among them). The advantage due to parallelisation still remains to be linear at max-
imum. A typical example would be the cache effects of large distributed memory systems.
In this case a large data set is distributed across P number of processors. As P increases the
amount of data assigned to one processor decreases to the point that all of it may fit into the
high speed cache memory on the processor. If the reduction in memory access is greater than
the sum of the other overheads (such as communication cost increase due to communicating
among n processors) one will observe superlinear speedup.

Another metric that’s related to speedup, is scalability. Although a rigorous scientific
definition for parallel scalability has yet to be defined [55], intuitively in the context of parallel
computing, a program that gives improved performance proportional to the increase in the
number of processors can be considered to be a scalable program. The level of scalability
depends on how close the proportionality is linear (i.e. linear speedup). If linear speedup is
achieved we say that the program is highly scalable.

For a fixed problem size, Amdahl’s law, presents a view that with the increase of P ,
the serial portion’s influence on the runtime becomes more and more dominant. This gives a
very pessimistic view on parallel processing where we see that no amount of parallelising will
improve the performance beyond how fast a processor can execute the serial portion of the
program.

But if the parallel portion is allowed to grow with the number of processors - i.e. have
a growing problem size, then we see benefits of parallel computing in a much more optimistic
light. In 1988 Gustafson detailed this in [54] and this is now known as Gustafson’s law. If the
parallel portion is increased in proportion to the number of processors then the speedup is
given by (2.3.4).

ScaledSpeedup(P) =
(
fs + Pfp

fs + fp

)
= fs + P (1− fs) (2.3.4)

From (2.3.4) if the serial part fs reduces compared to the parallel part when the prob-

17

2. PERFORMANCE ANALYSIS AND PREDICTION

lem size increases, then speedup (or Scaled Speedup in this case) reaches P . For example, the
serial portion can be observed to be reducing relative to the parallel portion, when the problem
size per processor is set to a constant while increasing the number of processors, i.e. the total
problem size increases with the number of processors. This is called weak scaling in parallel
computing literature, where now the serial portion remains constant due to the fixed problem
size per processor. Alternatively, the fixed total problem size being solved by an increasing
number of processors is called strong scaling. In fact Gustafson’s law only brings to light an
aspect of Amdahl’s law that has been misinterpreted.

2.3.2 Parallel Random Access Machine (PRAM) Model

Early parallel programming efforts were machine specific and had very limited portability
[44], pp190. A program was essentially specific to the operational characteristics of the hard-
ware. Therefore the development of parallel programs was limited by not having a general
model such as the Von Neumann model [56] for serial computers. One of the earliest efforts
of developing a generic model of parallel programming was the Parallel Random Access Ma-
chine (PRAM) model [57].

The PRAM model represents parallel computing in which a number of processors P
operates in synchrony, can make simultaneous access to a block of shared main memory. The
number of processors is unbounded where each processor is ranked as P0, P1, ... and so on.
Similarly the blocks of memory are unbounded, where any memory location is accessible by
any processor in uniform time. Additionally each processor has unbounded local memory, a
program counter, and a flag indicating the status of the processor (i.e. processor is running/not
running). Communication costs (or memory access times) are considered to be zero.

A processor’s cycle of execution consists of (1) read from shared memory (2) do local
computation and (3) write to shared memory. This cycle may be executed by any processor
concurrently. Multiple processors reading the same shared memory location are allowed but
the basic PRAM requires conflict resolution rules to deal with simultaneous reads and writes to
the same memory location by different processors or multiple processors writing to the same
memory location. The conflict resolution policies have defined four sub-models that extend
the basic PRAM - Exclusive Read Exclusive Write (EREW), Concurrent Read Exclusive Write
(CREW), and Concurrent Read Concurrent Write (CRCW). EREW allows only one processor at
a time to read from or write to a memory location, while CREW allows multiple reads and only
exclusive writes. CRCW has further conflict resolution policies that dictate for instance which
processor gets to write to a memory location first, e.g. priority based on rank of processor,
validity based on writing modified or unmodified data [58, 59].

The PRAM model exposes the inherent concurrency when designing a parallel applica-
tion by giving an abstract view of a general parallel machine [44],pp191. That is, it corresponds
intuitively to the programmers’ view of a parallel computer and hides specific machine and
programming details of the real world. For this same reason the many assumptions in the
PRAM model are unrealistic in terms of real-world systems. For example communication and
data access costs are not zero in real systems and often can dominate a run time. Additionally
the uniform memory access time may only be true for small number of processors sharing
memory (such as an SMP) while large distributed memory machines that violate this may be
the only way to scale to large number of processors. The assumption that processors operate

18

2. PERFORMANCE ANALYSIS AND PREDICTION

in complete synchrony is also unrealistic. Thus from a performance engineering stand point it
fails in providing an accurate performance profile of the program.

Several additional extensions have been made as an effort to make the PRAM more re-
alistic. Papadimitrio and Yannakakis [60] provide a latency PRAM model by accounting for the
time for memory accesses, while Local-Memory Parallel Random Access Machine (LPRAM)
[61] accounts for communication bandwidth. A similar model, accounting latency and band-
width is provided by Aggarwal at. el in [62] called the Block Parallel Random Access Machine
(BPRAM).

Despite these improvements, the PRAM model remains too abstract to be represen-
tative of real systems in a performance engineering context. But it has been widely used in
parallel algorithms design and complexity analysis due to its simplicity. As such, the PRAM
should be viewed as a model best suited for program and algorithm design.

2.3.3 Bulk Synchronous Parallel (BSP) Model

The BSP model [63] attempts to provide a more realistic parallel machine to the programmer
than the PRAM when creating parallel algorithms. A more complete treatment of the BSP
model is provided in [64]. We summarise the model here due to its importance to performance
engineering as the first model that enables one to realistically estimate the performance of
parallel applications particularly based on message passing, running on real hardware.

The BSP model’s aims are similar to that of the PRAM in that it details a style of parallel
programming developed for general purpose parallelism [65]. A BSP machine consists of a
number of processors P , each with their own local memory. The processors are connected via
a network. The BSP model forces a parallel program to be developed in a rigorously structured
format as shown in Figure 2.2.

A BSP program progresses in a control flow consisting of super steps. Each super step
consists of (1) computations on local data, (2) necessary communications between processors
and (3), a barrier synchronisation that ensures that all communications are completed before
the next local computation step [64]. The separation of computation and communications
makes for a structured (simple) approach to building a parallel program. At the same time
the BSP machine is abstracted from machine specifics and thus a program developed in the
BSP style can theoretically be implemented to run on any parallel architecture/machine. The
structure of the super-steps is easily predictable analytically for a given architecture. For ex-
ample a very simple model for the time for a superstep would be the sum of the time for the
longest local computation, the upper bound of the time to complete a communication and the
time until the end of the barrier synchronisation.

BSP defines several parameters so that the performance (time to solution) of a program
can be analytically estimated. The number of maximum incoming or outgoing messages for
a processor Pi is given by hi. This is called an h-relation. A parameter g is defined such that
it takes hg time to deliver an h-relation. Thus if a processor sends h messages each of size m
bytes then the time for these communications are given by mgh. Therefore g can be roughly
thought of as the rate at which data is transmitted over the network and is determined by
experimentation/benchmarking for a given parallel machine.

The time to solution of a super step is then given by (2.3.5) where wi is the local com-
putation time on processor i and l is the time for a barrier synchronisation (also determined

19

2. PERFORMANCE ANALYSIS AND PREDICTION

P0 P2 P3 Pn

= Communications

Barrier Synchronisation

= Local Computations

Figure 2.2: A superstep in the BSP model

empirically for a given parallel machine).

Time of a Super Step = MAX{wi}+MAX{mhig}+ l (2.3.5)

The advantages of the BSP model over the PRAM model are that (1) it does not assume
that all processors work in synchrony, (2) it accounts for communication overhead, (3) it is
more general where the ideal PRAM model is a sub-model (when g = l = 1) of BSP.

As BSP is a model of parallel programming, it can be implemented using many pro-
gramming languages and systems. Message passing libraries such as MPI [20] and PVM [66]
can be used to implement a program that adheres to the BSP model. There are also BSP li-
braries such as the one provided by Oxford BSP Library [67], Green BSP Library [68] and the
standardised BSPLib [69], that enables one to write a BSP program using library functions that
are called by common HPC languages such as Fortran and C.

The strict super step structure may in some cases be viewed as a disadvantage when
optimising a parallel program. For instance the ability to define a subset of processors commu-
nicating with each other while another subset computes on local data is difficult to describe
within a super step. Also the frequent use of barrier synchronisations can degrade perfor-
mance in systems. Although many modern HPC systems have implemented highly optimised
barrier synchronisations, the super step cost equation (2.3.5) shows that the parallel program
should be developed with a minimum number of supersteps so as to reduce the barrier syn-
chronisations between super steps.

In spite of these minor issues, and several others discussed in Section 2.3.4, BSP re-
mains popular when developing parallel algorithms. It is also the first model that enabled

20

2. PERFORMANCE ANALYSIS AND PREDICTION

designers to obtain a realistic performance estimate of parallel programs.

2.3.4 LogP and LogGP Models

Motivated by several issues in the basic BSP model, Culler at el. detailed the LogP model
of parallel computing in [70]. As mentioned before, the strict programming structure of the
BSP model sacrifices flexibility and some performance (e.g. cost per barrier synchronisation)
in favour of structured and predictable/verifiable parallel program design. The LogP model
attempts to give better flexibility to the programmer. In addition it allows for optimising com-
munication patterns by allowing more precise scheduling (as oppose to the BSP model, where
the length of a super-step depends on the most unfavourable h-relation [70]) and using explicit
message passing for synchronisation devoid of the BSP super step structure so that costly bar-
rier synchronisations are avoided. Additionally LogP gives a detailed set of parameters that
define abstractly the performance of a system and network. These parameters attempts to, “al-
low the machine designers to give a concise performance summary of their machine against
which algorithms can be evaluated” [70]. LogP is more general than BSP, but it has been shown
that LogP and BSP can essentially simulate each other without much performance difference
[71].

In the LogP model, the parallel machine is represented as a distributed memory system
where P processors (each having their own local memory) communicate with each other using
point-to-point messages. The communications network performance is parametrised by the
following parameters as detailed in [70]:

• L: the upper bound on the latency of the network - the flight time for a message from one
point of the network to another.

• o: the overhead time taken by a processor to transmit/receive a message. i.e. the time
take by a processor to release a message to the network or receive a message from the
network.

• g: the gap defined as the minimum time between consecutive message transmissions or
receptions at a processor. So 1/g represents the available per-processor communication
bandwidth.

• P: the number of processors.

The LogP model assumes that the network has a finite capacity where at most only
L/g messages can be in transit from or to any processor. If a processor attempts to exceed
this capacity then it will stall until the network can accommodate the messages. The model
can be modified by ignoring g if it is less than or close to equal to the overhead o or when the
communication pattern of a parallel algorithm is such that it communicates infrequently. But
it should be noted that when modelling most modern HPC machines/networks using LogP
the g parameter is ignored as they can accept new messages into the network as fast as the
processor can produce them [8]. I.e. these machines are said to have balanced networks.

Additionally the LogP model assumes that all messages are of a small size. A basic
extension to the LogP model given by LogGP [22] models the case where long messages are
involved. In this case G represents the Gap per byte defined as the time taken to transmit a byte

21

2. PERFORMANCE ANALYSIS AND PREDICTION

on to the network. Then 1/G gives the available per processor communications bandwidth for
long messages. Figure 2.3 gives a graphical view of these parameters.

oo
G G G G G

(k-1)G L

g

G G G G G G

o o

o

P0

P1

P2

Send

SendReceive

Receive

Send

k = message size in bytes

Figure 2.3: LogGP parameters

The LogP/LogGP parameters represent a simple and concise set of parameters aimed
at providing a framework for developing parallel algorithms. As such it captures the majority
of the parallel program design issues and performance while dropping uncommon or machine
specific parameters. But at the same time, the parameters are detailed enough to encourage
the design of parallel programs that avoid unrealistic assumptions (such as zero communica-
tion costs in the PRAM model) and expose possible optimisation techniques (such as precise
scheduling of computation and communications so that communications latency can be hid-
den). Moreover, many extensions to the basic LogP/LogGP models show (e.g. LoPC [72] and
LoGPC [73]) that these basic parameters can be augmented with other techniques such as for
example queuing theory and mean value analysis (MVA) to represent more detailed behaviour
of parallel programs and systems, particularly when used as a tool for performance analysis
and prediction. This extensibility of the LogP approach has been an advantage for modelling
complex applications and new technology trends. We note related work in section 2.4.4 and
3.3. The main contributions of this thesis are directly based on the LogGP method for analytic
performance engineering.

2.4 Performance Engineering and the HPC Lifecycle

Performance engineering can be used throughout the HPC lifecycle. The HPC lifecycle,
viewed as a hardware cycle in the perspective of the machine developers, vendors, end-users
and system administrators and as a software lifecycle, viewed in relation to the domain scien-
tists, engineers, programmers and code maintainers are detailed in Figure 2.4 [39]. Figure 2.4
is an extended version of the usual development stages of specification, design, implementation,
testing and maintenance. Each stage may require revisiting a previous stage during real-worls

22

2. PERFORMANCE ANALYSIS AND PREDICTION

Hardware Cycle Software Cycle

Specification

Design

Implementation

Prototype

Installation

Tuning/Capacity Planning

Upgrading

Specification

Design

Coding/Implementation

Prototype

Porting to System

Optimisation/ Bottleneck
Analysis for target System

Monitoring

Figure 2.4: Stages in the HPC lifecycle

development. For instance, optimisation of an application may lead to re-designing the soft-
ware or tuning/capacity planing will lead to a re-evaluation of the system specification.

Generally we can view a relationship of the software cycle with that of the hardware
cycle at the post prototype and/or installation stages. For instance, software applications writ-
ten previously by domain experts need to be ported to the new HPC machine or tested on it,
followed by tuning and optimisation of the code. Capacity planning, including system sizing
for a given application on the new machine, will allow for determining the best possible ap-
plication configuration to execute it. Finally monitoring the application execution will give an
important indicator of system maintenance requirements and possible upgrades.

Performance engineering can be used at each of the life cycle stages for both the system
and the application. For instance, the parallel programming methodologies discussed in the
previous sections, such as PRAM, BSP and LogGP, can be used at the specification and design
stages of the application as well as providing verifiable models for performance prediction for
example at post-procurement stages. Similarly, methodologies such as benchmarking can be
used at post prototype or installation stages. In the remainder of this chapter we will discuss
the state of the art in the four performance engineering methodologies - benchmarking/pro-
filing, statistical analysis, simulation and analytic modelling - and their relative pros and cons
including related research as well as their applicability to each of the activities occurring at

23

2. PERFORMANCE ANALYSIS AND PREDICTION

both the HPC system and application life cycles.

2.4.1 Benchmarking and Profiling

A benchmark is a test workload that is run on a target platform to measure performance of
system components [39]. Analysing the performance of a system or an application based on
the direct execution of a benchmark is perhaps the most straightforward form of performance
engineering. In the simplest case, you can monitor the performance of target applications by
executing them directly on the said platform. Such a real workload has the obvious advantage
of representing the actual working/production behaviour of target applications on a target
system. But real workloads generally are either inflexible so that they cannot be repeated,
consist of sensitive data/operations so they cannot be distributed, to vendors at procurement
for instance, or require real-world inputs that may not be available.

Over the years workloads have been developed that represent important algorithmic
kernels/operations ubiquitous in HPC applications, kernels that exercise various subsystems
of a hardware system or are representative applications of a larger workload that can be used
as metrics to measure the performance of a machine and in particular compare machines. Such
regulated workloads provide the flexibility needed to carry out the measuring in a controlled
manner. Quoting such benchmark measures gives a quantitative gauge about performance on
a system.

The types of performance measured by benchmarks can range from low-level machine
operation counts such as floating point operation rates, mixes of instructions, communication
latencies/bandwidths of networks to total time to solution for an application. While the low-
level measures indicate the performance of certain sub-units of a system, measures such as
time to solution or transactions/completions per unit time, encompass the performance of all
the sub-units of a system working together to arrive at a solution.

2.4.1.1 Low-level Benchmarks, Kernels and Microbenchmaks

Low-level benchmarks typically measure the performance of a subsystem of hardware in a
machine. The typical important subsystems of an HPC machine are computation, communi-
cation, memory and input/output.

There are several quantitative metrics of computation. Processor clock speeds give
a partial indication of computation, but do not usually translate to an accurate indication of
processor performance due to computation performance being dependent on the memory hi-
erarchy performance as well as processor speeds and superscalar features, not to mention
compiler and compiler optimisations. A processor can only compute as fast as the rate at
which it can obtain instructions and data from memory. Thus, metrics that gauge the amount
of useful instructions performed per unit time are used. Millions of Instructions Per Second
(MIPS) capture the throughput at which a processor will complete a mix of instructions, while
Millions of Floating-Point Operations per Second (MFLOPS) count the number of floating-
point operations. Floating-point instructions are particularly useful in the context of HPC as a
majority of scientific and engineering applications are floating-point intensive.

Out of the low-level benchmarks, LINPACK [74, 75] is perhaps the best known for
measuring limits of computation performance. LINPACK consists of a number of programs

24

2. PERFORMANCE ANALYSIS AND PREDICTION

or kernels that solve dense systems of linear equations which are typical of an instruction set
with a high percentage of floating-point operations [39]. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) [41] libraries for the solution and produces a MFLOPS
measure of the system. High Performance LINPACK [76] is a portable version of LINPACK
popularly used in the top500 supercomputer [77] rankings. Other noteworthy computation
intensive low-level benchmarks include the Livermore loops [78], the computation kernels
from the HPC Challenge benchmarks [79] - DGEMM and FFT - and the SPEC CPU kernels
[80].

There are many benchmarks that measure the communications performance of a par-
allel computer system. Low-level communication benchmarks (also called Microbenchmarks
or low-level probes) usually perform a timed message passing operation between MPI pro-
cessors. A communication system is usually characterised by its bandwidth and latency. Mi-
crobenchmaks, for example, allows one to obtain a measure for the latency and bandwidth
of a network when performing purely synthetic point-to-point communications or collective
communications. The myriad array of MPI benchmarks including the industry standard Intel
MPI benchmark [81] (formerly PALLAS’ MPI benchmark) and others such as MPPTest [82],
NetPipe [83] and SKaMPI [84] are examples of communication micro-benchmarks. Similarly
in shared memory parallel programming, OpenMP benchmarks such as the EPCC OpenMP
benchmarks [85] measure the overheads associated with OpenMP directives on a given plat-
form.

The memory performance is particularly important as processor throughput is directly
dependent on the sustainable speed at which the memory can supply instructions and data to
a processor. During the mid 1980s until about 2004, when processors clock speeds were grow-
ing exponentially [86], the memory performance was important due to its need to keep up
with processor performance. Now in the multi-core era, memory performance has become
important due to the need to feed the increasing number of cores on a chip continually with
instructions and data so that useful work is produced. Memory performance is usually mea-
sured as a bandwidth (e.g. MBytes/second). Notable microbenchmarks include STREAM [87]
that measures the sustainable memory bandwidth through a synthetic benchmark program
and RandomAccess from the HPC Challenge benchmarks [79] that measure the rate of integer
random updates of memory in Giga Updates per Second (GUPS).

2.4.1.2 Synthetic Benchmarks, Application Benchmarks and Benchmark Suites

While kernels and microbenchmarks give an indication of the performance of a system’s sub-
component’s performance, they give little indication of how the machine will perform realis-
tically on useful workloads. Synthetic benchmarks such as Whetstone [88] and Dhrystone [89]
were the earliest attempts at developing an artificial workload to obtain an indication of the
total system performance. These replicated the behaviour of real programs based on statistics
of operations [90]pp27 derived from programs in the 1970s and 1980s.

Application benchmarks consist of a reduced version of a production code and are de-
rived directly from real workloads. Examples of important application benchmarks include
the ASC benchmarks [91] (formally ASCI) developed to asses the performance of HPC ma-
chines at the US Department of Energy, NASA’s Aerodynamic Simulation Parallel Bench-
marks (NPB) [92] that contain codes representative of CFD workloads at NASA and the

25

2. PERFORMANCE ANALYSIS AND PREDICTION

SPEC benchmark suite [80] which encompasses a suite of benchmarks that also include low-
level/microbenchmarks in addition to application benchmarks.

Application benchmarks are vastly superior and advantageous for demonstrating the
achievable performance of a target HPC machine. Usually the time to solution (elapsed wall
clock time) or the achieved throughput of the system (e.g. transactions completed) is reported
at the end of a benchmark run. Furthermore application benchmarks can be designed so that
on parallel systems an indication of the application’s scalability can be observed. When com-
paring systems, application benchmarks usually provide rules that limit some optimisation-
s/methods that give higher performance. This can be argued to be sidestepping the real ability
of a system to demonstrate higher performance.

A recent evolution in measuring system productivity is the concept of Purpose Bases
Benchmarks (PBB) [93]. PBBs try to address shortcomings of traditional benchmarking where
the productivity of a system is measured in terms of an activity performed. Traditional bench-
marking does not evaluate the system in terms of “useful work done”. For example the LIN-
PACK kernels solve the system of equations using less efficient Gaussian elimination and ex-
plicitly forbid the use of newer and efficient Strassen methods [94] as the latter invalidates the
floating-point operation counts. The authors of PBBs argue that the productivity of the sys-
tem should be measured by the “amount of progress towards a goal of real human interest”
done by a system via the most efficient means possible on the target system. They provide
a rigorous definition for a PBB in [93]. Although PBBs are not ubiquitous in current HPC
benchmarking studies, it demonstrates an alternative and perhaps more useful assessment of
computer productivity and performance.

2.4.1.3 Profiling

While benchmarking gives a relatively concise summary of the performance of a system, pro-
filing gives a view of the program when it is executed. Profiling is concerned with gathering
information during one or more runs of a program and presenting the dynamics of its execu-
tion which include for example, frequency and duration of function calls, frequency of opera-
tion counts within blocks of code, dynamic memory consumption and release, etc. A profiler
collects data about the program through various means of code instrumentation, operating
system monitors, hardware level monitors including interrupts and performance counters.

The activity of profiling, also sometimes called monitoring, provides several insights
into a program’s behaviour [39]pp111. It enables one to trace the execution path of a pro-
gram (sometimes through off-line replay of the profile trace) allowing one to identify most
frequently used or time consuming sections of the code, obtain the time spent in various sub-
routines/modules/operations of the code and assert the interdependence between variables.
An important additional use includes assistance in debugging.

Profilers or program monitors can be classified based on measurement method, instru-
mentation technique and the type of profile output. The two methods of measurement are (1)
Tracing - program events of interest will be logged synchronously by the tracing profiler as
events occur (e.g. VampirTrace [95]), (2) Sampling - program state will be logged on demand
or periodically by a sampling profiler using system timer facilities and performance counters
(e.g. gprof [96], PAPI [97, 98]). The former tend to produce large amounts of data, while the
latter can give a false picture if adequate sampling is not done.

26

2. PERFORMANCE ANALYSIS AND PREDICTION

Instrumenting a program for profiling can be done at the level of source code (before
compilation) (e.g. PAPI [97]), at compile time (before linking) (e.g. gprof [96], CrayPat [99])
linking with a profiling library (e.g. VampierTrace [95], Opt [100], Pablo [101]), during run-
time (through hooks in a runtime environment, operating system or hardware) (e.g. Paradyn
[102]). Profiler suites such as TAU [103, 104] and KOJACK [32] allow one to instrument the
application at a combination of the above stated levels.

A profiling output can be (1) a flat profile or (2) a histogram. The former give the sum-
mary of the execution by presenting the average behaviour of function calls/frequencies and
average time spent in each during the run. The latter gives a detailed history of the execution
path as a call graph including the caller and callee routines, times spent on each level and
frequency of calling at each level.

Perhaps the best known profiler is the gprof [96] profiler belonging to the UNIX devel-
opment tool-chain. gprof originally developed for analysing serial code (written in C, Fortran,
Pascal or COBOL) provides both a flat profile and a call graph detailing the usage of CPU time.
The program information is gathered through sampling. Proprietary parallel profilers such as
Portland Group’s PGPROF [105] and Cray’s Performance Analysis Tool (CrayPAT) [99] serves
similar functions to that of gprof and include many additional tools such as graphical tools for
parallel programs and are scalable to programs running on large number of processors usually
written in MPI and/or OpenMP.

For MPI programs notable tools include public domain profilers Upshot, nupshot,
Jumpshot and MPE [106, 107] and the de facto industry standard MPI profilers - Vampire and
VampirTrace [95]. VampirTrace, includes a library to be linked to a parallel program which
will then trace the message passing events between processors, including message send/re-
ceives event ordering, function entry and exit points, message lengths and times. At the end of
a profile run the trace file produced by VampirTrace can be analysed through the tools in Vam-
pire including graphical visualisation tools that give timelines, state changes, communication
event viewers in addition to the call graph type information about functions and subroutines.

In contrast to the tools mentioned so far, PAPI [97, 98] provides an API that enables
access to the performance counters of modern micro processors. Using PAPI, the programmer
can observe the dynamic view of the relation between software performance and low-level
processor events such as floating-point operations, cache misses etc. The API allows one to
manually instrument parts of the program or allows higher level software tools (e.g. TAU
[103, 104], KOJACK[32], HPCToolkit[108]) to access performance counters.

The main disadvantage (among others discussed later in Section 2.5) of benchmarking
and profiling is that they are limited to reporting the performance of systems/applications “as
is”. The measures obtained alone cannot be relied on for speculative studies for instance in
predicting performance of future systems or imaginable/innovative new systems, or predict-
ing performance of application optimisations. Another disadvantage of profiling is that the
tools are sometimes quite invasive and can strongly influence the performance of the appli-
cation yielding results which are misleading. Particularly, for answering “what if” questions
benchmarking/profiling results must be used in conjunction with other performance engi-
neering methodologies. We consider the first of these methods based on statistical analysis, in
the next section.

27

2. PERFORMANCE ANALYSIS AND PREDICTION

2.4.2 Statistical Analysis

Statistical performance prediction involves applying techniques such as regression/curve-
fitting and pattern recognition to speculate on future behaviour. While benchmarking and
profiling gives measures of a system’s and application’s execution, statistical techniques can
be used to analyse the gathered data to obtain predictions. The assumption is that the ob-
tained historical data contains adequate information for forecasting performance and that the
statistical equations and methods used can replicate this historical trend. This approach is
widely used in performance analysis of systems such as computer Grids and for transaction
heavy systems (such as e-business applications) where the level of complexity and operation
granularity is difficult to predict using other performance analysis techniques.

While applying statistical methods such as regression and curve-fitting to empirical
data is an obvious first attack technique for almost any performance engineering study, there
are several established research projects that solely utilise statistical methods as their main pre-
diction tool. These include, The Network Weather Service [109, 110], research by Dinda et al.
[111, 112, 113, 114, 115], Vazhkudai [116] and frameworks such as NetLogger [117]. Statistical
approaches are particularly ubiquitous in workload characterisation [118, 119, 120, 121] and in
supporting application scheduling decisions. Many of the research projects described above
are leveraged to improve job scheduling, planning and load balancing on various parallel high
performance and distributed systems [122, 123].

The main limitation in statistical methods is that explanatory analysis of a system or
application may not be captured or exposed by the analysis. For example scaling behaviour
of an application may be approximated by statistical extrapolation, but the reasons for poor/-
good scaling (i.e. bottlenecks) may not be understood. Even pure scaling studies based on
statistical techniques alone, may prove to give inaccurate results if the application has a com-
plex computation-communication and synchronisation patterns such as the wavefront appli-
cations discussed in this thesis. Therefore statistical methods are best used in conjunction with
performance analysis based on simulation or analytic methods. In fact as we will show in this
thesis, statistical techniques such as regression are an integral part of developing simulation
or analytic predictive performance models. The state of the art in simulation techniques for
HPC are discussed in the next section followed by analytic modelling in section 2.4.4.

2.4.3 Simulation

In the general sense a computer simulation or a simulator is an imitation of an actual system
by a computer program. Simulation is a well established performance evaluation technique
and has been widely used for performance engineering. Simulation is particularly important
when designing a new system, for example new processor designs are extensively simulated
before committing to develop a prototype. If the system to be analysed is not available, for
instance during design or procurement, a simulation can serve to understand performance,
compare alternatives or answer design questions [39]pp393. Even if the system is available,
simulation may allow a systems designer to do a much more wide variety of experimentation
than is possible with the actual system.

There has been and continues to be considerable research interest in developing sim-
ulators for performance engineering. One classification of simulators is based on whether

28

2. PERFORMANCE ANALYSIS AND PREDICTION

the simulation is that of the system state (discrete-state) or that of system events (discrete-
event). The former for example will simulate state changes at every clock cycle. The latter will
maintain a time ordered-queue of interesting events (such as communication events, memory
accesses) and trigger a simulated system response as each event is processed.

A complementary classification separates simulators based on the generation of events
as - stochastic driven, trace driven and execution driven. Stochastic simulation uses a proba-
bility distribution to generate the events such as arrival of customers, transactions, operations;
such simulators are useful, when detailed information of workloads are not available. In con-
trast, trace driven simulators require a trace of an actual run of the system. The simulator will
then read the trace and simulate the events on the trace so that a performance engineering
study can be conducted. Execution driven simulators on the other hand will simulate the ap-
plication running on the target platform and produce the events that are to be simulated. This
ensures that the trace corresponds to the one that would be obtained if that application were
actually executed on the architecture being simulated.

Trace driven simulation has been widely used in sequential processor system simula-
tion. But on a multiprocessor system the execution path is not necessarily the same on different
architectures or even different runs [124]. Therefore the dominant parallel systems simula-
tors are almost always execution driven. However, there are exceptions such as DIMEMAS
[125, 126] that uses a trace from an application, taken at runtime. Using the trace, DIMEMAS
can simulate the behaviour of the application on very modest computing resources, such as
a workstation. A disadvantage of such a trace, considering any realistic HPC code, is the
size of the generated traces, as well as difficulties in scaling to hundreds, thousands and even
hundreds of thousands of processing elements for speculative analysis.

On the other hand discrete-event simulators are more efficient due to their focus on
simulating only important events, as opposed to the whole system state. One of the first
execution-driven (discrete-event) simulators is the Rice Parallel Processing Testbed (RPPT)
[127]. In RPPT, a pseudo-concurrent execution of an actual parallel algorithm provides a more
accurate and realistic model of the workload execution. RPPT combines sets of instructions
between branch, loop or communication instructions and treats them as execution blocks re-
ducing the types of events in the queue. This technique, called direct execution with aug-
mentation, is much more efficient than instruction-level simulation that is found in sequential
system simulators. Similarly, PROTEUS [128] and SPAM [124] provide direct execution with
augmentation, where the former provides tools for non-intrusive monitoring and repeatability
of the simulation, and generation of profiling information similar to prof [129]. The latter gives
a simulation kernel and tracing tool that aids the development of execution driven simulators
which require a huge amount of development effort. All these simulators are uni-processor
host simulators.

PACE [12] and its successor WarPP [43] provide a layered characterisation approach
that enables reusing hardware, parallel structures and application models. It uses a different
type of execution driven (discrete-event) simulation in that the execution is that of a static char-
acterisation of the application code and parallel structure. In PACE, sequential portions of the
code are characterised through micro-statements, each of which are benchmarked on the tar-
get platform and included as a hardware model in the simulator. A more detailed discussion
of PACE and WarPP is presented in Chapter 6.

29

2. PERFORMANCE ANALYSIS AND PREDICTION

To improve efficiency of the simulation, parallel simulators (i.e. simulation running
on parallel hosts) were developed. Notable work includes the Wisconsin Wind Tunnel (WWT)
[130, 131], MPI-SIM [29, 132] and BigSim [133]. Wisconsin Wind Tunnel is a shared memory
architecture simulation engine while MPI-SIM provides a library for the execution driven par-
allel simulation of MPI programs. MPI-SIM is further discussed in Section 3.3 where its use as
part of the POEMS [31] system in performance analysis of wavefront codes is detailed.

Although they are much more efficient than uni-processor host simulators, parallel
simulators incur high overhead in managing the non-determinacy of the simulation. For ex-
ample the message arrival order may need to be artificially preserved/rectified (e.g. through
check-pointing, roll-back, forward re-execution) [133] on a parallel simulator due to the fact
that there are multiple processors carrying out the simulation. Various synchronisation meth-
ods are used to correct this, resulting in high inefficiency for large systems simulations. Some
techniques to reduce this overhead are used in simulators such as Parallel PROTEUS [134] and
BigSim [133].

The main disadvantages of simulation are the amount of time required to generate
simulation results for even the most conservative parallel system [39]. This time becomes
even more intractable if there are many “what if” scenarios to be explored. But more impor-
tantly, system insights and bottlenecks may not be readily apparent from a simulation study,
some times due to too much detail, and require additional effort to understand important
performance issues. Nevertheless, simulation has proven to be an invaluable technique that
complements the other performance engineering methods including analytical modelling. In
some cases, simulation is the only feasible technique to analyse performance of the system.

The simulation studies specifically aimed at pipelined wavefront computations will be
discussed in detail in section 3.3, while the enhancements to the PACE [12] simulation system
developed by insights gained through analytical modelling and later used for validation of
wavefront code optimisations will be detailed in Chapter 6. We detail notable analytic mod-
elling techniques in the next section.

2.4.4 Analytic Modelling

An analytic model is a mathematical construct that represents key aspects of a computer sys-
tem and/or program. The basis of a good analytic model is to develop expressions that focus
on the important parameters and elucidate the behaviour of a system and the application
but remove details that do not substantially affect to performance. Amdahl’s law [53] and
Gustafson’s law [54] provide the most basic and important analytic models for parallel com-
puting but have limited ability to elucidate the important behaviours and parameters of a
parallel system and an application. We can view these laws as providing boundary values for
the performance of the system.

The second type of analytic models used in performance engineering view the system
as a network of queues where tasks share system resources such as the CPU, Memory, Network
Interface Card (NIC), disks etc. This leads to the system being suitable to be modelled using
queueing theory, particularly considering the non-deterministic (or stochastic) behaviour of
jobs competing for service. Queueing theory enables one to ascertain the time each job spends
in various queues, which then can be combined to predict the response time of the total system
[39]. Examples of analytic models developed using queueing theory, including mean value

30

2. PERFORMANCE ANALYSIS AND PREDICTION

analysis and stochastic models include [135, 136, 137, 138, 139, 140].
Another type of analytic model for parallel systems exploits the deterministic nature

of parallel applications. It has been shown that we can assume determinism is a valid and
accurate premise for most parallel executions [35]. Here, the author shows how deterministic
values for mean task time (e.g. computation time) and communication time can be used, in
conjunction with stochastic models, for shared resources or competing jobs to obtain perfor-
mance predictions with significantly less complex models than pure stochastic models. Addi-
tionally, the deterministic assumption implies a unique execution sequence and that the time
to solution of a parallel program could be computed by summing up the maximum time spent
between synchronising processes on this sequence [35] called the critical path. This insight is
comparable to the combined time of BSP supersteps in (2.3.5). The time to solution of a par-
allel program can then be expressed as in (2.4.1) where the components sum the computation,
communication, contention and synchronisation on the critical path of the program execution.

Ttotal = (Tcomputation + Tcommunication − Toverlap) +

Tresource contention + Tsynchronisation (2.4.1)

Any part of computation and/or communication that are performed simultaneously
need to be subtracted (Toverlap). The computation and communication times are assumed
to be deterministic, while estimating resource contention and synchronisation delays require
sub-models depending on the significance of each portion to the total time to solution. For
example, complex sub-models for contention have been developed in [72, 73] and simplified
synchronisation costs have been used in [8]; simplified contention models are used in [26] as
well as the contention model described in Section 4.6 in this thesis.

One disadvantage of this approach is that for the cases where non-deterministic com-
putation times and communication times are dominant in an application the model given in
(2.4.1) becomes inaccurate. One example of such an application is a code that has significant
data dependencies in selecting the execution path (e.g. conditional branches, dynamic loop
bounds). Such applications are best analysed through pure stochastic models. Nonetheless,
the many successes of deterministic models [17, 141, 8, 36, 38, 37, 14] have proved the validity
of the deterministic assumption in modelling parallel programs.

The analytic models developed in this thesis are based on developing reusable expres-
sions for applicable components of (2.4.1). We leverage the consistent deterministic behaviour
of wavefront codes to use this simplifying model as opposed to developing the model from
stochastic principles.

2.4.5 Hybrid and Other Methods

There are several notable projects that provide tools and techniques that use a combination of
the four performance engineering methodologies. Examples include POEMS [31] and Proph-
esy [142]. There are also notable tools that attempt to provide automation in developing mod-
els. Examples of such tools include the assertion based framework [143] and several tools
provided in the PACE [12] and WarPP [43]simulation toolkits.

The POEMS system could be considered as a collection of techniques that include, sev-
eral simulators; processor and memory hierarchy models based on SimpleScalar[144], inter-

31

2. PERFORMANCE ANALYSIS AND PREDICTION

connection network models using the PARSEC parallel simulation language[145], large-scale
parallel program simulations using the MPI-Sim[29] simulator, analytic models based on LogP,
LogGP and LoPC, and a repository of performance data gathered during previous evaluation,
modelling and measurement processes. These are used as historical data to estimate the per-
formance of widely used algorithms as functions of system and architectural characteristics
and configurations.

Prophesy [142] utilises pure performance modelling as well as components of statisti-
cal forecasting. The Prophesy framework consists of a data collection component that inserts
automatic instrumentation codes into the application at the level of functions, procedures,
loops and branches; central databases that are used to hold the collected performance mea-
sures; and a data analysis component that uses the collected data for automated modelling
by curve fitting, parametrisation and kernel coupling. Kernel coupling, entails analysing the
effect of one kernel on another by finding the ratio of the performance of successive kernels
against the performance of executing each kernel independently. The curve fitting method is
directly related to statistical forecasting where the empirical data on the database is utilised.
Parametrisation requires manual analysis of code with relation to system performance mea-
surements.

The Modelling Assertions (MA) framework [143] provides an API to annotate source
code (Fortran and C) that uses MPI. During application execution, these annotations capture
the significant events and produces trace files. The MA framework then post-processes the
annotations to develop performance models that resemble a high-level representation (control
flow) of the annotated code portion’s execution and an intermediate file. The intermediate file
serves to develop a “symbolic model” that parametrises the application in terms of problem
size, number of processors and other user-defined characteristics. The symbolic models gen-
erated by the MA framework are compatible with the Matlab and Octave script format and
can be evaluated to get performance predictions.

2.5 Discussion

Figure 2.5 lists a categorisation of the performance engineering methodologies discussed in the
previous sections. Although we show a clear demarcation between techniques, in practice a
combination of techniques is used during a performance engineering study. Particularly, sim-
ulation and analytic modelling require some amount of data gathered through benchmarking
or profiling as well as use of statistical analysis techniques to obtain accurate results. Ad-
ditionally, a single technique should not be used alone for performance prediction without
validating it with at least one more technique [39]pp32.

Selecting the appropriate performance engineering technique for the relevant system-
s/application development stage is important. All the techniques and methodologies dis-
cussed above are applicable to stages of the HPC lifecycle, yet some are more suitable than
others. Table 2.1. lists a summary of the pros and cons of the above methodologies and their
relevance to the HPC lifecycle.

Benchmarking and profiling are simple techniques for application by non-
performance engineering experts. Profiling in particular, allows one to zoom in on critical

32

2. PERFORMANCE ANALYSIS AND PREDICTION

Performance Engineering Methodologies

Benchmarks Profiling Statistical
Analysis

Simulation Analytic
Modelling

Hybrid/
Other

Low-level

Synthetic

Application

Purpose-Based

Tracing

Sampling

Trace-driven

Execution-
driven

Statistical

Boundary Value
Analysis

Stochastic/ Queuing
Models

Deterministic
Models

Figure 2.5: Performance Engineering Methodologies

Table 2.1: Pros and cons of performance prediction methodologies

Benchmarking Statistical Simulation Analytic
/Profiling Analysis Modelling

Cost high low low low
Evaluation Time high low high low

Effort low medium medium-high medium-high
Flexibility low low high high
Portability depends high high high
Scalability high depends high high
Accuracy variable depends medium-high medium-high

Tools benchmarks/ mathematics/ programming/ analyst
profilers statistics programmer

Stage post prototype post prototype any any

sections of the code and is most useful when conducting a performance engineering study that
require an analytic or simulation model of the hotspots of a code. These techniques cost time
and money, to run each experiment on a system, particularly an HPC system. The obvious
advantage of benchmarking and profiling is that they give actual runtime measures or pro-
files of the target applications running on the target systems. Thus the values obtained are not
speculative compared to other performance engineering methodologies. This in turn can give
more certainty when making decisions regarding systems (e.g. for procurement) and applica-
tions (e.g. for revising applications). However, many factors such as spurious behaviour of the
system, experimental errors, profiler overheads, can distort the conclusions obtained. Also the
parameters exposed during a measurement exercise may not represent the real world variable
range (e.g. due to inexperience of the benchmarker), making the results accuracy range from
very high to almost none [39]. Benchmarking and profiling may not provide accurate informa-
tion for extrapolating future system performance (i.e. limited flexibility for answering “what

33

2. PERFORMANCE ANALYSIS AND PREDICTION

if” scenarios), but can provide invaluable or sometimes essential information when develop-
ing simulation or analytic models. Furthermore this technique can only be carried out at the
post prototype stages in the HPC lifecycle when there is a system and application to measure.

Statistical forecasting depends on the assumption that the obtained historical data con-
tains the required information for forecasting a prediction and that the statistical equations
and methods used can replicate this historical behaviour. Thus the accuracy of these methods
depends on how far this assumption holds. For small range speculations (e.g. bandwidth
change, small range scalability testing) there is high accuracy. For larger speculations (e.g.
application optimisations, hardware protocol changes) there may be high errors. The advan-
tage of statistical forecasting is its ability to be used in highly complex systems such as widely
heterogeneous systems with dynamic configurations and contention, where other methods of
performance prediction are unrealistic. Additionally it can be carried out by non-performance
engineering professionals using very modest computational requirements.

Simulation can be done at any level of detail or at any stage of the HPC lifecycle. It re-
quires less simplifying assumptions than analytic models but takes a longer time to evaluate.
Simulation may allow one to explore the state space of parameters for optimal performance
configuration with comparable amounts of portability and accuracy, but often may not pro-
vide the significant level of insights that an analytic model will provide regarding, for instance,
the performance trade-offs, operational elucidation and optimisation possibilities. Both tech-
niques will require a comparable amount of effort for development. Analytic models on the
other hand, may require an expert’s effort to develop. It is the detailed level of insights that
analytic models provide that this dissertation uses to obtain the results and research contribu-
tions detailed in the next chapters.

The work described in this chapter is by no means exhaustive. However, we believe,
that the techniques presented, provide a sufficient perspective to the state-of-the-art in perfor-
mance engineering at the time of our research.

34

3 Pipelined Wavefront Computations

Pipelined wavefront computations are ubiquitous in many HPC workloads. This chapter de-
tails the operational behaviour of these codes as a mandatory preliminary to developing a
general reusable analytic performance model. Analytic performance model development is
rooted in an analyst’s understanding of the complexities of both the algorithm and the appli-
cation execution on a target platform. Therefore, in this chapter we detail the work carried
out in support of the former while at the same time provide a self contained primer of the
operation of wavefront computations to the reader.

3.1 Pipelined Wavefront Sweeps

The parallel pipelined wavefront algorithm was originally described by Lamport in [16] as a
parallel algorithm to optimise the performance of Fortran DO loops. It has since been used
in areas such as computational fluid dynamics (CFD) [14, 146], particle physics [147], parallel
iterative solvers [148] and parallel triangular linear equation systems solvers [149]. For sim-
plicity, we begin our discussion of wavefront computations, based on a 2D grid of data points
(or data cells1). The expansion to a 3D grid of data points is analysed subsequently.

3.1.1 Wavefront Sweeps on 2D Data Grids

Listing 3.1: A simple sequential loop operating on a 2D data array

FOR i = 1,m DO
FOR j = 1, n DO

A(i, j) = A(i− 1, j) +A(i, j − 1)
END FOR

END FOR

Consider the loop in listing 3.1. It details a simple loop for a 2D array of data points
of size m × n, where each point is indexed by (i, j) : i ∈ [1,m] and j ∈ [1, n]. The loop needs
to be parallelised so that it produces the same results as its sequential execution. Examining
the data dependencies of this loop, we see that any data point (i, j) requires both (i − 1, j)
and (i, j − 1) to be computed before, its own computation. Thus any parallelisation must
adhere to this dependence, if we are to arrive at the same numerical solution. The pipelined
wavefront algorithm was introduced by Lamport in [16] as a solution to parallelise such loops.
The parallelisation basically involves decomposing the 2D grid of data such that a column of

1note that we use grid points, data points and data cells interchangably in this thesis.

35

3. PIPELINED WAVEFRONT COMPUTATIONS

P0 P1 P2 Pn

i

j

i+j = 2
i+j = 3
i+j = 4

Figure 3.1: A 2D pipelined wavefront operation on a 1D processor array

elements in the n direction (or alternatively m) is assigned to a separate processor as in Figure
3.1. Then the loop body is concurrently executed for all points lying on the diagonal line
defined by i+ j = CONST . After each concurrent iteration, CONST is incremented, until all
the grid points are solved. We denote this parallelised loop in listing 3.2, where the sequential
loop is re-written with modified index variables g = i + j and h = i. Thus the parallelisation
basically performs the same computation as listing 3.1 but in a different order.

Listing 3.2: Parallelised loop for a 2D data array using pipelined wavefronts

DO CONCURRENTLY ON EACH PROCESSOR
FOR g = 2, n+m DO

A(h, g − h) = A(h− 1, g − h) +A(h, g − h− 1)
END FOR

The first three iterations of the loop in listing 3.2 are shown in Figure 3.1. The grid point
computed at each step is marked by a ⊗, while grid points yet to be processed are denoted by
a ◦. Then, the motion of the computation during the execution of this concurrent loop can be
viewed as a wavefront that sweeps from one corner of the 2D grid to the opposite corner. The
processors that split the i direction can be viewed as stages of a pipeline, where each element
belonging to a processor’s column of grid points are processed at each step of the pipeline.

By carefully examining the parallelised loop in listing 3.2 and Figure 3.1 we see that
for each iteration, the processors will perform the loop body computation without violating
the data dependency rules we observed in the sequential loop. That is, to compute A(i, j) a
processor requires A(i − 1, j) and A(i, j − 1). However, only A(i − 1, j) will be obtained by
an off processor communication from the neighbouring upstream processor. In other words,
we see that at each step of the wavefront, a processor will require data from one up-stream
neighbour processor.

36

3. PIPELINED WAVEFRONT COMPUTATIONS

Listing 3.3: A simple sequential loop operating on a 3D data array

FOR k = 1, l DO
FOR i = 1,m DO

FOR j = 1, n DO
A(i, j, k) = A(i− 1, j, k) +A(i, j − 1, k) +A(i, j, k − 1)

END FOR
END FOR

END FOR

i

j

Hyperplanes defined by
i+j+k = CONSTANT

k

Sweep originating
in corner

Figure 3.2: Hyperplanes on a 3D grid of data

3.1.2 Wavefront Sweeps on 3D Data Grids

To expand the above parallelisation to a 3D grid of data of size m × n × l, we consider paral-
lelising the loop in listing 3.3. Now there are up to three near neighbour data dependencies
to compute a grid point. To apply the wavefront parallelisation, the 3D data grid is first de-
composed on to a 2D array of processors, where the column of cells defined by the same (i, j)
coordinates are assigned to a single processor. Thus, the cells in the k direction are held within
a single processor. The parallelisation then involves executing concurrently the points on a
plane defined by i + j + k = CONST (see Figure 3.2). The resulting parallelisation is given
in listing 3.4. Similar to the 2D case, the new loop index variables are obtained by setting
f = i + j + k, g = k and h = j. In [16], the plane defined by i + j + k = CONST is termed a
hyperplane and the algorithm is thus called the hyperplane method.

The key characteristic of the above algorithm, therefore, is that the grid points along

37

3. PIPELINED WAVEFRONT COMPUTATIONS

Listing 3.4: Parallelised loop for a 3D data array using pipelined wavefronts

DO CONCURRENTLY ON EACH PROCESSOR
FOR f = 3,m+ n+ l DO

A(f − g − h, h, g) = A(f − g − h− 1, h, g) +A(f − g − h, h− 1, g)+
A(f − g − h, h, g − 1)

END FOR

the plane defined by i+ j + k = CONST are computed concurrently and that this hyperplane
progresses through the 3D grid as a wavefront. The number of data dependencies, for a given
point (i, j) could be up to three near neighbour upstream points given by: (i − 1, j, k) →
(i, j, k), (i, j − 1, k) → (i, j, k) and (i, j, k − 1) → (i, j, k). Although in the above explanation
we have assumed that each processor will hold a stack of grid points or cells of size 1 × 1 ×
l, in reality the available number of processors are always far less than m × n × 1. Thus a
data decomposition method for cells needs to be considered when implementing wavefront
computations for any realistic parallel machine. Next, we describe such a decomposition and
define the operation of a general pipelined wavefront sweep.

z

y

x

N

(1, m) (n, 1)(1, 1) (n ,m)

Nx/n
Ny/m

Figure 3.3: 3D data grid mapping on to a 2D processor array

Consider a 3D discretised grid of data cells, with dimensions denoted by x, y and z as
in Figure 3.3. The total number of cells is given byNx×Ny×Nz . The 3D data grid is partitioned
and mapped onto a 2D m× n array of processors, such that each processor is assigned a stack
of data cells of size Nx/n × Ny/m × Nz as also depicted in the figure. Note that m and n are
the number of processors in the y and x dimensions respectively. A processor is indexed as
(i, j), where i is the horizontal position (column number or x dimension) and j is the vertical
position (row number or y dimension) respectively. Now, each partition of data cells assigned
to a processor can be viewed as a stack of tiles, each of 1 cell high.

The data dependency of the cells held in processors results in a sequence of wavefronts

38

3. PIPELINED WAVEFRONT COMPUTATIONS

1,1

1,m

n,1

n,m

x

y XY diagonals
compute the
same tile in

the stack

Sweep
originating at (1,1)

N

Figure 3.4: Pipelined wavefronts on the 2D processor array

(or a sweep) that starts at one of the corner processors, computing over the cells of its topmost
or bottommost tile. For example, consider the case where processor (1, 1) in Figure 3.3 begins
by computing the results for its bottommost tile. At the end of a calculation by the processor,
it sends the respective boundary values (i.e., the new values for the data cells at the edge of
the tile) to processors (1, 2) and (2, 1). After receiving those values, processors (1, 2) and (2, 1)
each compute values for their bottommost tiles, while processor (1, 1) computes values for the
next tile in its stack. Each processor sends boundary values to its east and south neighbours
and then computes new values for the next tile in its stack and so forth, until all the tiles have
been processed. This creates a series of “wavefronts”, as illustrated in Figure 3.4, since the
processors along each x − y diagonal are all processing the tile at the same position in their
respective stacks. The sequence of wavefronts - or sweep - ends when the processor (n,m)
at the opposite corner finishes processing it’s top-most tile - that is, the tile at the opposite
corner of the 3-D grid. The shaded tiles in Figure 3.3 depict the tiles that are processed during
the final three wavefronts (or final three sweep steps) - light Gray, then medium Gray, then
dark Gray - belonging to a sweep that originated at the bottommost tile on processor (1, 1),
ending at the topmost tile on (n,m). The general algorithm implementing one sweep of the
wavefront computation that progresses from one corner processor to the opposite corner is
given in listing 3.5.

Note that the algorithm in listing 3.5 is performed on each processor concurrently. A
processor can only proceed with its computation when it has received upstream boundary val-
ues. Until then a processor will be in a blocked state waiting for the RECEIVEs to be satisfied.
Thus, communications are done per tile, and not for each cell across the processor boundaries.
If the true hyperplane algorithm operation had been implemented on the 3D grid of data, then
each cell along a boundary of a processor will have had to communicate its value to the corre-
sponding downstream cell in the neighbouring processor (in each direction) using a separate
message. This is depicted in Figure 3.5(a) where the cells belonging to a single processor is

39

3. PIPELINED WAVEFRONT COMPUTATIONS

Listing 3.5: General pipelined wavefront algorithm

FOR EACH TILE DO
RECEIVE FROM WEST
RECEIVE FROM NORTH

COMPUTE (CELLS IN TILE)
SEND TO EAST
SEND TO SOUTH

END FOR

illustrated. In this case, each cell generates a message (Msg). The earlier versions of the NAS-
LU benchmark had such an implementation which has been shown to be highly inefficient
[14] due to the large number of small messages generated. By contrast we assume the agglom-
erated messaging style depicted in Figure 3.5(b), in the general wavefront algorithm as well
as throughout the rest of this work. Now, only a single message is sent to the corresponding
downstream processor in each direction, considerably reducing the communication costs.

Sweep direction

Msg1

Msg2

Msg3

Msg4

Msg1’ Msg2’ Msg3’ Msg4’

(a) Messages sent for every cell across the processor
boundaries

Sweep direction

Msg (1’+2’+3’+4’)

Msg(1+2+3+4)

(b) Only a single message is sent at each processor boundary

Figure 3.5: Fine-grained messaging and agglomerated messaging

There are many variations and structural augmentations to the general wavefront algo-
rithm. Examples include multiple - overlapping and/or simultaneous - sweeps, wavefront op-
erating on irregular (unstructured) data grids, variations on the computation done per sweep
step, etc. It is the goal of this dissertation to develop a reusable performance model to capture
a wide range of these variations, culminating in a model to investigate the performance impli-
cations and possible optimisations for each variation when executed on modern HPC systems.
In the next section, we investigate three, real world wavefront applications that contain sev-
eral of these structural differences. Particularly we explore the behaviour of three significant
wavefront benchmark codes - NAS Parallel Benchmark suite’s LU, Sweep3D from the ASC
benchmarks and AWE’s Chimaera, as a starting point to understand real world implementa-
tions of pipelined wavefront computations on modern HPC systems.

40

3. PIPELINED WAVEFRONT COMPUTATIONS

3.2 Pipelined Wavefront Applications

LU from NASA’s aerodynamic simulation parallel benchmark (NPB-LU) [21, 92, 146, 14],
Sweep3D [23] from the ASC benchmarks [91] and Chimaera from the U.K. AWE are all impor-
tant scientific benchmark codes. LU represents a compressible Navier-Stokes equation solver
used in computational fluid dynamics (CFD), Sweep3D developed by the Los Alamos Na-
tional Laboratory (LANL) in the U.S. represents particle transport applications that make up
50-80% of the computations that run on their high performance systems [17], while Chimaera
is a particle transport benchmark from the Atomic Weapons Establishment (AWE) in the U.K.,
representative of a major portion of their workload and also used for the procurement of their
high performance systems.

Both Sweep3D and Chimaera are particle transport codes, while LU belongs to the so-
lution of a CFD problem. Therefore we investigate briefly the numerical solutions underlying
wavefront computations applied to CFDs and particle transport codes with the use of previ-
ously published work and explore in detail the variations and structural differences of each
code compared with the general wavefront operation introduced in the previous section.

3.2.1 NPB - LU

The NAS parallel benchmark’s LU is a simplified compressible Navier-Stokes equation solver
[14]. A more complete treatment of the numerical solution of LU is detailed in [146, 150]. In this
section we briefly develop the solution in order to identify the application of the hyperplane
parallel algorithm and subsequently discuss its computation-communication behaviour.

LU uses the well known Gauss-Seidel relaxation scheme with successive over-
relaxation (SSOR) for solving discretised and linearised equations. The solution is obtained
through an iterative process. Consider the (n + 1)th time step of a dicretised linear system of
equations given by:

U (n+1) = U (n) + ∆U (n) (3.2.1)

The solution at each time step requires computing ∆U (n) given by:

K(n)∆U (n) = R(n) (3.2.2)

where ∆U (n) and R(n) are vectors of length N = 5× (Nx − 2)× (Ny − 2)× (Nz − 2) each, K is
a sparse matrix of size N ×N ×N with each of its elements denoted by (i, j, k) being a 5 × 5
sub matrix. The equation associated with each (i, j, k) point in (3.2.2) can be then represented
by:

Ai,j,k∆Ui,j,k−1 + Bi,j,k∆Ui,j−1,k + Ci,j,k∆Ui−1,j,k +

Di,j,k∆Ui,j,k +

Ei,j,k∆Ui+1,j,k + Fi,j,k∆Ui,j+1,k + Gi,j,k∆Ui,j,k+1 = Ri,j,k (3.2.3)

where, i ∈ [2, Nx − 1], j ∈ [2, Ny − 1] and k ∈ [2, Nz − 1]. The coefficients A,B, C,D, E ,F and
G are submatrices of size 5x5. As it can be seen from (3.2.3) there are data dependencies in all
three dimensions similar to the dependencies for a grid point in listing 3.3.

41

3. PIPELINED WAVEFRONT COMPUTATIONS

The solution to (3.2.1) is computed through a SSOR scheme for faster convergence with the
use of an over-relaxation factor ω ∈ (0, 2) such that:

U (n+1) = U (n) +
(

1
ω(2− ω)

)
∆U (n) (3.2.4)

To perform the SSOR operation (3.2.2) is rearranged such that the calculation is carried out via
a solution of a regular sparse, block lower(L) and upper(U) triangular system, giving rise to
the name LU.
By setting:

K(n) = (D(n) + ωY(n) + ωZ(n)) (3.2.5)

where, D(n) is the diagonal matrix, Y(n) is the lower triangular matrix and Z(n) is the upper
triangular matrix of K, (3.2.2) can be rewritten as:

K(n)∆U (n) = (D(n) + ωY(n) + ωZ(n))∆U (n)

= R(n) (3.2.6)

Rearranging (3.2.6): [
D(n) + ωY(n) + ωZ(n)

]
∆U (n) =[

D(n) + ωY(n) + ωZ(n) + ω2Y(n)(D(n))−1Z(n)
]

∆U (n) =[
D(n) + ωY(n)

] [
I + ω(D(n))−1Z(n)

]
∆U (n) = R(n) (3.2.7)

Thus the lower triangular solution is given by:[
D(n) + ωY(n)

]
∆Ú = R(n) (3.2.8)

and the upper triangular solution is given by:[
I + ω(D(n))−1Z(n)

]
∆U (n) = ∆Ú (3.2.9)

Therefore in order for a solution, an iteration of LU proceeds by:

1. Computing the right-hand-side vector R(n)

2. Computing the lower triangular solution : (3.2.8)

3. Computing the upper triangular solution : (3.2.9)

4. Updating the solution : (3.2.4)

In LU, step (1) is computed using a parallel stencil computation where each data point in the
data grid will obtain its four nearest neighbour’s values and sum them, simultaneously. The
majority of the computation is spent in steps (2) and (3). The equation solved at a grid point
(i, j, k) during step (2) can be derived from (3.2.3) to produce the lower triangular system
solver:

ω [Ai,j,k∆Ui,j,k−1 + Bi,j,k∆Ui,j−1,k] + Ci,j,k∆Ui−1,j,k +Di,j,k∆Ui,j,k = Ri,j,k (3.2.10)

42

3. PIPELINED WAVEFRONT COMPUTATIONS

1,1 n,1

1,m n,m

Forward Sweep

Backward Sweep

Figure 3.6: LU pipelined wavefront operation on the 2D processor array

This translates to the sequential algorithm given by listing 3.6. This has the same form as
3.3 and thus can be solved using the hyperplane method, resulting in listing 3.7, a wavefront
computation.

Listing 3.6: LU sequential algorithm

FOR k = 2, Nz DO
FOR j = 2, Ny DO

FOR i = 2, Nx DO
∆Ui,j,k = D−1

i,j,k [Ri,j,k − ω (Ai,j,k∆Ui,j,k−1 + Bi,j,k∆Ui,j−1,k) + Ci,j,k∆Ui−1,j,k]
END FOR

END FOR
END FOR

Listing 3.7: LU parallel algorithm

DO CONCURRENTLY ON EACH PROCESSOR
FOR i+ j + k = 6, Nx +Ny +Nz − 3 DO

∆Ui,j,k = D−1
i,j,k [Ri,j,k − ω (Ai,j,k∆Ui,j,k−1 + Bi,j,k∆Ui,j−1,k) + Ci,j,k∆Ui−1,j,k]

END FOR

A similar solution is applied at step (3) for solving the upper triangular solution. Thus
an LU iteration includes two wavefront sweeps. The operation of the wavefronts on the 3D
grid of data is illustrated in Figure 3.6. The 3D data grid of size Nx ×Ny ×Nz is decomposed
as a 2D array of processors by continually halving the domain in the x and y dimensions. Thus
LU is only designed to run on a number of processors which is a power of 2. The z dimension
is held within a processor and as before, can be viewed as a stack of tiles each having a height
of one cell.

The two sweeps in LU propagate in the opposite directions. The forward sweep starts

43

3. PIPELINED WAVEFRONT COMPUTATIONS

at the bottommost tile on processor (1, 1) and spreads through the 3D data grid ending on the
topmost tile of processor (n,m). At the end of this forward sweep, a backward sweep begins
at the topmost tile of processor (n,m) and propagates towards the processor (1, 1) ending at
its bottommost tile.

Listing 3.8: The pipelined wavefront algorithm in LU

FOR EACH TILE DO
PRE−COMPUTE CELLS IN TILE
RECEIVE FROM WEST
RECEIVE FROM NORTH

COMPUTE (CELLS IN TILE)
SEND TO EAST
SEND TO SOUTH

END FOR

Compared to listing 3.5, an additional algorithmic difference in LU is that a pre-
computation block is performed before a processor posts its receives. This is illustrated in
listing 3.8. More specifically, during the forward sweep, for each tile performing the L.H.S.
expression of (3.2.8), the LU splitting of the matrix is performed [14] and then relaxed. Simi-
larly during the backward sweep, for each tile performing the L.H.S. expression of (3.2.9), the
LU splitting of the matrix is performed [14] and then relaxed. The LU splitting does not re-
quire any boundary data exchanges between processors and therefore can be performed before
posting receives.

There are various performance implications of this additional pre-computation which
will be analysed in Chapter 7. A general re-usable performance model will be required to cap-
ture this behaviour and the ability to predict the aggregate performance of multiple sweeps.
Additionally we see that non-wavefront portions of the code, such as the computation of the
R.H.S .vector R(n) should be modelled separately if we are to obtain a model for the whole
application, particularly to predict the total time to solution. We find further structural and
behavioural variations in Sweep3D and Chimaera both of which, in contrast to LU, solve par-
ticle transport computations using wavefront algorithms.

3.2.2 Sweep3D and Chimaera

Both Sweep3D and Chimaera implement solutions for particle transport simulations. Particle
transport codes model the travel of particles such as neutrons and photons through a back-
ground medium. Sweep3D and Chimaera represent workloads of production applications
that run on HPC systems at the U.S. Dept. of Energy (DOE) and the U.K. Atomic Weapons Es-
tablishment (AWE) respectively. The numerical solution on which Sweep3D is based has been
well published [147, 151] while Chimaera solves a similar problem albeit exhibiting several
differences in parallel computational operation. A detailed analysis of the numerical solution
involved in particle transport problems is beyond the scope of this work. However a brief look
at the problem solved by Sweep3D gives us a view of the problem parameters involved. Parti-
cle transport codes are based on the solution to the time-independent, multigroup Boltzmann

44

3. PIPELINED WAVEFRONT COMPUTATIONS

transport equation given by:

Ω.∇ψ(r, E,Ω) + σ(r, E)ψ(r, E,Ω) =
∫ 0

∞
σ(r, E′ → E)

∫
S2
ψ(r, E′,Ω′)dΩ′dE′ + q(r, E,Ω)

(3.2.11)
The quantity to be found is the flux ψ of a particle at a spatial point r, moving in

the direction of Ω ∈ S2 with energy E ∈ (0,∞). To solve the problem these variables are
discretised. In particular, (1) the energyE of a particle is restricted to a set of finite subintervals
between some maximum and minimum interval giving a set of energy groups, (2) the angular-
direction Ω is discretised to a set of angles and (3) the spatial domain D, where r ∈ D, is
assumed to be a 3D rectangular space and is partitioned into a cartesian grid of cells. Thus
the flux ψ needs to be solved per energy group, per angle and per cell. The angles can be
solved independently as there are no data dependencies between angles. However, there is a
dependence between energy groups making the solution over energy groups sequential. That
is, the 3D cube of cells needs to be solved for one energy group completely before solving for
the next.

1,m n,m

1,1 n,1

Sweep 5, 6 Sweep 1, 2

Sweep 7, 8 Sweep 3, 4

(a) Sweep3D

1,m n,m

1,1 n,1

Sweep 4, 6 Sweep 1, 2

Sweep 7, 8 Sweep 3, 5

(b) Chimaera

Figure 3.7: Sweep3D and Chimaera pipelined wavefront operation on the 2D processor array

The solution for the flux of cell (i, j, k) for an angle per energy group requires the
cell face values of three upstream near neighbour cells. The solution of cell (i, j, k) will then
give the flux at its cell centre and the outward flux of the three remaining faces. Thus, the
computation can only start from a corner of the 3D cube of data given boundary conditions
(vacuum or reflective). It is clear that, due to this data dependence, the computation needs
to proceed as a wavefront sweep from one corner to the opposite corner. As there are eight
corners (or Octants) in the cube, the solution involves sweeps starting from all eight corners.

Similar to LU, Sweep3D and Chimaera use a 2D domain decomposition of the 3D data
grid resulting in processors holding stacks of tiles of size Nx ×Ny × 1 (denoted by it, jt, kt in
the application). The eight corners at which sweeps originate in 3D can be viewed as being
reduced to four corners on the 2D processor array. Thus two sweeps originate from each
corner processor. Figure 3.7 details the order in which sweeps are performed for Sweep3D

45

3. PIPELINED WAVEFRONT COMPUTATIONS

and Chimaera respectively.
Further differences to the general wavefront operation can be observed in Sweep3D.

Firstly an input parameter (mk) called a k-block allows the user to set the number of tiles solved
per sweep step. We can view this as increasing the thickness of a tile from 1 to k-block size
(1 6 k blocksize 6 Nz). Similarly, another input parameter (mmi) called an angle block,

(1 6 angle blocksize 6 Ω) allows setting the number of angles solved per sweep step. For
the version of Chimaera investigated in this research both the k-block and the angle-block
were fixed.

Finally, due to boundary conditions, the order in which sweeps are performed allow
for some sweeps to be overlapped. In Sweep3D, processor (n,m) begins the first tile of the
second sweep immediately after it finishes the last tile of the first sweep, and the third sweep
begins when processor (n, 1) has completed its stack of tiles in the second sweep. In Sweep3D,
the fourth sweep begins as soon as processor (n, 1) has finished its tiles in the third sweep,
but in Chimaera the fourth sweep does not begin until processor (1,m) at the opposite corner
finishes the third sweep.

Listing 3.9: The pipelined wavefront algorithm in Sweep3D

FOR EACH ENERGY GROUP ∈ E DO
FOR EACH OCTANT DO

FOR EACH ANGLE−BLOCK DO
FOR EACH K−BLOCK DO

RECEIVE FROM WEST
RECEIVE FROM NORTH

COMPUTE (CELLS FOR EVERY ANGLE
IN ANGLE BLOCK AND IN K−BLOCK)

SEND TO EAST
SEND TO SOUTH

END FOR
END FOR

END FOR
END FOR

Listing 3.10: The pipelined wavefront algorithm in Chimaera

FOR EACH ENERGY GROUP ∈ E DO
FOR EACH OCTANT DO

FOR EACH TILE DO
RECEIVE FROM WEST
RECEIVE FROM NORTH

COMPUTE (CELLS FOR EVERY ANGLE IN TILE)
SEND TO EAST
SEND TO SOUTH

END FOR
END FOR

END FOR

Listings 3.9 and 3.10 illustrate the basic algorithm solved in Sweep3D and Chimaera

46

3. PIPELINED WAVEFRONT COMPUTATIONS

separately. The message send/receive directions denoted are for a sweep originating from the
top left corner processor (e.g. sweeps 5 or 6 for Sweep3D or sweeps 4 or 6 for Chimaera). Note
that the octant ordering and overlappings are not differentiated. Both 3.9 and 3.10 represent
what we call the sweep or wavefront portion of one iteration of these particle transport bench-
marks. Over 95% of the total runtime for Sweep3D and Chimaera is spent on these wavefront
operations. Sweep3D only solves 1 energy group while Chimaera solves for 16 energy groups.
Furthermore, Sweep3D performs only 12 iterations (in its default setting), while Chimaera it-
erates until a convergence criterion is satisfied. For the version of Chimaera we investigated
it takes between 100-500 iterations for convergence. On top of a multi-group solution of a
single time step of Sweep3D and Chimaera, realistic particle transport codes include time-
dependence with 1000s of time steps [23]. This further increases the total number of iterations.

As it can be seen, LU, Sweep3D and Chimaera have considerable differences in per-
forming pipelined wavefront sweeps. Further differences in wavefront codes include (but are
not limited to) (1) multiple simultaneous sweeps [148], (2) pipelined wavefront computations
on irregular grids of data such as particle transport codes on unstructured meshes [37], and
(3) variations on data distributions [148]. Add to this the myriad array of software and ma-
chine configurations tunable when running these codes on HPC systems, we have a complex
set of variables/behaviours that determine the performance of pipelined wavefront computa-
tions. In the next section we detail significant previous work that explored this performance
engineering problem setting the stage for our contributions in this dissertation.

3.3 Related Work

One of the earliest performance analysis studies on wavefront computations was a paper by
Qin et al. [149]. It details two types of data distributions on 2D arrays of data and provides
analytic expressions for the runtime of the wavefront algorithm on these decompositions. The
two partitionings are (1) a column-wise domain decomposition where one dimension of the
2D data grid is partitioned across a number of processors (similar to the decomposition de-
tailed in Section 3.1 but with processors holding multiple columns) and (2) a partitioning that
aims to reduce the idle processor time at the beginning and end of a sweep. The expressions
are parametrised in terms of problem size, machine parameters such as number of processors,
and communication and computation performance. The performance model is then used to
compute the optimal partition sizes and the results are validated on a transputer system. Re-
sults show that the column partitioning gives the fastest runtime.

Joubert et al. in [148] provide a performance analysis on 3D wavefront computations
in the form of algorithms used in parallel iterative solvers. It includes a detailed discussion
on a cost analysis of this algorithm, parametrised based on problem size, problem parameters
and machine parameters such as computation, and communication performance. It also notes
several optimisations for the code including the idea of the use of an optimal k-blocking, per-
forming simultaneous sweeps and a modified data distribution. But neither the cost model nor
the optimisations discussed are qualitatively or quantitatively validated on a real-world HPC
platform, nor are they validated using some other performance engineering method (such as
simulation). Thus the accuracy of the models are unknown. Nevertheless, the analysis pre-
sented is generic and not specific to any concrete application so as to be applicable in general

47

3. PIPELINED WAVEFRONT COMPUTATIONS

to parallel iterative solvers on 3D grids of data.
Both Qin [149] and Joubert’s [148] give an algorithmic analysis with only the former

providing quantitative validations, albeit on an older parallel system with limited parallelism.
Performance engineering a concrete application model for a larger HPC system was

detailed in [14] by Yarrow et al. In this work, the authors develop an analytic model for the
time to solution as a sum of computation and communication costs for two versions of LU:
version 2.0 and 2.3.

LU version 2.0 performs a fine grained wavefront operation. That is, the wavefront
progresses by processing cells in a diagonal order and, at the points where the wavefront has
to cross over to the next processor, a message has to be communicated between processors
(see Figure 3.5(a)). Thus for each cell at a processor boundary, a message will be communi-
cated resulting in a large number of small messages during a wavefront sweep. [14] uses a
network latency and bandwidth model to account for the communication performance and
characterises the computation cost per processor through its floating point operation speed
(FLOPS/Sec). In LU version 2.3, messages per cell at the inter-processor boundary are ag-
glomerated similar to Figure 3.5(b). That is, instead of computing a tile in a diagonal order
within a processor, they are computed in a standard column-row order (i.e. canonical order).
Therefore a communication occurs only after all the cells in the current tile have been com-
puted. Thus messages sent in version 2.3 are significantly smaller and larger than in version
2.0.

The analytic models for the two versions of LU show that version 2.3 performs sig-
nificantly better due to the considerably smaller number of messages sent. This in turn had
reduced the cost incurred for each message startup. The models are validated on up to 128
processors on an IBM SP System with predictive errors of up to 30%. Furthermore the analytic
model is customised to only LU and is not reusable to provide performance predictions on
other wavefront codes. Nevertheless, one of the significant results of this work is a demon-
stration of the affect of network latency on wavefront code performance. In this dissertation
we provide a more precise quantitative and qualitative analysis of the influence of network
latency in addition to analysing other bottlenecks due to computation performance, network
bandwidth and idle processors.

Sundaram-Stukel and Vernon [8] develop a LogGP model for Sweep3D on an IBM
SP/2. The model elucidates the operation of wavefronts in Sweep3D by capturing computa-
tions, communications and synchronisation delays incurred when wavefronts are executed on
the target system. Validations show predicted total execution time has less than 10% error for
up to 128 processors and all problem sizes reported. As part of the validation, this work also
develops LogGP MPI communication models and measured LogGP parameter values for the
IBM SP/2 system. Finally [8] shows performance projections for two problem sizes of interest
for the ASCI program [152], the 1-billion cell problem and the 20 million cell problem. The
projected performance is for up to 27,000 processors which at that time was considered to be
the expected size of near future HPC machines. Even with such a large number of processors,
problem configurations of interest to ASCI goals i.e. the 1-billion cells problem and 20 million
cells problem with 30 energy groups and 10000 time steps - was shown to be impractical with
the current algorithm. The synchronization costs on the SP/2 were shown to be the principal
factor limiting scalability of the application. The most significant limitation of [8] is that it is

48

3. PIPELINED WAVEFRONT COMPUTATIONS

customised for Sweep3D and is not readily restructurable for other wavefront codes.
Several papers [17, 25, 153, 37] from the performance architecture laboratory at the Los

Alamos National Laboratory (LANL) in the U.S. detail analytic models for Sweep3D. Hoisie
et al. in [17] develops a model for one sweep of Sweep3D by developing analytic expressions
for computation and communication costs. It gives validations of Sweep3D on up to 500 pro-
cessors on three different HPC systems - an IBM RS/6000, a SGI Origin 2000 and a Cray T3E
with low predictive errors (below 10%). This work also provides projections of execution time
to solve the ASCI problem sizes of interest.

An analysis of the single sweep model when operating on a system made out of a
cluster of SMP nodes is detailed in [26]. This explores the contention arising in wavefront
computations at SMP boundaries where processors in a node share router links to commu-
nicate with processors in other nodes, and develops a criterion for the minimum number of
router links per SMP node to get no contention. Although the final Sweep3D model is not
detailed, validations of the model on an SGI Origin 2000 system are presented.

Related work by Kerbyson et al. [25] uses the single sweep model in [17] to give a
model for the total runtime of Sweep3D. [25] uses the model to speculate the runtime of
Sweep3D (without any validations) on a vector processor based HPC system (The Earth Simu-
lator [154, 155]) and an Alpha Server System. It concludes that Sweep3D performs significantly
better on the EarthSimulator given a higher achieved computation performance per processor.
This Sweep3D model attempts to incorporate the effects of contention when executing on a
cluster of SMPs. A concern to be noted is that this contention model inaccurately predicts
communication time resulting in a reduction to zero, when the number of links per SMP node
increases.

In [153] Hoisie et al. provide further validations of the Sweep3D model on three lead-
ing HPC systems [25], Blue Gene/L (IBM), Red Storm (similar to the Cray XT3) and ASC Pur-
ple (IBM Power 5). A comparison of these three systems is presented with model predictions
having less than 25% error. However, modifications to predict the contention effects on CMPs
in the RedStorm system are not detailed. RedStorm consists of CMP nodes similar to the Cray
XT4 system used in our validations. We detail a more precise contention model for the Cray
XT4 in Section 4.6 of this dissertation. Finally an analytic model for a wavefront application
operating on an irregular grid of data is developed in [37]. The model is validated with typical
errors of approximately 10% on a 64 node Alpha Server system and a 32 node Intel Itanium-2
cluster.

A similar model to that of the Los Alamos models is developed in [24] by Mathis et al.
using customised equations for computation and communication delays in wavefront execu-
tion time. The model makes an original contribution by analysing the runtime for one sweep
on three different domain decompositions: KBA [147], Volumetric and Hybrid. Furthermore it
explores the case of multiple simultaneous sweeps in all decompositions. This work does not
provide validations on any realistic HPC system, but shows analytically the optimal scenarios
for each of the three domain decompositions.

The notable simulation-based models for pipelined wavefront codes are the MPI-SIM
[29] simulation model for the POEMS [31] project and the simulation models developed using
the PACE [27] system and the successor WarPP toolkit [43].

The POEMS system as noted in Section 2.4.5 is a collection of performance engineering

49

3. PIPELINED WAVEFRONT COMPUTATIONS

tools and methodologies. Parts of [31] detail the use of MPI-SIM [29] and SimpleScalar [144]
simulators to analyse Sweep3D. The simulation is done through direct execution driven dis-
crete event simulation, where the computation per sweep step is simulated per instruction by
SimpleScaler, and the MPI communication events are handled by calls to MPI-SIM. The results
from the simulation study in [31] highly correlate with the predictions for Sweep3D from the
analytic models based on LogGP (which are also part of the tools in POEMS that were sep-
arately developed in [8]). These include speculative results for prediction on an IBM SP/2
system on large processor counts in the order of 10, 000. At the time of this study a real system
of that size was not available for direct validation, but the authors demonstrate validating the
simulation and analytic model results against each other.

PACE has similarities to the POEMS simulation work for wavefont applications, in
that direct execution of computation and communication events are carried out to obtain pre-
dictions. We defer the discussion of related work conducted using PACE [27] for wavefront
applications to a more complete discourse in Chapter 6

All the analytic models detailed above sum the critical path computation and commu-
nication times to obtain the total execution time on a given parallel architecture. Some have
been demonstrated to be highly accurate for a given platform of interest. However, in addition
to the various shortcomings of each, these models are customised for predicting performance
of a single application, in most cases either for Sweep3D or LU. Therefore, they require signif-
icant and unspecified restructuring in order to be applied to any other existing or imaginable
pipelined wavefront application. We believe that this significantly limits their applicability as
a reusable model, particularly for optimising wavefront codes and for speculative analysis.
We encountered such a situation when modelling Chimaera, which had no published perfor-
mance models or studies, prior to this research. A similar argument can be made regarding
the unspecified structuring required in the Sweep3D simulation models [31, 27] if it were to
be generalised to predict performance of any wavefront application. In the next chapter we
present the development of a reusable, plug-and-play analytic model to address this open is-
sue. The extensive utility of this model for speculative analysis, design and optimisation of
pipelined wavefront computations are detailed subsequently in Chapter 5 and Chapter 7.

50

4 A Plug-and-Play Reusable Analytic Model

The algorithmic operation of pipelined wavefront computations are discussed in the previous
chapter. In particular, the description of a general wavefront algorithm and its operation on a
2D array of processors, as well as definitions for a pipelined wavefront, a wavefront sweep and
operation of a sweep step were discussed. Three real-world applications that use pipelined
wavefront computations were investigated, including their significant structural differences
and resulting variations to the basic wavefront algorithm. Finally, we surveyed previous per-
formance engineering work related to these applications identifying several key research pa-
pers that developed customised performance models for Sweep3D and LU. Despite this pre-
vious research, we believe that all previous performance studies on wavefront codes lack the
ability to provide a comprehensive understanding of the performance of wavefront algorithms
on modern HPC systems. In particular they fail to address possible structural differences and
variations, and in turn fail to provide consistent insights for possible optimisations. In this
chapter, we present the development of a reusable, plug-and-play analytic model, based on the
LogGP [22] parametrisation, to address these open issues, forming the first key contribution
of this dissertation.

The specific sections of this chapter can be summarised as follows: We begin in sec-
tion 4.1, by outlining a simple set of parameters to capture the significant structural and be-
havioural differences between pipelined wavefront codes. Then, section 4.2 develops the ba-
sic reusable analytic model equations for pipelined wavefront computations on regular 3D
orthogonal grids of data. The basic reusable model assumes for simplicity that each proces-
sor core executing the computation has a dedicated network interface card (NIC) and main
memory; i.e. each node is a single non-CMP processor. Next, in Section 4.3 we look at one of
the main HPC systems that were used to validate this model - the Oak Ridge National Lab-
oratory (ORNL) Cray XT3/XT4 (Jaguar) system. This section also includes MPI sub-models
developed using LogGP that characterise the message passing performance on the Jaguar ma-
chine. Next, a detailed analysis of the issues regarding measuring computation performance
is explored in Section 4.4, followed by several key extensions to the basic model - (1) that allow
the user to apply the model to 2D regular orthogonal grids of data in section 4.5 and (2) nodes
with multiple cores (CMPs) in Section 4.6. Finally in Section 4.7, validations of the reusable
model applied to NPB-LU, Sweep3D and Chimaera on up to 8000 processors of the ORNL
Cray XT3/XT4 are presented.

4.1 Application Parameters

We begin by declaring a basic set of parameters aimed at capturing the functional, behavioural
and structural differences of pipelined wavefront codes. Table 4.1 details these parameters. We

51

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

Table 4.1: Plug-and-Play Reusable Model Application Parameters
Parameter LU Sweep3D Chimaera
Nx, Ny, Nz Inputsize Inputsize Inputsize

Wg measured measured measured
Wg,pre measured 0 0

Htile(cells) 1 mk ×mmi/mmo 1
nsweeps 2 8 8
nfull 2 2 4
ndiag 0 2 2

Tnonwavefront Tstencil + δh 2Tallreduce + δh Tallreduce + δh
MessageSizeEW 40Ny/m 8Htile ×#angles 8Htile ×#angles

(Bytes) ×Ny/m ×Ny/m
MessageSizeNS 40Nx/n 8Htile ×#angles 8Htile ×#angles

(Bytes) ×Nx/n ×Nx/n

Parameter Description
Nx, Ny, Nz Number of grid cells in x, y and z dimension

Wg A grid cell computation time (main computation block)
Wg,pre A grid cell computation time (pre-computation block)

Htile(cells) Height of the tile in the z dimension
nsweeps Total number of sweeps
nfull Number of sweeps that completes fully

(from corner to opposite corner)
ndiag Number of sweeps that completes from corner

up to and including the main diagonal
Tnonwavefront Time to complete non-wavefront portions

MessageSizeEW Message size (East-West or West-East)
MessageSizeNS Message size (North-South or South-North)

derive these based on the differences in LU, Sweep3D and Chimaera and by assuming that the
wavefront codes operate on a 3D regular orthogonal grid of data cells. The number of cells in
each dimension is then given by Nx, Ny and Nz .

Recall from Figure 3.6 and Figure 3.7 that LU, Sweep3D and Chimaera have different
number of sweeps as well as a different structure to the sweeps. We specify the number of
sweeps using a general parameter nsweeps. LU only has 2 sweeps - forward and backward,
while Sweep3D and Chimaera have 8 sweeps each one originating from one of the 8 corners
of the 3D data cube.

In the case of LU, sweep 1 must completely finish executing on all processors before
sweep 2 can begin, and sweep 2 must also completely finish before the iteration ends. In
Sweep3D, sweep 4 must completely finish before sweep 5 begins and sweep 8 must complete
before the iteration ends. However, as shown in Figure 3.7(a), sweep 2 in Sweep3D can be-
gin as soon as the corner processor (n,m) finishes its stack of tiles for sweep 1, and sweep 3
can begin as soon as the stack of tiles for sweep 2 has been processed by the main diagonal
processor (n, 1). Note that while sweep 3 is starting up in Sweep3D, sweep 2 is finishing its
last few wavefronts. Chimaera has some similarities and some differences in how soon each
sweep follows the previous sweep, as shown in Figure 3.7(b) and noted in Section 3.2.2. Other
wavefront applications may have other structures for their sweeps.

To capture the relevant behaviour of a wide range of possible sweep structures, we

52

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

define two new parameters namely, nfull and ndiag as given in Table 4.1. nfull specifies the
number of sweeps that must fully complete (i.e. from one corner to the opposite corner) before
the next sweep begins, while ndiag specifies the number of sweeps that must complete up to
and including the main diagonal of the 2D processor array. As will be explained in the next
section, all other sweeps (e.g., sweep 2 in Sweep3d) only need to complete on the processor
where the sweep originates before the next sweep begins. The values of nfull and ndiag for
each application in Table 4.1 are derived from the corresponding sweep structure in Figure 3.6
and Figure 3.7.

For Chimaera, all the tiles on processor (n,m) for that sweep must be processed, before
sweep 2 starts. Sweep 3 can only start at (n, 1) after the delay between processor (n,m) finish-
ing its last tile for sweep 2 and processor (n, 1) finishing its last tile for sweep 2. The number
of times this delay, which is modelled later, occurs is given by ndiag . Similarly, considering
Sweep3D, sweep 5 at processor (1,m) can only start after the delay between processor (n, 1)
and processor (1,m) finishing their last tiles for sweep 4. In this case the delay can be charac-
terised as occurring from one corner to the opposite corner. Thus, we denote the number of
times this delay, which is also modelled later, occurs by nfull.

Further differences between the three codes are captured using parameters as follows:
First, LU performs a pre-calculation before performing the MPI receives, while Sweep3D and
Chimaera do not. We use Wg,pre (Table 4.1) to specify the computation per grid point that
occurs before the receives, and set this parameter to zero if no computation is performed.

Second, both Sweep3D and Chimaera have a number of angles to be computed for
each data cell. In Sweep3D this is defined by parameter mmo set through an input file, while
Chimaera has a similar parameter setting. LU does not have any notion of multiple indepen-
dent angles to be solved per cell - i.e. it has a fixed amount of work to be performed per cell.
To increase/decrease the amount of parallel work done, Sweep3D uses an input parameter
called mmi that is also set via the input file to the benchmark, defining the number of angles
to be computed before sending boundary values to the near neighbours. This angle block is
not defined in Chimaera. Common values for mmi in the Sweep3D benchmark are 6 and 3. In
the model developed in this research, we use mmi and mmo to compute an effective value of
the height of the tile, as described in the next section.

Third, Sweep3D has a parameter (mk) that defines the height of a tile (in terms of the
number of grid cells) also called a k-block. We define a new parameter Htile in our model
inputs in Table 4.1. LU and Chimaera each have a fixed tile height equal to one cell. Sweep3D
computesmmi of the angles in the tile before sending the boundary values, and then computes
anothermmi of the angles. In terms of total code execution time, this is the same as computing
all of the angles for a tile of height Htile = mk ×mmi/mmo, as shown in the table. Note that
this implies that Wg is the measured total computation time for all angles in a cell or in the
case of LU the total computation time for the fixed amount of work per cell.

Parameter Tnonwavefront is the execution time for the operations performed between
iterations. For instance LU performs a four-point stencil computation after the 2 sweeps in
each iteration, while Sweep3D performs two all-reduce operations. The model of stencil exe-
cution time (Tstencil) is detailed later in Section 4.7 of this chapter. Similarly the time for the
MPI collective operation Allreduce is modelled later. The wavefront portions of these codes
take over 95% of their parallel runtime. The remaining time is spent in collectives such as the

53

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

all-reduce operations or in the case of LU, in the four-point stencil computation. We denote
the other negligible times by δh for completeness.

The size of messages exchanged depends on the underlying data structures exchanged
during the wavefront operation. LU communicates five values (each of 8 bytes) for every cell
at a processor boundary, while both Sweep3D and Chimaera message sizes depends on the
total number of angles solved per cell and the thickness of a tile (Htile). The subscripts EW
denotes message size in the horizontal or East-West direction and NS denotes message size in
the vertical or North-South direction with regard to the directional conventions set in Figure
3.3.

Note that a wide range of different wavefront application behaviours are captured in
the simple and small set of application parameters in Table 4.1. In particular, the parameters
can be used to specify various amounts of work before and after the boundary values are re-
ceived, a range of tile height, an arbitrary number of sweeps per iteration, a wide range of
sweep precedence structures including those in the three benchmarks, and a general process-
ing time between iterations. Hence these application parameters support the evaluation of
LU, Sweep3D, Chimaera, other possible wavefront applications, and many if not all possible
application code design changes.

The parameters are more complete than previous parameters for Sweep3D or LU be-
cause they include both the sweep structure and the computations that are performed at the
end of each iteration. As discussed in Section 4.7, the reusable model accurately computes exe-
cution times for each wavefront code from these application parameters. Hence, the parameter
values provide a succinct summary of the key differences among wavefront codes with respect
to measured application performance. Furthermore, as we will show in the development of
the model, and its application to LU, Sweep3D and Chimaera (and their various extensions)
the above parameter set is truly general and extremely re-usable.

4.2 Reusable Model : Single Core

The typical approach to developing a predictive model for a new wavefront code is to modify
an existing model to reflect the different behaviours in the new code. The model modification
process is however error-prone, and thus each new model must be extensively validated. To
reduce such development and validation costs, we choose to build in the impact of the various
possible behaviours to a model, relying on the input parameters developed in the previous
section to specify the appropriate features for each application. The idea is analogous to re-
usable software, which is popular due to reduced software development and testing costs. To
this end we develop the basic reusable model for pipelined wavefront applications building
on a previous customised model for Sweep3D from [8].

We note that in the basic model, it is assumed that each MPI process is mapped on to a
single node with a single processor. More specifically the processor is assumed to be a single
non-CMP processor with a dedicated NIC and dedicated main memory. In this case all MPI
communications are off node. Also note that the basic model is for wavefront applications
operating on regular orthogonal grids of data. As such the model takes into account the sym-
metry in which sweeps are performed. In this case, the execution time of a sweep starting at a
corner processor and progressing to the opposite corner processor is the same regardless of the

54

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

corner at which the sweep originates. Furthermore the assumption of a regular grid implies
that the computation requirement of each grid cell is homogeneous, or has very little variance.
We discuss computation variance in more detail in Section 4.4.

Equations (4.2.1) to (4.2.5) provide the accurate LogGP model for Sweep3D from [8],
and serve as a starting point as well as a useful comparison and contrast for our plug-and-
play reusable model for a wide variety of wavefront applications. The specific terms in each
equation are described in detail in [8]. Here we simply focus on the overall structure of the
model and note that the terms in each equation reflect the sequencing of the operations in
the code. (4.2.1) models the time to compute each set of mmi (out of mmo) angles for a tile.
The parameters it and jt define the x and y dimensions of the tile. Furthermore, Wg in this
previous model is the computation time for one angle of one data cell.

Wi,j = Wg ×mmi×mk × jt× it (4.2.1)

As noted in Table 4.1 we model this differently by defining Wg as the total execution time of
one data cell. In the case of Sweep3D or Chimaera this accounts for the time to compute all
the angles in a cell. mk defines the number of cells in the z dimension completed per sweep
step. The total execution time for a sweep is the same regardless of which corner it originates
from. The model computes execution times for a sweep that starts from the upper left corner
in the processor grid using the processor indexing in Figure 4.1, and then applies portions of
the sweep time to the appropriate actual sweeps in the code. (4.2.2) defines the time at which
the sweep starts on any given (i, j) processor in the grid.

StartPi,j = max(StartPi−1,j +Wi−1,j + Total Comm+Receive,

StartPi,j−1 +Wi,j−1 + Send+ Total Comm) (4.2.2)

(4.2.3) computes the time until the corner processor on the main diagonal completes its stack
of tiles in the sweep and (4.2.4) computes the time until the sweep completely finishes on
processor (n,m). (4.2.5) sums the total time to execute the 8 sweeps.

Time5,6 = StartP1,m + 2[(W1,m + SendE +ReceiveN + (m− 1)L)×

no of Kblocks×mmo/mmi] (4.2.3)

Time7,8 = StartPn−1,m+

2[(Wn−1,m + SendE +ReceiveW +ReceiveN + (m− 1)L+ (n− 2)L)×

no of Kblocks×mmo/mmi] +ReceiveW +Wn,m (4.2.4)

T = 2(Time5,6 + Time7,8) (4.2.5)

The specific terms in each equation are described in detail in [8]. Here we simply
focus on the overall structure of the model and note that the terms in each equation reflect the
sequencing of the operations in the code. The terms (m−1)L in (4.2.3) and (m−1)L+(n−2)L
in (4.2.4) model machine specific synchronisation costs that were observed on the IBM SP/2
on which this model was validated. These were speculated to be due to back-propagation
of MPI message passing handshakes on that machine. We omit the synchronisation terms in
the development of the re-usable model, noting that these previous or other synchronisation

55

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

(1,1) (n,1)

(i, j)

(1,m) (n,m)

N

XY diagonals
compute the same
tile in the stack

Sweep 1, 2Sweep 5, 6

Sweep 7, 8 Sweep 3, 4

Figure 4.1: Pipelined wavefront operation on a 2D processor array

terms can be incorporated in the re-usable model for other architectures, as needed.
Drawing from the insights of this model, our goal is to obtain a general expression for

the critical path time of one iteration of a wavefront application where this expression can be
restructured using the application parameter values in Table 4.1. To this end we breakdown
the critical path time to components that can be combined with the application parameters.
Firstly we develop a general expression for the amount of computation done per sweep step.
For Sweep3D this is given by (4.2.1).

As described in Chapter 3, during a sweep step a processor potentially does a pre-
computation on its block of cells, waits for boundary values from up to two neighbouring
processors, performs the main computation on its own block of cells and then passes boundary
values to up to two downstream neighbour processors. We use the model parameters detailed
in Table 4.1 to model the computation work done per sweep step before and after boundary
values are received by (4.2.6) and (4.2.7).

Wpre = Wg,pre ×Htile ×Nx/n×Ny/m (4.2.6)

W = Wg ×Htile ×Nx/n×Ny/m (4.2.7)

Htile × Nx/n × Ny/m gives the number of cells to be computed in a sweep step by a
processor, while the time to compute a cell as mentioned in section 4.1 is given by Wg,pre and
Wg for the pre-computation and main computation respectively. Considering the value ofHtile

for Sweep3D as noted in Table 4.1, equations (4.2.6) and (4.2.7) also illustrate the simplicity of
incorporating the mmi parameter into Htile.

Next, we recall that wavefronts progress through the 2D processor array using the
diagonals as stages of a pipeline. Therefore we identify that the critical path time consists of a
combination of the following components:

• the time for a wavefront starting at one corner to reach the opposite corner processor;

56

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

• the time for a wavefront starting at one corner to reach the processors at the main diag-
onal on the 2D processor array;

• the time taken by a processor to compute all of its tiles for a given sweep;

• the time for any non-wavefront code executions that occur before or after sweeps.

We obtain general reusable analytic expressions for these components as follows:

Recall that in LU, the pre-computation block can be performed by a processor with-
out any boundary values from near neighbours. Therefore at the beginning of a sweep all
the processors can perform the pre-computation block simultaneously. As soon as this block
is computed, all processors will be in a blocked state for boundary value receives from up-
stream neighbours. Only one corner processor (depending on which direction the sweep is
propagating from) can start its main computation. For instance a sweep originating from pro-
cessor (1, 1) in Figure 4.1 will take Wpre time to begin the main computation for the first tile
for that sweep. If we define StartPi,j as the time it takes for a processor (i, j) to begin its main
computation for its first tile for a given sweep, then StartP1,1 is given by (4.2.8).

StartP1,1 = Wpre (4.2.8)

From Figure 4.1 we can see that a sweep progression from a corner can be viewed as
wavefronts propagating from diagonal to diagonal of the 2D processor array. The first wave-
front of a sweep originating form a corner processor (say processor (1, 1)) to arrive at a proces-
sor (i, j) has to have completed the main computation for the first tile of all the processors on
all the previous diagonals up to the diagonal to which processor (i, j) belongs. We model this
in (4.2.9) using a recursive expression similar to (4.2.2) used in [8].

StartPi,j = max(StartPi−1,j +Wi−1,j + Total CommE +ReceiveN ,

StartPi,j−1 +Wi,j−1 + SendE + Total CommS) (4.2.9)

The term Total Comm accounts for the time to perform a near neighbour node-to-
node message communication, while Send and Receive account for the time taken by a pro-
cessor to release a message to the network and for the time taken by a processor to acquire a
message from the network respectively. The subscripts denote the direction of message pass-
ing. These costs are dependent on message size as well as the properties of the underlying
HPC machine. Thus, to obtain predictions for a pipelined wavefront application running on
an actual HPC system, the values for Total Comm,Send and Receive should be separately
modelled. Later in section 4.3 we develop MPI sub-model for these terms for the ORNL Cray
XT3/XT4 which is one of the main validation platforms used in our work. Further models are
developed for an InfiniBand network in Chapter 7.

Note in equation (4.2.9), the first term on the right corresponds to the case where the
message from the West is the last to arrive at processor (i, j). In this case the message from
the North has already arrived, but cannot be received until the West message is completely
received. The second term corresponds to the case where a message from the North arrives
last. In this case, processor (i, j−1) does a send to its East before it sends to its South processor

57

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

(i.e. to processor (i, j)). The Total Comm in this case is for the end to end communication
between processors (i, j − 1) and (i, j).

Using (4.2.9) we can model the time for the main computation of the first wavefront
that originated on processor (1, 1) to arrive at processors (1,m) and (n,m) as (4.2.10) and
(4.2.11) respectively.

Tdiagfill = StartP1,m (4.2.10)

Tfullfill = StartPn,m (4.2.11)

The former is the time gap between starting a sweep at (1, 1) and the first wavefront
of that sweep reaching up to the main diagonal processors. The latter is the time gap between
starting a sweep at (1, 1) and the first wavefront of that sweep reaching the opposite corner
of the 2D processor array. Wpre does not appear in equations (4.2.10) and (4.2.11) because the
parallel pre-computation for the first tile is accounted for in equation (4.2.8).

More importantly, we also note that (4.2.10) is equivalent to the time gap between
completing the final tile belonging to a sweep that originated on processor (1, 1) and the final
tile of the same sweep on processor (1,m). Given that there are ndiag number of such gaps we
can model the total time spent in these gaps as ndiagTdiagfill. Similarly (4.2.11) is equivalent to
the time gap between completing the final tile of a sweep that originated on processor (1, 1)
and the final tile on processor (n,m). Then nfullTfullfill gives the total time spent in such
gaps. These gaps lie on the critical path of a wavefront application’s execution in addition to
the time taken by a processor to solve all of the cells in its domain, which we model next.

The time taken by a processor to solve all of the cells assigned to it, that is to process
all of its stack of tiles, is equivalent to performing Nz/Htile number of steps each consisting
of (1) a pre computation, (2) a main computation and (3) four communication operations: two
sends and two receives. We model this as in (4.2.12).

Tstack = (ReceiveW +ReceiveN +W + SendE + SendS +Wpre)Nz/Htile −Wpre (4.2.12)

The processor at the corner, or on the boundaries of the of the 2D processor array will
not perform all four communication operations. However, all processors compute their tiles
at the same rate due to the blocking nature of the MPI sends and receives that result from
the data dependency between processors. Therefore, even if the corner and border processors
complete faster due to sending fewer messages, they still will be blocked by waiting for the
other inner processors to complete all four communication operations. The per-tile processing
time in (4.2.12) includes Wpre for each tile. The total number of tiles that need to be computed
is given by Nz/Htile. The subtracted Wpre is an adjustment for the final tile in the stack.

Now that we have obtained general reusable analytic expressions for the components
of the critical path time of a pipelined wavefront computation, we combine them with the
application parameters in 4.1 to form an equation that gives the runtime for one iteration of a
general pipelined wavefront application:

Time per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront (4.2.13)

Equation (4.2.13) provides the time for one iteration of a wavefront computation by

58

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

(1) combining the appropriate number of terms for sweeps that must complete at the main
diagonal or at the opposite corner before the next sweep can begin, and (2) by adding the term
for non-wavefront computations that occur at the end of the iteration or possibly between
the sweeps. Note that (4.2.13) provides for an infinite variety of sweep sequences, while the
model inputs nfull and ndiag are the key measures of the sweep precedence structure for a
given application. In section 4.7 we detail the application of the reusable model to formulate
concrete analytic models for LU, Sweep3D and Chimaera, further demonstrating the reasoning
behind the use of nfull and ndiag and the development of the model equations.

Table 4.2: Plug-and-play LogGP Model: One Core Per Node, on 3D Data Grids
Wpre = Wg,pre ×Htile ×Nx/n×Ny/m 4.2.6
W = Wg ×Htile ×Nx/n×Ny/m 4.2.7

StartP1,1 = Wpre 4.2.8
StartPi,j = max(StartPi−1,j +Wi−1,j + Total CommE +ReceiveN ,

StartPi,j−1 +Wi,j−1 + SendE + Total CommS) 4.2.9
Tdiagfill = StartP1,m 4.2.10
Tfullfill = StartPn,m 4.2.11

Tstack = (ReceiveW +ReceiveN +W + SendE + SendS +Wpre)Nz/Htile −Wpre 4.2.12
Time per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront 4.2.13

Expression Description
m Number of processors along the y

dimension of the 2D processor array
n Number of processors along the x

dimension of the 2D processor array
StartPi,j Time to begin the main computation on processor (i, j)

Total Comm End to end communication time
Send Time to release a message to the network
Receive Time to obtain a message from the network
Tdiagfill Time gap between starting a sweep at a corner processor and the

first wavefront of that sweep reaching up to the main diagonal processors
Tfullfill time gap between starting a sweep at a corner processor and the

first wavefront of that sweep reaching the opposite corner processor
Tstack Time taken by a processor to solve its stack of tiles

Tnonwavefront Time taken by non-wavefront portions of the code

The new re-usable model (as summarised in Table 4.2 is significantly more versatile
than previous models of specific wavefront codes, yet it has a similarly small number of in-
tuitive equations. As detailed in Section 4.7, the re-usable model is also highly accurate and
comparable to the previous customised models of the Sweep3D code [17, 25, 8].

4.3 The Cray XT3/XT4 and MPI Communications Performance

The development of the reusable model in the previous section was not specific to any HPC
system. The only key assumption was that the system on which the application was running
is an HPC system with nodes containing only a single processor core per node where one

59

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

MPI process is mapped to one node. In order to obtain qualitative and quantitative measures
for a specific pipelined wavefront application running on a platform of interest, the applica-
tion dependent parameters and the machine dependent parameter values should be known.
These parameters applied to the reusable model will result in a specific analytic model for the
given application’s execution on the target HPC system. The application parameters for LU,
Sweep3D and Chimaera have already been briefly detailed in Table 4.1 with a more detailed
derivation of parameters for each application to follow in Section 4.7. In this section we con-
centrate on the machine dependent parameters for one of the main validation systems used in
this research - the Oak Ridge National Laboratory (ORNL) Cray XT3/XT4 (Jaguar). The ma-
chine dependent parameters required for the reusable model are the computation performance
(Wg,Wg,pre) and the MPI communication performance (Total Comm,Send and Receive). We
first focus on the communication performance of Jaguar. The issues related to evaluating the
compute performance will be discussed in Section 4.4.

The Jaguar system at ORNL, during the time of this research comprised of two parti-
tions - one consisting of a Cray XT3 and another consisting of a Cray XT41. Table 4.3 details
the key system specifications of Jaguar as used in this research [156, 157].

Table 4.3: The ORNL Jaguar : System Details
XT3 XT4

Processor nodes 2.6 GHz dual-core AMD Opteron
Memory per processor 4 GB

Number of processor nodes 5,212 6,296
Memory bandwidth 6.4 GB/s 10.6-12.8 GB/s
Interconnect router Cray SeaStar Cray SeaStar2

Bi-directional 7.6 GB/s (peak), 7.6 GB/s (peak),
Interconnect Bandwidth 4 GB/s (sustained) 6 GB/s (sustained)

Memory speed 400 MHz 667 MHz
Operating System Catamount micro-kernel

Each compute node in Jaguar consists of a dual-core AMD Opteron processor with
64KB L1 instruction cache, 64KB L1 data cache and, 1 MB L2 cache per processor. The pro-
cessor is connected via a HyperTransport [158] link to a Cray SeaStar [157] chip, which is in
turn connected to a 3-D torus network. This interconnection between nodes facilitates effi-
cient mapping of MPI processes in wavefront applications and implies near-neighbour send
and receive operations. The main differences between the XT3 and the XT4 are the memory
bandwidth, memory speed, and sustained interconnect bandwidth.

Each of Total Comm,Send and Receive are functions of the application specific mes-
sage sizes as detailed in Table 4.1 used to communicate near neighbour data between proces-
sors. Thus we require models for these terms parametrised by message size. Such sub-models
are a key component of any analytic model based on the LogGP parameter set [8, 36, 25].

To our knowledge, Cray XT3/XT4 MPI communication models have not previously
been reported in the literature. Hence, we derive these models below. Note that we con-
firmed the basic operation of the XT3/XT4 MPI implementations with system architects. To

1The XT4 at ORNL has since been upgraded to Quad-Core nodes, running Compute Node Linux (CNL) as well as
various other upgrades to the execution environment.

60

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(M

ic
ro

-S
ec

on
ds

)

Message Size (Bytes)

Measured
Model

Figure 4.2: Measured and modelled Cray XT4 off-node MPI end-to-end communication times

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(M

ic
ro

-S
ec

on
ds

)

Message Size (Bytes)

Measured
Model

Figure 4.3: Measured and modelled Cray XT3 off-node MPI end-to-end communication times

our knowledge, the models in Section 4.3.2 are also the first validated LogGP models of on-
chip MPI send/receive for any platform. The LogGP communication models derived below
can be used for any application that uses MPI primitives. They also yield insights into the
implementation as well as quantitative values of the end-to-end communication latency (L),
the processing overhead (o) at the sender and receiver, and the per-byte transmission cost (G).
Thus, these models are valuable in their own right. Note that in modern architectures, a node
can transmit a new message as soon as a previous message transmission is complete, and thus
the gap parameter, g, is equal to zero.

61

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

4.3.1 MPI Send/Receive: Off-node

Figure 4.2 plots one half of the round-trip time for a ping-pong message exchange between two
nearest neighbour nodes in the XT4, as a function of the size of the message that is transmitted
back and forth. These results were obtained using the Intel MPI Benchmark (IMB) version 3.0
[81]. In the IMB Ping-Pong benchmark, each node posts a receive immediately after complet-
ing a send, and thus there is very low variance in the measured round-trip times. The solid
line connects the measured values, while the points in squares are the highly accurate values
predicted by model equations (4.3.1) and (4.3.2) in Table 4.5. The model error was observed
to be less than 5%. Similar results obtained through running the IMB on two XT3 nodes are
given in Figure 4.3. As it can be seen the XT4 has a minor quantitative performance improve-
ment over the XT3 but has almost no qualitative difference. Thus the qualitative reasoning
during model development remains the same for both these systems although we present it as
a model for the XT4 communication operations. We observed a similar result for the on-chip
MPI performance for the XT3 and XT4. The majority of the subsequent application model
validations were also done only for the XT4 system partition1.

The measured communication time increases linearly with message size up to 1024
bytes and again after 1025 bytes. For all messages larger than 1025 bytes, the sender first sends
a short message requesting a reply when the receive has been posted, and waits for a reply
before sending the body of the message. This handshake adds a fixed delay, h, equal to the
time to send 1025 Bytes minus the time to send 1024 Bytes, in the case that the receive is already
posted.

The slopes of the curves before and after the 1024 byte message size are approximately
equal. This is the per-byte transmission cost of ’gap per byte’ (G). Note that G is the sum of the
per-byte costs for each of the copy operations at the sender and receiver and that 1/G yields an
inter-node bandwidth of 2.5 GBytes/sec. Also note that the off-node cost per byte is the same
for all message sizes. Thus the method used to copy the message data between application and
kernel memory is the same for all message sizes, as is the method used to copy the message
from kernel memory to the Network Interface Card (NIC). As direct memory access (DMA)
methods have higher performance than byte-to-byte copies for large messages, it is likely that
DMA methods are used to copy the message data between each of these message buffers. This
assumption is not needed in the model derivation below, but is a useful hypothesis. Regardless
of the actual method employed, since all message sizes are copied from one buffer to another
using the same method, the processing overhead (o) before and after message copies at the
sender should be the same for all message sizes. Likewise, the processing overhead at the
receiver should be the same for all message sizes.

As in previous LogGP models of communication on various parallel platforms, we as-
sume during model development that the processing overhead on the sender is approximately
the same as on the receiver. The intuitive reasons for this assumption are that the sender and
receiver perform the same number of message copy operations, and that the DMA setup and
other significant processing costs before and after the copy operations can be expected to be
about the same at each end. Validations of the model are needed to test the validity of this
assumption as well as all other abstractions in the model.

1The LU validations were done using the XT3 system as at the time of validation in Jaguar only consisted of an
XT3 partition

62

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

For messages smaller than 1025 Bytes, (4.3.1) models the total time to send a message,
including the message processing time (o) at each end and the end-to-end latency (L) between
the two processors.

Total Comm≤1KB,offchip = o+Message size×G+ L+ o (4.3.1)

For message sizes larger than 1024 Bytes, we partition the message processing time at
the sender and receiver. Specifically, let h denote the total time for a handshake, obtained as
the difference in transmission times for 1025 and 1024 Bytes. Let o = oinit + oc2NIC where
oinit denotes the overhead for the copy between application and kernel, and oc2NIC denotes
the time to setup a, DMA or other, copy of the message data between kernel memory and the
NIC and to prepare or process the message header. Also let oh denote the processing time for a
handshake request or reply, including the time to prepare a new message header. Using these
processing overheads, we model the total time to send a message larger than 1024 bytes using
the following sequence of times:

Total Comm>1KB,offchip = o+ h+Message size×G+ L+ o (4.3.2)

where h = L + oh + L + oh. The detailed overheads enable the model to reflect the order in
which the overheads occur and are also needed in the development of the on-chip model in
the next section.

For a given message size, (4.3.1) has two unknowns, o and L, whereas (4.3.2) has three
unknowns, o, L and oh. Using the equation for h to solve for the three unknowns leads to
an infeasible solution, indicating that the o values in the equation for h are smaller than the
overhead o for the message transmission. We surmise that the handshake latency is a NIC-to-
NIC latency plus one or more NIC accesses by the processor at each end, whereas the message
transmission includes an additional latency between NIC and processor memory where the
message data buffers are located.

Assuming oh is negligible, we use the measured handshake time (h) in (4.3.2). In this
case, for a given message size less than one kilobyte and another given message size larger
than one kilobyte, we solve (4.3.1) and (4.3.2) simultaneously to derive values of o and L,
given in Table 4.4. These values provide the predicted communication time plotted in Figure
4.2, indicating that the model is highly accurate. Note that the off-node parameters in Table
4.4 are one or two orders of magnitude lower than the values for the IBM SP2 in [8], which
are: G = 0.07 µsec/byte, L = 23 µsec and o = 23 µsec. Thus the Cray XT4 communication
hardware and software are highly optimised.

The reusable model also requires sub-models of the time for the sending processor to
execute the Send and for the receiving processor to complete the Receive. These are easy to
derive from the total time to send the message. From the above equations we find that for
message sizes less than 1024 Bytes:

Send≤1KB,offchip = o (4.3.3)

Receive≤1KB,offchip = o+ L (4.3.4)

63

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(M

ic
ro

-S
ec

on
ds

)

Message Size (Bytes)

Measured
Model

Figure 4.4: Measured and modelled Cray XT4 on-chip MPI end-to-end communication times

and for message sizes greater than 1024 Bytes:

Send>1KB,offchip = o+ h (4.3.5)

Receive>1KB,offchip = L+Message size×G+ L+ o (4.3.6)

4.3.2 MPI Send/Receive: On-chip

Figure 4.4 provides half the round-trip in the ping-pong MPI communication benchmark as
a function of message size, in the case that the sender and receiver are on the same dual-core
chip. We again observe a significant increase in transmission time for message size equal to
1025 Bytes. However, it is unlikely that a handshake operation with the other on-chip core
could account for the magnitude of this increase. Instead, note that the slope of the curve for
message sizes below 1024 Bytes is larger than the slope for larger messages. These two per-
byte transmission costs -Gcopy andGdma - are given in Table 4.4, with subscripts which denote
that it is likely that the larger messages are transmitted using a DMA operation. Since a slower
message copy is used for messages smaller than 1025 Bytes, it is likely that the fixed increase
at 1025 Bytes is due to the DMA setup cost.

Using the notation in the previous section, and assuming L = 0 for on-chip message
transmission, we model the total time to send a message smaller than 1025 Bytes as follows:

Total Comm≤1KB,onchip = ocopy +Message size×Gcopy + ocopy (4.3.7)

Note that ocopy is the processing time before and after the message copies on the sender and
the receiver, while Gcopy is the total time per Byte to copy the data from one application buffer
to the other. For message sizes larger than 1024 bytes, we let o = ocopy + odma and model the

64

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

total end-to-end message communication time as:

Total Comm>1KB,onchip = o+Message size×Gdma + ocopy (4.3.8)

We solve (4.3.7) and (4.3.8) to obtain values for o and ocopy which are given in Table 4.4. The
value of o is approximately the same as in the off-node model, which greatly increases our
confidence in these communication models. A further observation that gives us more confi-
dence about the validity of the models is that the per-byte cost to move the data from sender
to receiver is lower on-chip than off-node for all message sizes. Similar to the off-node model
the models for Send and Receive are given by the following for message sizes less than 1024
Bytes:

Send≤1KB,onchip = ocopy (4.3.9)

Receive≤1KB,onchip = ocopy (4.3.10)

and for message sizes larger than 1024 Bytes:

Send>1KB,onchip = oinit + odma (4.3.11)

Receive>1KB,onchip = Message size×Gdma + oinit (4.3.12)

Table 4.4: XT4 Communication Parameters

Off-node Value On-chip Value
G 0.0004 Gcopy 0.000764 µs/byte

µs/byte Gdma 0.000091 µs/byte
L 0.36 µs o 3.77 µs
o 3.85 µs ocopy 1.98µs

Table 4.5: LogGP Model of XT4 MPI Communication

(a) Off-Node Communication Model
Total Comm≤1KB,offchip = o+Message size×G+ L+ o (4.3.1)

Total Comm>1KB,offchip = o+ h+Message size×G+ L+ o (4.3.2)
where h = L+ oh + L+ oh

Send≤1KB,offchip = o,Receive≤1KB,offchip = o+ L (4.3.3),(4.3.4)
Send>1KB,offchip = o+ h (4.3.5)

Receive>1KB,offchip = L+ o+Message size×G+ L+ o (4.3.6)
(b) On-Chip Communication Model

Total Comm≤1KB,onchip = ocopy +Message size×Gcopy + ocopy (4.3.7)
Total Comm>1KB,onchip = o+Message size×Gdma + ocopy (4.3.8)

Send≤1KB,onchip = ocopy, Receive≤1KB,onchip = ocopy (4.3.9),(4.3.10)
Send>1KB,onchip = o = ocopy + odma (4.3.11)

Receive>1KB,offchip = Message size×Gdma + ocopy (4.3.12)

4.3.3 MPI Allreduce

For completeness, this section develops and validates very simple models of the time to per-
form an MPI allreduce operation on the Cray XT4. These operations appear in the non-

65

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

wavefront portions of each iteration in Sweep3D and Chimaera. The performance models
can also be applied to other applications that perform such operations. Validation of these
simple models indicates that the very abstract models capture the relevant costs, providing
insight into the component processing and communication delays in the critical path of this
group communications primitive. Furthermore, it gives confidence in our analysis for devel-
oping extensions to the basic reusable model for wavefront codes running on CMP nodes as
detailed in Section 4.6. In particular the allreduce models act as a sanity check for the existence
of contention costs on CMP nodes on the XT4 during wavefront operation.

We note that the MPI allreduce on the XT4 is performed using a binary tree as in Figure
4.5, more specifically called a butterfly pattern. Thus for P processors (where P is a power of
2 number of processors) the longest communication path is log2(P). Thus we model the total
time for single-core nodes as:

Tallreduce = log2(P)× Total Comm (4.3.13)

and the total time when all-reduce executes on a CMP with C cores per node as:

Tallreduce = [log2(P)− log2(C)]× C × Total Commoffchip +

log2(C)× C × Total Commonchip (4.3.14)

Note that the latter equation is derived assuming that the intra-node operations are
serialised on a shared bus. If the CMP node has greater parallelism in the interconnect among
the multiple cores, the extra factor of C in each term should be deleted or replaced by an-
other value that suitably represents the interference among the intra-node messages. Figure
4.5 and Figure 4.6 illustrates the allreduce operation on dual-core and quad-core CMP nodes
respectively for a total of 8 cores. As can be seen from these figures, the first and second terms
in (4.3.14) represent the time to complete the number of stages in which the communications
are performed off-node and on-chip (i.e. intra-node) respectively. For a non-power of two
number of processors the binary tree algorithm requires additional correction steps to com-
municate with all the processors [159]. Such corrective steps could be easily incorporated to
the above models. As the power of two number of processors are the high performance con-
figurations we predominantly used in our wavefront application model validations, we have
omitted the analysis of non-power of two processor model for the MPI allreduce on the Cray
XT4.

Table 4.6: Validations for the LogGP MPI allreduce model on a Cray XT4
Number of Single core per node Two cores per node

Processors(P) Measured Predicted Error Measured Predicted Error
(µs) (µs) (%) (µs) (µs) (%)

4 15.4 16.3 5.51 24.3 24.5 -0.92
16 29.5 32.6 10.44 56.9 57.0 -0.28
64 46.7 48.9 4.62 89.4 88.5 1.03
256 60.6 65.1 7.40 122.0 121.0 1.18

1024 76.1 81.4 6.92 152.0 152.0 1.88

66

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

5 6 7 8

5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7 8

On-chip Communication
Off-node Communication

Stage 2

Stage 1

Stage 3

Figure 4.5: MPI allreduce operation on dual-core nodes

5 6 7 8

5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7 8

On-chip Communication
Off-node Communication

Stage 2

Stage 1

Stage 3

Figure 4.6: MPI allreduce operation on quad-core nodes

Validations of both all-reduce models on the Cray XT4 are provided in Table 4.6. P is
the total number of cores performing the allreduce. Note that in the single core per node result,
the P processors are each mapped to different nodes. The measured value is the total time for
1000 executions of the all-reduce operation divided by 1000. Note that the largest observed
error in the model estimates is approximately 10%.

67

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

4.4 Measuring Computation Performance

As mentioned before, compute performance (captured by Wg,pre and Wg) is one of the two
machine dependent parameters in Table 4.1. An accurate analysis of the issues related to mea-
suring the compute performance parameters is required at this point, in order to ascertain
(1) the variance of the observed measures in general and (2) the increase (or decrease) of the
measured parameter values, when running an MPI process on all cores/processors per node
(given a node made of a CMP processor or a SMP) as oppose to running only one MPI process
per node. The latter is an implication related to extending the basic reusable model to the Cray
XT4’s dual-core nodes which we detail in the next section.

First we note that in order to obtain accurate timings, directly measuring the time to
compute a single cell is not practical. Existing timer routines are not sufficiently accurate to
measure such an extremely small cost. Our observation for the three applications investigated
in this thesis has been thatWg,pre andWg are in the order of one tenth of a micro second, while
the resolution of the commonly used timers are approximately 1 or 2 micro seconds. Addi-
tionally the overhead associated with calling such a timer routine introduces large amounts of
perturbation if each cell is measured individually. Therefore we measure the time to compute
a block of tiles per sweep step (i.e. W , or Wpre) directly and derive Wg and Wg,pre by divid-
ing by the appropriate number of cells. An example of such a code instrumentation used for
measuring W is given in listing 4.1.

Listing 4.1: Timer instrumentation of a wavefront code

double p r e c i s i o n t2 , t3 , et2 , et3 , tot W , avg W , tot WW , avg WW, Var
i n t e g e r i t e r

FOR EACH OCTANT DO
FOR EACH TILE DO

RECEIVE FROM WEST
RECEIVE FROM SOUTH

c a l l t imers (t1 , e t1)
COMPUTE (CELLS IN TILE)

c a l l t imers (t2 , e t2)
i t e r = i t e r + 1
tot W = tot W + et2−e t1
tot WW = tot WW + (et2−e t1) ∗ (et2−e t1)

SEND TO EAST
SEND TO NORTH

END FOR
END FOR

avg W = tot W/ i t e r
avg WW = tot WW/ i t e r
Var = avg WW − (avg W∗avg W)
p r i n t ∗ , ’ i t e r a t i o n : ’ , i t s , ’ myid : ’ , myid , ’ W: ’ , avg W
p r i n t ∗ , ’ i t e r a t i o n : ’ , i t s , ’ myid : ’ , myid , ’ Var : ’ , Var

Second, we note that the Wpre and W should be measured when the application exe-
cutes on at least four cores, or the number of cores that share a cache or other memory resource

68

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

at a given node, whichever is larger. Four cores are required regardless of the number of cores
per node, so that the code path executed is approximately the same as that which will be
executed for larger configurations.

The third consideration is the variance of Wg,pre and Wg . One of the assumptions of
the basic reusable model is that the data grid cells have comparable or homogeneous compu-
tational costs, that is, the cells belong to a regular grid of data. Such an assumption holds for
LU, Sweep3D and Chimaera due to the very low variance (less than 0.1 coefficient of variation)
observed in measured Wpre and W values on the systems used during this research. Never-
theless, we note here the several observations when considering the variance in computation
performance in these three applications.

Firstly we observed that the computation cost per cell may vary with respect to the grid
size assigned per processor. Particularly, the grid size per processor varies when conducting
a weak scaling study where a constant total problem size is continually divided among an
increasing number of processors. This can be attributed to cache misses and other effects [8].
Therefore in the validations presented in Section 4.7 we measured Wg and Wg,pre for each
per-processor grid size for LU1 and Sweep3D. In both these applications the per processor
problem size could be arbitrarily set using an input configuration file, making it possible to
easily obtain Wg and Wg,pre for any per processor grid size. For instance if a 10003 grid point
problem is to be solved using a 100 × 100 2D processor array then an almost exact estimate
of the per cell compute time can be obtained by measuring the application running a total
problem size of 20× 20× 1000 on a 2× 2, 2D processor array.

In the case of Chimaera such a measure was impractical to obtain due to it being con-
figured to solve a problem only in strong scaling mode. Each Chimaera problem size of interest
(603, 1203 and 2403) consists of an input file that specifies the properties of each cell. Thus dif-
ferent input files are required to obtain a mixture of cells with comparable properties to be run
on a 2 × 2 processor array. Furthermore, as strong scaling results in differant per processor
grid sizes, each case requires a different input file. Therefore we used an estimated Wg based
on a small number of processors (e.g. 16, 32, 64, 128, 256, 1024) when speculating performance
on larger numbers (> 4000) of processors. As can be seen from the validation in Section 4.7,
due to the low variance of compute performance per cell in Chimaera, the predictive accuracy
of the model is high even with errors introduced by this estimate. Nevertheless, we note that
a more application specific model for W and Wpre can easily be used, replacing the r.h.s in
equations (4.2.6) and (4.2.7), possibly providing higher model accuracies.

The computation performance per cell may also vary based on the iteration. For in-
stance, Sweep3D contains an extra calculation called fixups for the final 5 iterations in a total
of 12 iterations. In our validations for Sweep3D, Wg was measured separately for the itera-
tions without fixups and for iterations with fixups. As the model is for a single iteration of a
wavefront application such differences between iterations could be easily accommodated.

If the computation per cell has high variance across the data cells, we classify such a
data grid as an irregular or unstructured grid of data. The model extensions required to deal
with wavefront application executions on such a data grid is detailed in Chapter 7, Section 7.4.

We also note that model error due to parameter variance (including computation pa-

1For weak scaling, LU required a modification to a configuration file and recompiling with different problem sizes
as oppose to using its standard problem sizes - A,B,C and D.

69

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

rameters) on a machine can be estimated using the measured variance of a parameter and
propagating the variance through the model as detailed in Appendix E. This allows to ob-
tain the standard deviation of the final runtime of an application predicted by the model. It
provides a confidence interval for the runtimes, where the user is given an approximate set
of bounds for the runtime. Due to the very low variance of measured parameter values on
the systems used in this research and to present the qualitative trend of the predictions with
clarity we have omitted these bound lines in the results presented in this thesis.

P1 P2 Pn………………

Sweep

Nx

Nz

Processors --

Figure 4.7: Wavefront operation on a 2D data grid

4.5 Deriving a Model for 2D Regular Orthogonal Grids

Table 4.7: Plug-and-play LogGP Model for Wavefront Codes on 2D Data Grids
Wpre = Wg,pre ×Htile ×Nx/n (4.5.1)

W = Wg ×Htile ×Nx/n (4.5.2)
StartP1 = Wpre (4.5.3)

StartPi = StartPi−1 + Wi−1 + Total CommE (4.5.4)
Tfill = StartPn (4.5.5)

Tstack = (ReceiveW + W + SendE + Wpre)Nz/Htile −Wpre (4.5.6)
T ime per iteration = nfullTfill + nsweepsTstack + Tnonwavefront (4.5.7)

The reusable model in Table 4.2 is for modelling pipelined wavefront applications on
3D regular orthogonal grids of data. By ignoring the terms related to either the x or y dimen-
sion, this model reduces to a simpler model that can be applied to 2D regular orthogonal grids
of data. This is given in Table 4.7 for a 2D grid of data depicted in Figure 4.7. Note that in this

70

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

case the 2D domain is decomposed on to a 1D array of processors and thus there is only one
pipeline fill term, Tfill replacing (4.2.10) and (4.2.11). Similarly the four communications op-
erations in (4.2.12) are reduced to two operations per sweep step. The shaded strips in Figure
4.7 depict the initial wavefronts that originates at the top left corner propagating towards the
opposite corner.

4.6 Extending the Reusable Model to CMP Nodes on the XT4

The reusable model so far assumed that one MPI process is mapped on to one non-SMP node
or a non-CMP processor. This assumption was made to simplify the development of the basic
model by sidestepping the analysis and inclusion of any additional time costs that may occur
due to shared resources such as a NIC or main memory. In this section we extend the basic
reusable model to be applicable to the Cray XT4, when an MPI process is mapped on to each
of the cores in the XT4’s dual core nodes; That is, in this case there are two MPI processes
executing on one XT4 node.

In addition to the issues discussed in Section 4.4 regarding the variance of Wg and
Wg,pre during execution on multi-core processors, two additional extensions to the basic
reusable model are required. First (4.2.9) needs to be modified to specify which of the MPI
send and receive operations are on-chip and which are off-node. Second, message contention
at shared node resources needs to be accounted for, in (4.2.12). Note that all the communica-
tions costs in (4.2.12) should be off-node costs, because the processing of the stack of tiles is
limited by the slowest communication costs in each iteration. This follows from the fact that
wavefronts progress through the 2D processor grid, using the diagonals as stages of a pipeline.
The repeating rate of a pipeline is determined by the repeating rate of the slowest stage after
the pipeline is full.

Let the wavefront application be mapped to the multi-core nodes such that the cores
at each node form a Cx × Cy rectangular sub-array in the m × n processor grid. (See Figure
4.8 where the data grid is mapped on to four nodes each with Cx × Cy cores). In this case,
the off-node communications occur at the edge of the rectangle. Let (i, j) again denote the
location of each core in the processor grid where the processor indices start from 1 in both
directions. Using this notation, Table 4.8 provides the required modification to (4.2.9) for on-
chip communication between two cores on the same node. For example, the SendE operation
in equation (4.2.9) occurs between cores (i, j − 1) and (i + 1, j − 1). This will be off-node if
the core (i, j − 1) is at the right edge of the Cx × Cy subarray (i.e., if i mod Cx = 0) and will
otherwise be on-chip. The remaining rules are derived in a similar manner.

For message contention, we note that the primary message contention on the Cray
XT4 will occur during the DMA transfer of message data from kernel memory to the NIC
via the shared bus. Once the message data is in the NIC memory, there should be very little
contention since messages are travelling in one direction only between any two nodes and
because the NIC has a separate port for each destination node [157]. The time to transmit a
message on the bus can be derived from the measured communication primitives in Section
4.3. For each message interference a value of I is added to the appropriate Send or Receive
operation, as specified in Table 4.8.

The number of interference, I values added is derived from the observation of which

71

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

Cy

Cx

Node 1 Node 2

Node 3 Node 4

1 2 Cx Cx+1 Cx+2

1

2

Cy

Cy+1

Cy+2

m

ij n

Figure 4.8: Wavefront application mapped to multi-core nodes

Steps (r, r+1)

rr

r+1

r+3

Steps (r+2, r+3)

r+3

r+2

r+1

Figure 4.9: Wavefront operation and collisions on dual core nodes

send and receive operations from cores within a single node have the potential to occur at the
same time. In other words, we observe which communication operations have the potential
to collide during wavefront operation. For dual-core and quad-core nodes these collisions can
be illustrated as in Figure 4.9 and Figure 4.10. The communication operations that occur at
the same step are denoted with the same number. As can be seen, for dual-core nodes the
communication operations to the south and from the north contend for the shared bus via the
NIC1. We add an extra I to the north-south communications to account for this. Similarly for
quad-core nodes we account for both a north-south and an east west contention by adding an
extra I to each send and receive. The derivation of the number of I values added including the
illustrations of collisions for, dual, quad, eight and sixteen core nodes is given in Appendix A.

1Note that if the dual-core node orientation is changed from the orientation in Figure 4.9 - horizontal cores - by 90
degrees to vertical cores then the contention occurs between the east-west message send and receives.

72

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

Steps (r, r+1)

rr

r+1

r+1

Steps (r+2, r+3)

r r+2
r+3

r+2

r+3

r+2

r+3r+1

Figure 4.10: Wavefront operation and collisions on quad core nodes

Table 4.8: Re-usable Model Extensions for CMP Nodes
Modifications to Equation (4.2.9)

For Cx × Cy cores per node, all communication are off-node except the following:
i mod Cx 6= 0 & Cx 6= 1 : SendE = Sendonchip,E

i mod Cx 6= 1 & Cx 6= 1 : Total CommE = Total Commonchip,E

j mod Cy 6= 1 & Cy 6= 1 : ReceiveN = Receiveonchip,N

j mod Cy 6= 0 & Cy 6= 1 : Total CommS = Total Commonchip,S

Modifications to Equation (4.2.12)
For CMPs with a shared bus to memory
let I = (odma +Message size×Gdma)

1× 2 cores/node : add I to ReceiveN and SendS

2× 2 cores/node : add I to each Send and Receive
2× 4 cores/node : add 9I to (4.2.12)
4× 4 cores/node : add 18Ito (4.2.12)

It should be noted that the additional number of I values added to sends and receives
approximate the probable contention and that exact values are difficult to measure accurately
(and validate) due to the small magnitude of the communication parameters on the Cray XT4.
Additionally, the assumption that the XT4 node architecture will remain unchanged will not
hold due to additional innovative hardware and software optimisations and features on future
XT4 node architectures. However, we believe that the models presented here capture almost
all the important qualitative and quantitative performance factors of wavefront operations
on CMP nodes on the XT4. This follows from our practise of developing analytic models to
capture abstractly details that matter, but not more than is needed. Additionally the method
presented in developing these terms can be easily applied to other node architectures to ob-
tain modified contention terms. In Chapter 5 we further extend this analysis to show how
the model gives us insights into the probable qualitative limitations of the CMP-based node
architectures in general, as well as specifically on the XT4 at the time of our study, and possible
solutions to alleviate such issues.

73

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

4.7 Model Validations

Having extended the model to CMP nodes on the XT4, we are now in a position to apply
the analytic models to the three concrete applications - LU, Sweep3D and Chimaera. This
allows us to validate the predictions from the models on the Cray XT4 system. The following
subsections present validations for each application. We first discuss the reasoning behind the
derivations of the concrete models by applying the reusable model, followed by quantitative
validations.

4.7.1 NPB - LU

For LU, the application parameters in Table 4.1 applied to the reusable model results in the top
level analytic model given by (4.7.1).

Time per iteration = 2Tfullfill + 2Tstack + Tnonwavefront (4.7.1)

We observed minor differences in the average Wg and Wg,pre times between the forward and
backward sweeps of LU. Thus, to increase prediction accuracies we measured these times for
both forward and backward sweeps separately, and applied them to form a separate model for
each. The total sweep time was given by the sum of these two models. The Tnonwavefront term
for LU consists of a four-point stencil computation which occurs at the end of the two sweeps,
for computing the right-hand-side vector as detailed in Section 3.2.1. We have modelled this
based on the time to compute the four-point stencil operation plus the time for exchanging
boundary values during this operation in (4.7.2).

Tnonwavefront = (Nx/m)× (Ny/n)×Nz ×Wg,rhs + 4Total Comm (4.7.2)

The message size for Total Comm is given by (Nx/n)×Nz×80 for north-south and (Ny/m)×
Nz × 80 bytes for east-west communications, where each processor will send two rows of a
boundary to its nearest neighbour. Each row consists of cells that contain 5 double-precision
floating-point values, making the total message size per near neighbour communication 80
bytes (given that a double is stored as an 8 byte value).

Table 4.9 and Table 4.10 provide the total runtime of LU on the Cray XT3 compared
with the runtime predicted by the model in (4.7.1), for two weak-scaling problem sizes - 643

and 1023 cells per processor. Note that the model validations are done on the XT3 due to the
ORNL Jaguar system only consisting of a Cray XT3 partition during the time of this validation.
Moreover, the model used here is the basic (non-CMP) reusable model and the validations
mapped one MPI process to one XT3 node, which preserves the conditions required to obtain
accurate predictions from the basic model. In this case we used off-node communication pa-
rameter values of o = 4.038µSec, L = 0.33µSec andG ≈ 0.0005µSec/Byte, which we obtained
from the model in Table 4.5 using the XT3 node-to-node communication benchmark data.

74

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

Table 4.9: LU Model Validation on Jaguar (Cray XT3) - 643 cells per processor
NPE n m Prediction Execution Error Comput Comm

(Sec) (Sec) (%) (Sec) (Sec)
4 2 2 172.08 176.79 -2.67 171.33 0.74
8 4 2 174.36 184.03 -5.25 173.6 0.76

16 4 4 176.65 185.16 -4.6 175.87 0.77
32 8 4 181.22 192.54 -5.88 180.41 0.81
64 8 8 185.79 194.75 -4.6 184.95 0.84

128 16 8 194.93 204.18 -4.53 194.03 0.9
256 16 16 204.06 213.58 -4.46 203.1 0.96
512 32 16 222.35 232.42 -4.33 221.26 1.09

1024 32 32 240.62 251.31 -4.25 239.41 1.21
2048 64 32 277.19 289.1 -4.12 275.72 1.47

Table 4.10: LU Model Validation on Jaguar (Cray XT3) - 1023 cells per processor
NPE n m Prediction Execution Error Comput Comm

(Sec) (Sec) (%) (Sec) (Sec)
4 2 2 729.32 744.72 -2.07 728.05 1.27
8 4 2 734.55 752.29 -2.36 733.26 1.29

16 4 4 739.78 763.91 -3.16 738.48 1.31
32 8 4 750.24 774.6 -3.14 748.9 1.34
64 8 8 760.7 785.75 -3.19 759.33 1.37

128 16 8 781.62 807.07 -3.15 780.18 1.45
256 16 16 802.53 831.63 -3.5 801.03 1.51
512 32 16 844.38 870.68 -3.02 842.72 1.65

1024 32 32 886.2 913.22 -2.96 884.42 1.78
2048 64 32 969.89 1018.75 -4.8 967.82 2.06

4.7.2 Sweep3D

The top level model for Sweep3D is given in (4.7.3). In this case the critical path time can be
elucidated as follows using the processor indexing in (see Figure 3.7):

Time per iteration = 2Tdiagfill + 2Tfullfill + 8Tstack + Tnonwavefront (4.7.3)

The sweeps start at the top right corner processor, (n,m), then eight sweeps are performed
(two per corner) to end back at processor, (n,m). The critical path consists of the sum of the
following steps:

1. Time for all the tiles on processor (n,m) to complete sweeps 1 and 2: 2× Tstack

2. Time gap between sweep 2 ending at processor (n,m) and sweep 3 starting at processor
(n, 1) : 1× Tdiagfill

3. Time for all the tiles on processor (n, 1) to complete sweeps 3 and 4: 2× Tstack

4. Time gap between sweep 4 ending at processor (n, 1) and sweep 5 starting at processor
(1,m) : 1× Tfullfill

5. Time for all the tiles on processor (1,m) to complete sweeps 5 and 6: 2× Tstack

75

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

6. Time gap between sweep 6 ending at processor (1,m) and sweep 7 starting at processor
(1, 1) : 1× Tdiagfill

7. Time for all the tiles on processor (1, 1) to complete sweeps 7 and 8: 2× Tstack

8. Time gap between sweep 8 ending at processor (n, 1) and sweep 8 ending on processor
(n,m) : 1× Tfullfill

9. Time to perform any non-wavefront computations

The Tnonwavefront term for Sweep3D consists of two all-reduce operations plus several other
operations that we have ignored due to their negligible contribution to the total runtime. Table
4.11 and Table 4.12 provides the total runtime of the sweep portion of Sweep3D on the Cray
XT4 compared against the runtime predicted by the model in (4.7.3), for two strong-scaling
problem sizes - the 1 billion cell problem and the 20 million cell problem. The model used
here includes the CMP extensions (for dual core nodes) described in Section 4.6. Sweep3D has
fix-up calculations for the final 5 iterations. Therefore we have measured the W times for both
types of iterations (i.e. iterations with and without fix-up calculations).

Table 4.11: Sweep3D Model Validation on Jaguar (Cray XT4) - 10003 total problem size,
Htile = 2, mmi = 6

NPE n m Nx/n Ny/m Prediction Execution Error Compute Comm
(Sec) (Sec) (%) (Sec) (Sec)

1K 32 32 32 32 36.01 38.56 -6.62 34.99 1.03
2K 64 32 16 32 21.78 24.98 -12.81 20.78 1.00
4K 64 64 16 16 11.78 13.36 -11.83 10.79 0.99
8K 128 64 8 16 7.34 8.43 -12.87 6.42 0.92

Table 4.12: Sweep3D Model Validation on Jaguar (Cray XT4) - 20× 106 total problem size,
Htile = 2, mmi = 6

NPE n m Nx/n Ny/m Prediction Execution Error Compute Comm
(Sec) (Sec) (%) (Sec) (Sec)

1K 32 32 9 9 1.23 1.38 -10.68 0.99 0.24
2K 64 32 5 9 0.97 1.11 -13.05 0.72 0.25
4K 64 64 5 5 0.73 0.94 -22.41 0.47 0.26
8K 128 64 3 5 0.68 0.90 -23.85 0.41 0.27

4.7.3 Chimaera

Using the application parameter values in Table 4.1, we can form the top level model for Chi-
maera as given by (4.7.4).

Time per iteration = 2Tdiagfill + 4Tfullfill + 8Tstack + Tnonwavefront (4.7.4)

Similar to Sweep3D, in Chimaera the sweeps start at the top right corner processor, (n,m),
then eight sweeps are performed (two per corner) to end back at processor, (n,m). The critical
path consists of:

76

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

1. Time for all the tiles on processor (n,m) to complete sweep 1 and 2: 2× Tstack

2. Time gap between sweep 2 ending at processor (n,m) and sweep 3 starting at processor
(n, 1): 1× Tdiagfill

3. Time for all the tiles on processor (n, 1) to complete sweep 3: 1× Tstack

4. Time gap between sweep 3 ending at processor (n, 1) and sweep 4 starting at processor
(1,m): 1× Tfullfill

5. Time for all the tiles on processor (1,m) to complete sweep 4: 1× Tstack

6. Time gap between sweep 4 ending at processor (1,m) and sweep 5 starting at processor
(n, 1): 1× Tfullfill

7. Time for all the tiles on processor (n, 1) to complete sweep 5: 1× Tstack

8. Time gap between sweep 5 ending at processor (n, 1) and sweep 6 starting on processor
(1,m): 1× Tfullfill

9. Time for all the tiles on processor (1,m) to complete sweep 6: 1× Tstack

10. Time gap between sweep 6 ending at processor (1,m) and sweep 7 starting on processor
(1, 1): 1× Tdiagfill

11. Time for all the tiles on processor (1, 1) to complete sweep 7 and 8: 2× Tstack

12. Time gap between sweep 8 ending at processor (n, 1) and sweep 8 ending on processor
(n,m): 1× Tfullfill

13. Time to perform any non-wavefront computations

Table 4.13 provides the total runtime of the sweep portion of Chimaera on the Cray
XT4 compared to the runtime predicted by the model equation (4.7.4), for a strong-scaling
problem size of 2403 cells. The number of iterations is determined by a convergence criterion.
For this problem size, convergence is achieved at 419 iterations.

Table 4.13: Chimaera Model Validation on Jaguar (Cray XT4) - 2403 total problem size
NPE n m Nx/n Ny/m Prediction Execution Error Compute Comm

(Sec) (Sec) (%) (Sec) (Sec)
256 16 16 15 15 320.35 365.15 -12.27 304.11 16.25

1024 32 32 7 8 104.09 110.43 -5.74 89.87 14.22
4096 64 64 4 4 43.33 54.13 -19.96 27.86 15.47

77

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

4.7.4 Discussion on Validation Results

The validations for LU, Sweep3D and Chimaera provide excellent qualitative and quantitative
accuracy. More specifically, we have observed that the model predicts with a maximum error
of 20% when the computation time significantly (over 50%) dominates the total run time. We
classify such configurations as high performance configurations, as in such cases the signif-
icant majority of the runtime is devoted to performing useful computations (i.e. solving the
problem) as opposed to communications. Therefore, non-high performance configurations are
of less practical interest as suitable configurations for production runs. In these latter cases,
the abstract communication and contention model leads to somewhat larger errors (that is, in
the order of 20-25%).

The validations for LU have less than 10% error due to the large per processor prob-
lem size where the computation time far outweights the communication time. However, the
Sweep3D 20 million cell problem and the Chimaera 2403 problem show that, when the prob-
lem size per processor is small, the model produces larger errors. When the problem size per
node is small, the communication dominates the total execution time. We attribute the errors
occurring in such configurations, as well as the general trend of the model under prediction to
the following:

1. The model assumes perfect processor allocation, i.e. logical near neighbour processors
will be allocated to physical near neighbour processors on the Cray XT4. The processor
allocation scheduler of the XT4 (PBS) attempts to cluster processors of the same job to
near-neighbour processors. However, because Jaguar is a shared machine, the scheduler
will deviate from this ’ideal’ processor allocation.

2. The communication models are too abstract to capture small message performance ac-
curately. For example, overheads at routers are not accounted for in the models. The
latency (L) value will increase if a message has to do multiple hops in order to arrive at
a logical neighbour processor. Such multiple hops will occur due to issue 1 above.

3. The communication model does not capture the increased L for Cray XT4’s cabinet-to-
cabinet communication time.

4. Experimental errors during measuring computation, particularly with small per proces-
sor problems, cause the model to underestimate the Wg and Wg,pre times resulting in
under predictions. In our experiments we see that the loop overhead for the x and y

dimensions in a tile becomes more significant as the tile size decrease. But this is unac-
counted for when using (4.2.6) and (4.2.6) to estimate Wg and Wg,pre at large machine
scale.

5. The variance caused by inhomogeneous cells may introduce runtime variances. For ex-
ample Chimaera consists of minor variations in the computation times of different cells.

6. The measured actual application runtimes were performed while the system was busy
with other jobs, thus there is network contention as well as other perturbations including
system noise. The model does not account for such perturbations.

In spite of these discrepancies, the model has proven to be accurate for a variety of problem
sizes and configurations on not only the XT4 (as shown in the above results) but also several

78

4. A PLUG-AND-PLAY REUSABLE ANALYTIC MODEL

other HPC systems. More model validations are detailed in Chapter 5, 6, 7 and Appendix B.
These validations include more results from the Cray XT4, as well as an Intel Xeon/InfiniBand
cluster. The level of accuracy is more than sufficient to conduct various speculative studies
and investigate optimisations for any given existing or imaginary wavefront code. Chapters 5
and 7 present a comprehensive investigation of these issues.

4.8 Summary

To our knowledge, plug-and-play performance models - in which the user only needs to spec-
ify a few input parameter values in order to obtain performance predictions for application
codes with different behaviour - has not previously been developed. An open question ad-
dressed in this research is whether building in the various possible behaviours leads to a more
complex set of equations, possibly negating the advantages of the model generality. The mod-
els developed in this chapter show that for the varied behaviours in wavefront applications,
it has been possible to construct a set of equations that are as simple as the equations that
are tailored to a given application. This was an unanticipated result that may not hold for
other classes of applications. However, the results are encouraging for this important class of
application and may provide an incentive to extend the study more widely.

79

5 Wavefront Application and Platform Design

A key advantage of a reusable performance model for wavefront computations is the ease
with which it can be applied to model various wavefront applications. Particularly, the util-
ity of a good performance model is to provide predictive insights into the performance issues
and behaviours of these applications in an efficient, accurate and low-cost manner. As such,
in this chapter we apply the plug-and-play wavefront application model to illustrate its util-
ity to investigate performance of wavefront codes. We use the Cray XT4 system as the target
platform for our analysis. More specifically, we evaluate application design and configuration
in section 5.1, hardware platform procurement questions such as platform sizing and configu-
ration in section 5.2, hardware platform design alternatives, particularly the number of cores
per node in section 5.3, application bottlenecks in section 5.4 and finally a possible application
re-design to alleviate one of the bottlenecks in section 5.5.

We illustrate the performance model led analysis for the two particle transport bench-
marks, Chimaera and Sweep3D, noting that the model can be applied in a similar manner to
LU or any other wavefront benchmark or production code of interest. The applications illus-
trate the versatility of the analytic model in supporting the rapid evaluation of a number of
system configuration and design alternatives. Throughout the results, the evaluation for Chi-
maera is done with a problem size of 2403 cells, which is a large current cubic problem size
available as part of the benchmark. We evaluate Sweep3D with two problem sizes of interest
to LANL [17]: 1 billion cells and 20 million cells. Unless otherwise noted, for both problem
sizes of Sweep3D, we set the number of angles, mmo, to six. The Chimaera code requires 419
iterations to complete a time step for the problem provided with the benchmark. Unless oth-
erwise stated, in this chapter we set the number of iterations per time step in Sweep3D to 120
which we anticipate will be more representative of many actual particle transport simulations
than the default value of 12.

5.1 Application Design: Htile

As shown in the basic application parameters (Table 4.1) and in previous studies of Sweep3D,
the number of cells computed per sweep step is a key configuration parameter. The number
of cells computed per sweep step is determined by (1) the total problem size and the total
number of processors and (2) the height of a tile set by the Htile parameter. In this section we
discuss the quantitative and qualitative affects of the latter, leaving the former to be discussed
in the next section as a platform sizing and configuration issue.

A larger value of Htile leads to a larger ratio of computation to communication, as
shown in equations (4.2.6) and (4.2.7). This leads to longer pipeline fill times as shown in
equations (4.2.8) and (4.2.9), but also to lower communication costs because the communica-

80

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

10

20

30

40

50

60

0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Htile

P= 4K
P= 16K

Figure 5.1: Execution time vs. Htile: Sweep3D 20 Million cell problem

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Htile

P= 4K
P= 16K

Figure 5.2: Execution time vs. Htile: Chimaera 240× 240× 240 cell problem

tion overhead (o) and latency (L) occurs less frequently as shown in equation (4.2.12). A key
software configuration question that is easily addressed using the model is the value ofHtile to
use for a given application code, problem size, and number of processors, in order to achieve
minimum execution times. Figure 5.1 and Figure 5.2 show the execution time per time step1 vs
Htile for Sweep3D and Chimaera on the 20 million and 2403 problem sizes, respectively. For
Chimaera we illustrate the speculative case assuming that the tile size can be modified.

For each benchmark and problem size, we provide a curve for a small system config-
uration (4096 processors) and the maximum number the problem can practically run on (16K
processors). In each case, Htile in the range of 2, 4 or 5 minimises the execution time. Results
for Sweep3D with the 109 problem size on 4K - 128K processors (up to 32K processors shown

1for comparison in this section we consider one time step to consist of 480 iterations for Sweep3D and 419 iterations
for Chimaera.

81

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

in Figure 5.3), also show that Htile in the range of 2 to 5 minimises execution time. In contrast,
previous work evaluating Sweep3D on the IBM SP/2 that has higher communication over-
head and latency, found Htile in the range of 5 to 10 (i.e., mk = 10 and mmi/mmo = 0.5 or 1)
minimised execution time [8].

0

2

4

6

8

10

12

0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(m
in

ut
es

)

Htile

P= 4K
P= 8K

P= 16K
P= 32K

Figure 5.3: Execution time vs. Htile: Sweep3D 1 Billion cell problem

0

50

100

150

200

0 2 4 6 8 10 12

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Htile

P= 4K
P= 16K
P= 64K

Figure 5.4: Execution time vs. Htile: Chimaera 240× 240× 960 cell problem

Figure 5.4, shows the qualitative effects of Htile when the z dimension is larger than
the other dimensions. In this case Htile = 2, 4 or 5 provides an increasing reduction in runtime
with a maximum of just over 50% (compared with Htile = 1) on 64K processors. Our results
illustrate the ability of the model to rapidly evaluate software design modifications in order
to determine whether the implementation effort is justified. We use Htile = 2 for the results
in the remainder of this Chapter, noting that in some cases the execution time will be slightly
lower if Htile is set to 4 or 5. One further point of interest from Figure 5.1 and Figure 5.2 is that

82

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

on 16K processors the execution time for one iteration of Sweep3D with a problem size of 20
million cells (with 480 iterations to complete a time step) is very similar to the execution time of
Chimaera with a problem size of 2403 cells (requiring 419 iterations). These two benchmarks
perform different processing. For example, Sweep3D computes six angles while Chimaera
computes ten angles. Of interest is that the codes have qualitatively similar processing costs.

5.2 Platform Sizing and Configuration

For a given particle transport problem size of interest, increasing the number of processors
decreases execution time, but with diminishing returns. Model results in Figure 5.5 illustrate
this for Sweep3D for the 109 problem. In this figure, we show the execution time for 104

time steps, when the code uses both processors in each dual-core XT4 node. We assume a
Sweep3D type production code simulating 30 energy groups [17], which implies a 30-fold
increase in execution time compared with the execution time for a single energy group2. The
measured values illustrated for Sweep3D are the results from multiplying the actual Sweep3D
benchmark run, performed on the Cray XT4, by 30 and 104.

These values of interest to LANL are used to illustrate the system sizing question in
the context of production problems of interest to the organisations that own the benchmarks.
The related model results for Chimaera 2403 are illustrated in Figure 5.6. In this case we have
kept the default number of energy groups solved at 16 but have used anHtile of 2 due to better
performance as predicted in the previous section.

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536 131072

E
xe

cu
tio

n
Ti

m
e

(d
ay

s)

Number of Processors (P)

Measured(Extrapolated)
Predicted

Figure 5.5: Execution time vs. System size: Sweep3D Billion cell problem, 104 time steps, 30
energy groups, 120 iterations, Htile = 2

Figures 5.5 and 5.6 also provide measured code execution times for the numbers of
nodes that are available in the ORNL Cray XT4. Note that we obtained an error in the order of
10% in the predicted execution times. These results illustrate that the projected execution times
are qualitatively correct and sufficiently accurate to support accurate decisions concerning

2recall that Sweep3D as a benchmark solves only 1 energy group, while Chimaera solves 16.

83

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

5

10

15

20

25

30

35

40

256 512 1024 2048 4096 8192 16384 32768 65536

E
xe

cu
tio

n
T

im
e

(d
ay

s)

Number of Processors (P)

Predicted

Figure 5.6: Execution time vs. System size: Chimaera 2403 cell problem, 104 time steps, 16
energy groups, 419 iterations, Htile = 2

how many processors should be allocated to a given particle transport simulation. For both
Sweep3D and Chimaera (as shown in Figure 5.5 and Figure 5.6 respectively) the trade-off in
execution time versus the number of nodes is complex. For Sweep3D there are diminishing
but perhaps still significant returns as the number of processors increases beyond 16K. A given
user requiring nearly the minimum possible execution time may determine that the desired
system size is 64K or 128K cores. On the other hand, due to the diminishing returns from 32K
processors to 64K processors, another user may want to trade-off the execution time of one
problem on 64K processors against solving two 1 billion cell problems simultaneously, each
on half of the 64K processors.

0

1000

2000

3000

4000

5000

16384 32768 65536 131072

T
im

e
S

te
ps

S
ol

ve
d

pe
r

P
ro

bl
em

pe
r

M
on

th

Number of Processors (P)

8 Problems x on P
4 Problems x on P
2 Problems x on P
1 Problems x on P

Figure 5.7: Throughput vs. Partition Size (Sweep3D 109 Cells, 104 time steps, 30 energy
groups 120 iterations, Htile = 2)

84

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

20000

40000

60000

80000

100000

120000

140000

4096 8192 16384 32768

T
im

e
S

te
ps

S
ol

ve
d

pe
r

P
ro

bl
em

pe
r

M
on

th

Number of Processors (P)

8 Problems x on P
4 Problems x on P
2 Problems x on P
1 Problems x on P

Figure 5.8: Throughput vs. Partition Size (Chimaera 2403 Cells, 104 time steps, 16 energy
groups 419 iterations, Htile = 2)

We provide results for evaluating this trade-off in Figure 5.7 and Figure 5.8. The black
bars provide the number of time steps solved per month when a single problem executes on
the given number of processors. The other bars in the figures show the number of time steps
completed per month by each of 2, 4, or 8 particle transport simulations that are executed in
parallel on equal-size partitions of the given number of processors. For example, the dark
gray bars show the number of time steps solved per month in each of two problems solved
when the given number of processors is partitioned in half. Note that when two 1 billion cell
Sweep3D problems each run on half of 32K processors, just over 2000 time steps are solved
per month in each of the problems. This means that approximately five months or 150 days
are required to execute 10,000 time steps. Figure 5.7 also shows that approximately 150 days
are required to simulate the 10,000 time steps on 16K processors. Hence, Figure 5.7 is another
way to view the performance vs system size. In the case of 128K processors in Figure 5.7, two
parallel simulations execute at approximately 7/8 the rate of a single simulation, providing
perhaps an attractive alternative for some users. Similarly for Chimaera, we see from Figure
5.8, that two 2403 problems on on 32K processors complete in approximately 11/12 the rate
of a single run on the same number of processors. The results in Figure 5.7 and Figure 5.8
illustrate that a given site may want to consider the total number of simulations that need to
be run when making procurement decisions or when allocating system resources to particle
transport simulations.

It is desirable to achieve a good trade-off between minimising the execution time for
a single simulation (R) by running it on as many processors as possible, and maximising the
total number of simulations that complete per unit time (X) by partitioning the available pro-
cessors so that simulations run in parallel. It is possible to quantify this trade-off, as illustrated
in Figure 5.9 for the 1 billion cell problem of Sweep3D. Two curves are plotted as a function of
partition size for parallel simulations on 128K cores. When the partition size is 32K cores, four
1 billion cell simulations are run in parallel. The lower curve is the value of R/X , the ratio of
time to complete each 1 billion particle simulation divided by the number of simulations that

85

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

1

10

100

1000

1024 2048 4096 8192 16384 32768 65536 131072

Number of Processors (P) in a Partition

(R*R)/X
R/X

Figure 5.9: Optimising Partition Size (Sweep3D 1 Billion Cells, Total number of available
processors = 128K)

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768

Number of Processors (P) in a Partition

(R*R)/X
R/X

Figure 5.10: Optimising Partition Size (Chimaera 2403 Cells, Total number of available
processors = 32K)

complete per time R. This ratio is minimised when the partition size is 16K processors and
thus 8 simulations are run in parallel. The upper curve is R2/X , which places greater empha-
sis on minimising the execution time for each simulation, and is optimised at 64K processors
per simulation. A given site or user can compare these optimised partitions with the results in
Figure 5.5 and Figure 5.7 to arrive at a decision about how to configure the system.

Similarly for Chimaera, we select a total of 32K processor cores and partition it to
run multiple problems simultaneously. As illustrated in Figure 5.10, for the 2403 problem the
optimum number of processors to run can be determined by the minimum values of the two
curves. In this case if the objective is to obtain better throughput then the partition size is 4K
processors. If the time to solution (run time) is more important than the partition size should

86

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

be set to 8K processors on a total of 32K processors.

5.3 Platform Design: Multi-core Nodes

We next examine the platform design issue of how many cores per node would be desirable
for the important class of large particle transport simulations that make up a large fraction of
the workload at places such as LANL and AWE. These results are obtained using the model
extensions provided in Table 4.8, which assume a shared bus architecture within each node
but can easily be modified for other node architectures. Results are provided here to illustrate
the utility of the model in providing insights into the question of interest.

60

80

100

120

140

160

180

200

220

240

260

8192 16384 32768 65536 131072

E
xe

cu
tio

n
T

im
e

(D
ay

s)

Number of Nodes

1 Core per Node
2 Cores per Node
4 Cores per Node
8 Cores per Node

16 Cores per Node

Figure 5.11: Execution time on multi-core nodes (Sweep3D 1 Billion Cells, 104 time steps, 30
energy groups, 120 iterations, Htile = 2)

Figure 5.11 provides the execution time for a 1 billion particle transport simulation
versus the number of nodes on the platform, and for various possible numbers of cores per
node ranging from one core per node to sixteen cores per node. Because there are diminishing
returns when the simulation runs on increasing numbers of nodes (with one core per node)
there are also diminishing returns for increasing the number of cores per node. Note also
that in these results, two cores on a given number of nodes (e.g. 64K nodes) provide slightly
better execution time than four cores on half the nodes (e.g. 32K nodes) due to the shared bus
architecture.

If the target execution time is approximately the execution time on 64K single-core
nodes, then the figure shows that this performance can be nearly achieved with 32K dual-
core nodes or 16K quad-core nodes. An 8K-node system with 16 cores per node has the same
total number of cores as 32K quad-core nodes (and thus twice as many cores as a system
with 32K dual-core nodes), but execution time is degraded due to contention for the shared
bus. However, if the 16-core node is provisioned with a separate shared bus, shared memory,
and NIC for each group of 4 cores, then the execution time on the system with 8192 nodes
would be the same as the execution time for the 32K quad-core nodes. This is perhaps an even

87

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

more viable multi-core design for particle transport simulations. Similar results for Chimaera
are illustrated in Figure 5.12. These results once more illustrate the value of the model in
examining various system design and configuration questions.

2

4

6

8

10

12

14

1024 2048 4096 8192 16384 32768

E
xe

cu
tio

n
T

im
e

(D
ay

s)

Number of Nodes

1 Core per Node
2 Cores per Node
4 Cores per Node
8 Cores per Node

16 Cores per Node

Figure 5.12: Execution time on multi-core nodes (Chimaera 2403 Cells,104 time steps, 16
energy groups 419 iterations, Htile = 2)

0

50

100

150

200

250

300

350

400

450

4096 8192 16384 32768 65536 131072

T
im

e
(D

ay
s)

Number of Processors (P)

Total Time
Computation Time

Communication Time

Figure 5.13: Computation and communications cost breakdown (Sweep3D 1 Billion Cells, 104

time steps, 30 energy groups, 120 iterations, Htile = 2)

5.4 Application Bottlenecks

In the next set of experiments, we illustrate the use of the model to understand application bot-
tlenecks which are not readily measured when running or simulating the actual code. Figure
5.13 and Figure 5.14 provide the total execution time for the 1 billion cell problem for Sweep3D

88

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

2

4

6

8

10

12

14

1024 2048 4096 8192 16384 32768 65536

T
im

e
(D

ay
s)

Number of Processors (P)

Total Time
Computation Time

Communication Time

Figure 5.14: Computation and communications cost breakdown (Chimaera 2403 Cells, 104

time steps, 16 energy groups 419 iterations, Htile = 2)

and the 2403 problem for Chimaera, as well as the breakdown of total critical path time into
computation and communication components, as a function of the number of processors on
the Cray XT4. The communication component of the total execution time is derived from the
Send, Receive and TotalComm execution time terms in the model (including the contention
during communications). The computation component is the rest of the total execution time.
Note that the point at which communication dominates the total execution time is the point
at which increasing the number of processors provides greatly diminished reduction in the
total execution time. Since communication of the boundary values is required for the simula-
tions, the only opportunity for improving the observed communication bottleneck is to further
improve the inter-node communication efficiency. The model can also be used by system ar-
chitects to project execution times for such communication improvements.

Further insights as to which communication component requires optimising when
running wavefront codes can be investigated. For example Figure 5.15 and Figure 5.16 de-
tail the total communication time and contribution of communication bandwidth and latency
(i.e. overhead o, and network latency L) as projected by the model for Sweep3D and Chimaera
respectively. As can be seen, the majority of the communication time for the Cray XT4 is due
to the message start up costs (i.e. processor overhead o) and network latency L, while the
contribution of bandwidth to the critical path of execution remains relatively small. Thus, re-
ducing the communication overheads on the XT4 will significantly reduce the communication
time spent during a wavefront operation. By contrast an increase in bandwidth would have
considerably less effect.

We further examine components that contribute to the total wavefront execution time
by considering an alternative time breakdown. In this case we investigate the time spent in
pipeline fill and steady state. Recall that considering a single sweep, the pipeline fill time
is the time between the first processor starting the sweep and the last processor starting the
same sweep. In terms of the model, this is the time contributed by the terms in (4.2.8), (4.2.10)
and (4.2.11). The steady state time is the time spent processing the stack of tiles given by the

89

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

10

20

30

40

50

4096 8192 16384 32768 65536 131072

T
im

e
(D

ay
s)

Number of Processors (P)

Total Communication Time
Time due to Latency

Time due to Bandwidth

Figure 5.15: Communications cost breakdown (Sweep3D 1 Billion Cells, 104 time steps, 30
energy groups, 120 iterations, Htile = 2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1024 2048 4096 8192 16384 32768 65536

T
im

e
(D

ay
s)

Number of Processors (P)

Total Communication Time
Time due to Latency

Time due to Bandwidth

Figure 5.16: Communications cost breakdown (Chimaera 2403 Cells,104 time steps, 16 energy
groups 419 iterations, Htile = 2)

expression in (4.2.12). Figure 5.17 and Figure 5.18 give the times spent during pipeline fill and
steady state operation of Sweep3D and Chimaera respectively.

Note that in these graphs the problem is solved in strong scaling mode and thus al-
though the pipeline length increases with the increasing number of processors, the computa-
tion time taken by a processor per sweep step (as well as the message size) reduces. Alterna-
tively in Figure 5.19 the problem size per processor is kept constant, resulting in an increasing
cost for pipeline fill due to the increasing number of processors. The steady state cost remains
constant. Thus a possible optimisation could look at methods to reduce the cost due to pipeline
fill. Such an optimisation is discussed in the next section.

90

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536 131072

T
im

e
(D

ay
s)

Number of Processors (P)

Total Execution Time
Time due to Steady state
Time due to Pipeline fill

Figure 5.17: Pipeline fill and steady state cost breakdown (Sweep3D 1 Billion Cells, 104 time
steps, 30 energy groups, 120 iterations, Htile = 2)

0

5

10

15

20

25

30

35

40

256 512 1024 2048 4096 8192 16384 32768 65536

T
im

e
(D

ay
s)

Number of Processors (P)

Total Execution Time
Time due to Steady state
Time due to Pipeline fill

Figure 5.18: Pipeline fill and steady state cost breakdown (Chimaera 2403 Cells,104 time
steps, 16 energy groups 419 iterations, Htile = 2)

5.5 Sweep Structure Re-design

The pipeline fill overhead might be reduced by the following Sweep3D re-design. Instead
of performing all eight sweeps for the first energy group and iterating to convergence before
solving the next energy group, we could pipeline the solution of the energy groups by per-
forming the first two sweeps for all 30 energy groups followed by sweeps 3 and 4 for all 30
energy groups, and so forth. Pipelining the energy groups might require more iterations to
reach convergence. We can project the execution time assuming that no additional iterations
are needed, by modifying the model input parameters. In other words, we set nsweep = 240
so that a total of 240 sweeps are required per iteration, with ndiag = 2 and nfull = 2. The

91

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

0

20

40

60

80

100

1024 2048 4096 8192 16384 32768 65536 131072

T
im

e
(D

ay
s)

Number of Processors (P)

Total Execution Time
Time due to Steady state
Time due to Pipeline fill

Figure 5.19: Pipeline fill and steady state cost breakdown (Sweep3D 4× 4× 1000 Cells per
processor, 104 time steps, 30 energy groups, 120 iterations, Htile = 2)

0

20

40

60

80

100

120

140

1024 2048 4096 8192 16384 32768 65536 131072

T
im

e
(D

ay
s)

Number of Processors (P)

Sequential E-groups Total Execution Time
Pipelined E-groups Total Execution Time

Figure 5.20: Sweep structure redesign - pipelining 30 energy groups (Sweep3D 4× 4× 1000
Cells per processor, 104 time steps, 30 energy groups, 120 iterations, Htile = 2)

projected execution time with these parameters is also given in the figure, showing that nearly
the entire pipeline fill overhead is eliminated. The projections can be made for an increased
number of iterations to reach convergence, if the user can provide knowledgeable estimates
of this increase. Again these results illustrate how the model can be used to rapidly gain in-
sight into software bottlenecks and the impact of possible software modifications, in order to
determine where implementation effort might profitably be placed.

Figure 5.20 shows the speculated gains of this optimisation. The total time for the
optimised version of the wavefront code for 30 energy groups are now almost the same as the
steady state time for the original code. That is, the sweep structure redesign has managed to
eliminate all the pipeline fill times (except for the first one) by pipelining all 30 energy groups.

92

5. WAVEFRONT APPLICATION AND PLATFORM DESIGN

5.6 Summary

The analysis presented in this chapter demonstrated the utility of the reusable analytic model
to provide efficient assessments of software/hardware design decisions and optimisations for
running pipelined wavefront applications. The results show that the optimum number of tiles
to be solved per sweep step for Sweep3D and Chimaera are in the range of 2 to 5, given the
number of angles solved (6 for Sweep3D and 10 for Chimaera) on about 4K to 128K number
of processors. Furthermore we see that the number of tiles solved can be tuned to obtain
considerable performance benefits if the Z dimension is larger than the other two dimension
of the 3D data cube.

We also see that increasing the number of processors gives diminishing returns. The
model can be used to decide the optimum number of processors to run a given problem size
based on the time to solution and return for investment. An alternative platform sizing cri-
terion based on system throughput was also presented. Additionally we assess the optimum
number of cores per node based on the XT4 shared bus node architecture to be 4 cores per
node. The results also show that wavefront code performance is dominated by computation
time for small number of processors, while on large number of processors communication
time begins to dominate the runtime. The model provides quantitative values of the amount
of computation and communication that contribute to the critical path. It also predicts that the
major contributors to the communication times are the network latency and message process-
ing overhead. A final analysis based on the breakdown in terms of the pipeline fill time and
the steady state times, provided a possible optimisation for particle transport codes.

The chapter specifically investigated and projected performance for a system based on
the ORNL Cray XT4 system. Further optimisations and analysis of wavefront applications
are discussed in Chapter 7 in which we base our findings on an InfiniBand-based commodity
cluster system. Before looking at these further optimisations we explore the performance of
wavefront codes using an alternate performance prediction methodology, namely simulation,
in the next chapter.

93

6 Wavefront Simulation Models

So far our performance engineering efforts have been mainly based on analytic methods. In
this chapter we investigate the performance of pipelined wavefront computations using an
alternate performance engineering technique based on simulation. As mentioned in Chapter 2,
simulation techniques are considered a significant and complementary alternative to analytic
methods. Thus we are motivated to further probe the performance characteristics of wavefront
codes using this methodology. More specifically we approach the research detailed in this
chapter due to the following key questions and incentives. We are motivated to (1) explore
an alternative performance engineering technique applied to wavefront codes, (2) investigate
further insights (if any) that can be gained using simulation, (3) explore if the insights from the
analytic methods can be used in improving the accuracy of simulation models (and vice-versa)
and (4) ascertain whether the analytic model validation results gained are agreeable with the
results from simulation.

To explore the above issues, we employ a contemporary simulation methodology
based on the layered characterisation of parallel applications introduced in the Performance
Analysis and Characterisation Environment (PACE) [12]. The PACE toolset and its subsequent
derivations and re-developments (JPACE [160] and WarPP[4, 43, 6]) have been in development
over a number of years at the University of Warwick’s Department of Computer Science. The
layered characterisation techniques used in these experimental simulation systems have been,
and continue to be, motivated by developing automation tools for performance engineering
HPC applications [4] and supporting application scheduling on large parallel and distributed
systems [11].

We begin by a detailed description of the PACE layered characterisation methodology
in section 6.1, as a preliminary to illustrate the contrasting process involved in simulation as
opposed to analytic modelling. We further examine this process by details of a customised
simulation model for the Sweep3D application in section 6.2. Next, in section 6.3 we discuss
limitations of the simulation system followed by a key improvement that was motivated by
analytic techniques. This enhancement forms the first main contribution from our research us-
ing simulation methods. Finally in section 6.4, we show the complementary use of simulation
techniques by cross validating our predictions from the reusable analytic model with that of
predictions from the simulation models.

6.1 The PACE Discrete Event Simulation System

PACE (Performance Analysis and Characterisation Environment) [12] is an implementation
of a layered performance characterisation method which was first introduced in [161]. The
layered characterisation aims to encompass all aspects of a system including a software exe-

94

6. WAVEFRONT SIMULATION MODELS

cution graph, the parallelisation strategy and the system’s resources and architecture. PACE
is largely based on independent application and resource modelling, an overview of which
can be found in Figure 6.1. PACE consists of a static source code analyser called ‘capp’, which
extracts the control flow of the application and the frequency of performance-critical opera-
tions (op-codes). Capp is used to extract the operation of a serial kernel in terms of C language
micro-characterisations (clcs). The core of the PACE system is a Performance Specification Lan-
guage (PSL) named CHIP3S (Characterisation Instrumentation for Performance Prediction of
Parallel Systems) and a related compiler. The PSL provides a description of the application
and its parallelisation in an intuitive language syntax. The resource modelling is supported by
a Hardware Modelling and Configuration Language (HMCL), which provides a description of
the computation and communication resource performance of a system. HMCL scripts consist
of hardware resource performance values obtained by processor and MPI benchmarks. Once
both the application and resource models are created, they can be combined as inputs to the
PACE evaluation engine to obtain predictions of execution time within seconds. An important
aspect of this process is the ability to reuse the models with different resource or application
models.

Parallelisation
Strategy

Application Code
Hardware Resources

Parallel
Templates

Serial Kernels in clc

Serial
Kernels

Hardware performance
described in HMCL Scripts

CHIP3S Compiler

Evaluation Engine

Performance Predictions

Extract with capp

call

call

Micro benchmarks
and MPI

benchmarks

Abstract to PSL

Figure 6.1: Overview of the PACE simulator and toolset

The PACE evaluation engine is a discrete event simulator that executes the compiled
models to produce a simulation of events. The evaluation engine tracks the occurrence of

95

6. WAVEFRONT SIMULATION MODELS

Parallel Template Layer

Application Layer

Subtask Objects

Hardware Layer

Figure 6.2: Layers in a PACE model

events to produce quantitative estimates of the runtime of the application modelled. Once a
model is built, it can be used to investigate speculative analysis of the application such as its
scaling behaviour. A PACE model of an application running on a target HPC platform is built
by considering a layered or modular characterisation of the application, its parallelisation strat-
egy and the hardware resources that execute the code. Thus each layer is modelled separately.
Figure 6.2 illustrates this modular hierarchy of a PACE model.

When developing a simulation model of a parallel application for execution on the
PACE evaluation engine, the application is characterised at the three main levels of (1) appli-
cation layer, (2) parallel template layer and (3) hardware layer. The application layer consists
of a characterisation of the serial portions of the parallel application code (more specifically
called subtask objects). This characterisation is that of a control flow of the computation per-
formed serially in the form of a software execution graph. In other words, these characteri-
sations capture the serial events of the application to be simulated. The parallel template on
the other hand describes the parallelisation strategy of the application model. It provides the
inter-process messaging and denotes the times at which each subtask object is evaluated in
the discrete event simulation. Thus, the parallel template defines the parallel events and their
synchronisation. Finally the hardware layer provides a timing characterisation of the hard-
ware resources that are used for execution of the application. Therefore, this layer provides a
platform dependent set of timings for computation and communications.

The PACE system illustrated in Figure 6.1 can also be viewed as providing a set of tools
to facilitate the development of predictive simulation models. The source code analyser, capp
takes a C or Fortran program code and performs a static code analysis to generate the con-
trol flow (cflow) of serial kernels. As we will show in the next section, this process is largely
automated and requires only minor modifications by a performance engineer. The parallelisa-
tion strategy is described in the CHIP3S performance specification language. Finally tools and
scripts are also provided to extract hardware characterisation models from micro-benchmarks
of computation and communication. The next section demonstrates the development of a
PACE model for Sweep3D to illustrate the capabilities of the system.

96

6. WAVEFRONT SIMULATION MODELS

6.2 A PACE Model for Sweep3D

In contrast to the process of developing analytic models, when developing simulation models
(such as a PACE model) the process involved aims to simulate the events that occur during
the execution of the program code. Thus the program code is directly used to identify (either
manually or automatically) the events that are to be simulated. In this section we provide a
step by step analysis of developing the PACE simulation model for the Sweep3D application.
The model was originally detailed in [162]. Our contributions are discussed in the next section.

The Sweep3D benchmark consists of the following key sections: (1) read input con-
figuration file and perform the domain decomposition (2) perform wavefront sweeps and (3)
perform collective operations at the end of each iteration. The runtime reported in the bench-
mark only considers (2) and (3) of these and as such our simulation model will be directed
towards modelling only the subroutines in these sections. The application layer of the model
acts as a starting point of developing the simulation model by declaring the subtask objects
that consists of the serial portions (or events) of the application in addition to several other
CHIP3S specifics that aid the simulation of these sections. Part of the sweep3d application layer
object’s PSL description is detailed in listing 6.1.

Listing 6.1: Application object:sweep3d
1 a p p l i c a t i o n sweep3d {
2
3 include hardware ;
4 inc lude source ;
5 inc lude sweep ;
6 inc lude f i x e d ;
7 inc lude f l u x e r r ;
8
9 var numeric : npe i = 1 ,

.
50 l i n k {
51 hardware : Nproc = npe i ∗ npe j ;
52 sweep : i t = i t ,

.
86 }
87 option {hrduse = ” Inte lP31266 ” ; }
88 proc exec min
89 var x , y ;
90 { i f (x > y) return y ;
92 e lse return x ;
93 }

.
112 proc exec i n i t {
113 var numeric : i , tmp ;
114 i f (i s c t == 0) nm=1;
115 e lse i f (i s c t == 1) nm=4;
116
117 i t = i t g / npe i ;
118 j t = j t g / npe j + 1 ;
119 i f (mk > kt) mk = kt ;

.
189 for (i =1 ; i<=tmp ; i = i +1){
190 for (mi=1;mi<=mmi; mi=mi+1){
191 ndiag = ndiag+max (min (i , min (j t , min (nk , j t +nk−i))) , 0) ;
192 }

97

6. WAVEFRONT SIMULATION MODELS

193 }
194 (∗ get average of ndiag ∗)
195 ndiag = ndiag/tmp ;
196 for (i =1 ; i<=−eps i ; i = i +1){
197 c a l l source ;
198 c a l l sweep ;
199 c a l l f i x e d ;
200 c a l l f l u x e r r ;
201 }
202 }
203 }

The initial declarations consist of include statements, var external variable declarations,
link statements and options statements. A complete description of the meaning and application
of these statements are given in [12, 163]. The include statements declare other objects that are
referenced by this object, the var declares externally (by user at evaluation time) modifiable
variables, the link statements enable variables in other referenced objects to be modified by
this object and the options statements define a set of default values. In this example the de-
fault hardware model to be used is set to an Intel Pentium 3 (model 1266) which is detailed in
listing 6.4. The proc exec statements declare a subroutine or a function. The evaluation of the
model starts from the procedure init which calls the evaluation of the four subtask objects one
after the other for 12 iterations (lines 196 - 200) (depending on the epsi convergence variable
defined in the input file that details the problem size). It can be seen that procedures directly
implement the control flow of the application. Thus, evaluation of the model means that these
statements are directly executed (in a similar fashion to a set of C code statements). By cod-
ing the control flow of the application, run-time values that decide loop iterations that cannot
be determined before run-time are automatically calculated. Such variables include the ndiag
value (calculated dynamically in lines 189 - 193), which directly determines the per cell work
modelled in the sweep subtask object. In order to establish the complex relationship that de-
termines the value of ndiag, we have used the average value resulting from the actual C code
implementation of the application.

Listing 6.1 shows the calls to subtask objects in lines 197 to 200. Subtask objects detail
the control flow of the serial computation portions in the application as well as declare the par-
allel template objects that call them. The structure of the model’s subtask objects are similar to
the application objects, but additionally contain C language characterisation (clc) descriptions
which define the control-flow of serial computation. Part of the sweep subtask object can be
found in listing 6.2. The include file sweep.x consists of the clc descriptions representing the
core computation units of the application. The source code analysis parser capp provides an
automated procedure to obtain these descriptions. Appendix C contains part of sweep.x which
is an example of the output from capp. It contains the clc description named work() which is
a computation denoted in the sweep subtask object.

98

6. WAVEFRONT SIMULATION MODELS

Listing 6.2: Subtask object:sweep
1 subtask sweep {
2 include hardware ;
3 inc lude p i p e l i n e ;
4
5 var numeric :
6 i t = 26 ,

.
30 l i n k {
31 p i p e l i n e :
32 Tx sweep ini t = sweep in i t () ,
33 Tx octant = o c tant () ,

.
40 Tx work = work () ,

.
52 }
54 proc exec i n i t {

.
67 }

.

.
69 # include ”sweep . x”
70 }

As it can be seen from cflow work() in Appendix C, the control flow is described
in terms of abstract op-codes that provides the computational cost as determined by a static
analysis of the actual code. For example the AILG operation stands for the time taken for
an addition of two local integer variables, the result of which is stored as a global variable.
Similarly, LFOR accounts for the overhead of a for loop and ARD1 accounts for an array access
consisting of double precision floating-point values. A more complete discourse on the various
clc op-codes are given in [164].

When obtaining a prediction using simulation, unlike control flow statements, the clc
instructions are not executed, but are accumulated depending on the number of loop counts
and branch probabilities to give a time for each serial computation described by the clc. A
subtask object includes the parallel template used when it is evaluated. In the case of sweep
in listing 6.2 the related parallel template is pipeline (line 31). The branches are assigned a
probability score and loops are given an average iteration count that can be calculated from
profiles of the execution of the application and data analysis. The procedure work represents
the bulk of the computation. The point at which it is evaluated from within the pipeline
parallel template object can be seen at line 260 in listing 6.3.

Listing 6.3: Parallel template object:pipeline

1 # include <mpidefs . h>

2 partmp p i p e l i n e {
.

168 proc exec i n i t {
169 var numeric : phase ,

.

.

99

6. WAVEFRONT SIMULATION MODELS

194 f o r (phase = 1 ; phase <= 8 ; phase = phase + 1)
195 {
203 f o r (i = 1 ; i <= mmo; i = i + 1)
204 {
210 f o r (j = 1 ; j <= kb ; j = j + 1)
211 {
216 f o r (x = 1 ; x <= npe i ; x = x + 1)
217 f o r (y = 1 ; y <= npe j ; y = y + 1)
218 {
220 ew rcv = Get ew rcv (phase , x , y) ;
221 i f (ew rcv != 0)
222 { s tep mpirecv { confdev ew rcv , myid , nib ∗8 ; } }
223 e l s e { s tep cpu on myid { confdev Tx else ew rcv ; } }
224 }

.
238 f o r (x = 1 ; x <= npe i ; x = x + 1)
239 f o r (y = 1 ; y <= npe j ; y = y + 1)
240 {
243 ns rcv = Get ns rcv (phase , x , y) ;

.
257 }
258
259 step cpu {
260 confdev Tx work ;
261 }
262
263 f o r (x = 1 ; x <= npe i ; x = x + 1)
264 f o r (y = 1 ; y <= npe j ; y = y + 1)
265 {
267 ew snd = Get ew snd (phase , x , y) ;
268 i f (ew snd != 0)
269 { s tep mpisend { confdev myid , ew snd , nib ∗8 ; } }
270 e l s e { s tep cpu on myid { confdev Tx else ew snd ; } }
271 }
272
273 f o r (x = 1 ; x <= npe i ; x = x + 1)
274 f o r (y = 1 ; y <= npe j ; y = y + 1)
275 {
277 ns snd = Get ns snd (phase , x , y) ;

.
300 }
301 }

.
308 }
309 }
310 }
311 }

100

6. WAVEFRONT SIMULATION MODELS

The pipelined wavefront structure of Sweep3D is modelled in the parallel template
layer. The core template implementing this is the pipeline parallel template object. The struc-
ture of this template has been derived directly from the sweep function found in the application;
it should be noted therefore, that a level of understanding of the application is required to ex-
tract the parallel decomposition. Nevertheless, due to the intuitive syntax of the PSL scripts,
this process is straightforward for an engineer with some understanding of the application.

The communication resource usage and the communication pattern is also described
in the parallel template layer. The init procedure describes the start of the per octant, per angle
block, per k-plane block loop in lines 194 to 211. For each iteration of this loop, MPI receives
are posted (line 222) followed by the per processor work (line 260). Next the MPI sends are
executed by sending outbound cell face values (line 269). In addition to the init procedure,
pipeline defines and makes use of several procedures such as Get ew rcv (line 220). The serial
kernel code characterised in the related subtask object are called from the parallel template
(e.g. Tx work at line 260, Tx else ew rcv at line 223).

Parallel
Template
Layer

Application Layer Application Object

Subtask Objects

sweep3d

async pipeline globalsum globalmax

source sweep fixed flux_err

Hardware Layer

Figure 6.3: Layered objects for PACE Sweep3D model

The full layered object diagram for the simulation model for Sweep3D is detailed in
Figure 6.3. It includes the above discussed sweep3d application layer object, sweep subtask
object and pipeline parallel template object in addition to the other components (subtask and
parallel template layer objects) of the full Sweep3D simulation model. The globalsum and glob-
almax parallel template objects implement the parallelisation strategy of MPI allreduce primi-
tives with sum and max operations respectively, while the async object implements a sequen-
tial template that has no communications. The subtask objects fixed and flux err makes use of
the allreduce parallelisation strategy implemented in the globalsum and globalmax parallel tem-
plates to model the collective operations at the end of each Sweep3D iteration. The remaining
subtask object, source implements a fixed computation cost that occurs at the beginning of an

101

6. WAVEFRONT SIMULATION MODELS

iteration.
The final layer of the model, the hardware layer, gives resource usage cost for a target

platform. This consists of the computational resource usage for the op-codes that make up the
clcs in the subtask layer, memory resource usage (not used in this model) such as cache access
times [165] and the communication network resource usages as used in the parallel template
layer. The hardware layer models will be linked according to the target platform that is being
evaluated. Listing 6.4, details the hardware layer resource model for an Intel Pentium 3 2-way
SMP cluster with a Myrinet2000 Interconnect. The clc section consists of time costs in micro
seconds for a set of about 170 op-codes. These timings are obtained by simple synthetic micro
benchmarks run on the target processor. The mpi section denotes the parameters representing
the message passing performance of the systems’ interconnect. The parametersA toE describe
an equation of the form:

Transfer time of x bytes =

{
B + Cx, for x ≤ A

D + Ex, for x ≥ A (6.2.1)

where x is the size of a message in bytes. This is simply a curve fit for a set of data points. There
are three sets of A to E parameters in listing 6.4, representing the gradient and intercept for
the above equation for MPI send times, MPI receive times and ping-pong times respectively.
Parameter A represents a message size where communication characteristics of the intercon-
nect display different gradients. The data points for this regression are obtained using an MPI
benchmark program that carries out timed MPI sends, receives and ping-pongs for increas-
ing message sizes. This simple communication resource model has proved to be sufficient for
the communication behaviour exhibited by an application such as Sweep3D. This could be
attributed to the one way blocking sends and receives that dominate the application. If, on
the other hand, a large number of collective communications are to be modelled, then a more
detailed communication resource model and benchmark procedure may be required.

Listing 6.4: Hardware model for a Pentium 3 2-way SMP Myrinet2000 cluster
1 conf ig In te lP31266 {
2 hardware {
3 Tclk = 1 / 1266 ,
4 Desc = ” I n t e l P3 1266MHz, 2GB” ,
5 Desc = ”PC, I n t e l P4 1266Mhz, 2GB RAM, Linux 2 . 4 . 2 1 −3 7 . 0 . 1 .ELsmp” ,
6 Source = ”CSC IBM c l u s t e r ” ;
7 }
8 c l c {
9 SISL = 0 .000637512 ,
10 SISG = 0 .000636529 ,
11 SILL = 0 .000637146 ,

.

.
183 }
184
185 mpi {
186 DD COMM A = 1024 ,
187 DD COMM B = 1 0 . 7 8 6 6 ,
188 DD COMM C = 0.0158239 ,
189 DD COMM D = 4 1 . 7 1 3 1 ,
190 DD COMM E = 0.0858768 ,

102

6. WAVEFRONT SIMULATION MODELS

191 DD TSEND A = 23552 ,
192 DD TSEND B = 5 . 3 1 9 3 ,
193 DD TSEND C = 0.00352455 ,
194 DD TSEND D = −209.632 ,
195 DD TSEND E = 0 .0404188 ,
196 DD TRECV A = 1024 ,
197 DD TRECV B = 9 . 6 1 3 6 9 ,
198 DD TRECV C = 0.00175511 ,
199 DD TRECV D = 1 5 . 8 2 8 7 ,
200 DD TRECV E = 0 . 0 0 2 0 2 6 6 4 ;
201 }
202 }

6.3 Enhancing the Predictive Accuracy of PACE for Modern

HPC Systems

The Sweep3D simulation model developed in the previous section has several limitations
when predicting performance of Sweep3D on modern HPC systems. Firstly we recall that
the serial computation model in a PACE model is characterised via static source code analysis.
Such a characterisation was observed to underestimate the effect of several important opti-
misations on modern processors. Particular examples include, compiler optimisations, such
as instruction scheduling, out of order or speculative execution, the myriad array of super
scalar features of a processor, such as multiple operation pipelines, on-the-fly optimisations,
and the effect of highly specialised memory hierarchy. The work in [162], on which the model
explained in the previous section is based, relies on a set of opcode benchmarks, which when
combined with the tally of opcodes produced by the capp source code analyser, allow sum-
mative results to be calculated; these results then form the basis for performance predictions.
This method was acceptable for processors available at the time. Producing accurate predic-
tions based on this very fine-grained benchmarking relied on the processor executing the code
exactly as it was or with very little modification when the capp tool did the static source code
analysis. This assumption does not hold for modern processor systems and compilers where
it under estimates run-time hardware/compiler performance optimisations when the appli-
cation is actually executed. Predictions based on this approach in some cases, such as on an
AMD Opteron 2-way SMP cluster, gave a prediction error as large as 50%.

Secondly, the op-code characterisation of computation means that a simulation is eval-
uated at a per instruction level, which takes a considerable amount of simulation time. Thus
the simulation system at the time did not scale to simulate more than about 64 processors. But
as modern HPC systems generally have over 10K (and even over 100K) processors, improving
the system to predict application run times on such large systems has become increasingly
important.

An alternative approach and the one that is adopted in this research, draws on the
insights gained through the analytic model development process, as a solution to the above
issues. We use profiling to obtain a coarser level measurement of the achieved performance
of the serial source code of the application by using a method similar to the one described in
section 4.4. The time for each serial computation block is measured during a run of the code
on a small number of processors (the larger of the number of cores/processors per node or

103

6. WAVEFRONT SIMULATION MODELS

four). These times can then be used in conjunction with loop iteration times and conditional
statement probabilities (also obtained via runtime monitoring of the code) and static code
analysis to develop a control flow that is more representative of the actual execution of the
code. We used the PAPI [97] library to monitor and count the operations on serial kernels. Thus
we were able to verify that the actual number of floating point operations that are executed by
a processor are accurately represented in the subtask object. Listing 6.5 illustrates the modified
characterisation of a serial kernel named work used in the sweep subtask object. The original
subtask object is included in Appendix C.

Listing 6.5: Modified clc for the serial computation work from subtask object sweep
168 proc cflow work {
169 loop(< i s c l c , LFOR> , j t +nk−1+mmi−1){
172 loop (< i s c l c , LFOR> , ndiag){
174 compute < i s c l c , 2∗MFDG>;
176 loop (< i s c l c , LFOR> ,nm−1){
178 loop (< i s c l c , LFOR> , i t){
179 compute < i s c l c , 2∗MFDG>;
180 }
182 }
183 case (< i s c l c , IFBR>){
184 (− i f i x u p s)/(− eps i) :
185 loop(< i s c l c , LFOR> , i t {
186 compute < i s c l c , 1 9∗MFDG>;
187 }
188 1−((− i f i x u p s)/(− eps i)) :
190 loop (< i s c l c , LFOR> , i t){
191 compute < i s c l c , 1 9∗MFDG>;
193 }

.

.
205 case (< i s c l c , IFBR>){
206 do dsa :

loop (< i s c l c , LFOR> , i t){
208 compute < i s c l c , 6∗MFDG>;
209 }
210 }
212 }
213 }
214 }

In order to be compatible with the PACE evaluation engine we express the time per
serial computation as an achieved floating-point operation rate while at the same time express
the clc descriptions in terms of floating-point operations. The mnemonic MFDG represents a
floating point operation. Although only the floating-point operations characterise the serial
computation, the achieved rate subsumes the times to compute other operations (such as for
example for loop overheads, LFOR and conditional branch overheads, IFBR). Due to Sweep3D
(as well as many other HPC codes) being double precision floating point intensive, using this
operation as a core measure of the time is justified. The hardware level model for a target
platform will then not only be specific to that platform but specific to the application (in this
case Sweep3D) as well. As we are using the actual application execution (measured on a small
number of processors), the need for the use of inaccurate synthetic benchmarks to measure
op-code performance on a processor can be eliminated.

104

6. WAVEFRONT SIMULATION MODELS

Table 6.1: Model Validation Systems
Pentium 3 Cluster AMD Opteron Cluster SGI Altix

Processor Intel P3 Opteron Intel Itanium-2
1.4GHz 2GHz 1.6 GHz

Processors/Node 2 2 56
Memory/Node 2GB 2GB 112GB

Interconnect Myrinet 2000 Gigabit Ethernet SGI NUMA link-4
Operating System RedHat RedHat Linux RedHat Enterprise

Linux 7.2 (kernel 2.6) Linux AS 3.0
Achieved 110 MFLOPS 350 MFLOPS 225 MFLOPS

Floating-point
operation rate

Compilers used GNU C GNU C Intel C
compiler 2.96 compiler 3.4.4 compiler 8.1

Total Processors 128 32 56

We validate the enhanced simulation model on three representative HPC systems. The
three clusters used here are chosen so as to validate the model for a variety of representative
architectures1. This includes an Intel Pentium 3 cluster validation of the Sweep3D model (Ta-
ble 6.2) running on a cluster of commodity processors comprising of a traditional x86 Intel
architecture with a Myrinet 2000 interconnect. An AMD Opteron cluster validation (Table
6.3) investigates the performance on the x86 64 AMD architecture interconnected by a Giga-
bit Ethernet network. Both of these systems are SMP clusters consisting of 2 processors per
SMP node. Finally the SGI Altix system allows the exploration of performance on a genuinely
shared memory system with up to 56 processors comprising of Intel Itanium2 (IA-64) proces-
sors (Table 6.4). The key system specifications of these three platforms are detailed in Table
6.1. For each case the problem size consists of 503 cells per processor with weak scalability.
The k-blocking factor (mk) is kept constant at a value of 10.

Table 6.2: Sweep3D simulation model validations on an Intel Pentium-3 2-way SMP cluster
with a Myrinet 2000 interconnect

Data Size Num. of PEs 2D Proc. Array Execution PACE Error
(sec) Prediction (%)

(sec)
100x100x50 4 2x2 26.54 28.59 -7.72
200x200x50 16 4x4 32.28 32.78 -1.55
200x400x50 32 4x8 35.89 38.09 -6.13
400x400x50 64 8x8 40.03 40.75 -1.8
400x500x50 80 8x10 43.09 43.4 -0.73
450x500x50 90 9x10 43.7 44.07 -0.85
500x500x50 100 10x10 44.37 44.73 -0.81
400x700x50 112 8x14 46.32 48.71 -5.16

As can be seen from the validations, the accuracy of the predictions is over 90% on the
above systems. Furthermore, run times of the application on large processor configurations
can now be speculated in tractable time [3]. Note that the model errors are positive for the
Altix validations due to using an estimated achieved floating-point operation rate. At the time

1The Cray XT3/XT4 used in the previous chapter was not available for access during the time of this research.

105

6. WAVEFRONT SIMULATION MODELS

Table 6.3: Sweep3D simulation model validations on an AMD Opteron 2-way SMP cluster
interconnected by a Gigabit Ethernet

Data Size Num. of PEs 2D Proc. Array Execution PACE Error
(sec) Prediction (%)

(sec)
100x100x50 4 2x2 8.98 9.69 -7.9
150x150x50 9 3x3 9.94 10.54 -6
150x200x50 12 3x4 10.57 11.07 -4.7
200x200x50 16 4x4 10.77 11.33 -5.22
200x250x50 20 4x5 11.18 11.85 -5.97
200x300x50 24 4x6 11.95 12.38 -3.59
250x250x50 25 5x5 11.73 12.11 -3.24
250x300x50 30 5x6 12.07 12.64 -4.68

Table 6.4: Sweep3D simulation model validations on an SGI Altix Intel Itanium-2 56-way
SMP

Data Size Num. of PEs 2D Proc. Array Execution PACE Error
(sec) Prediction (%)

(sec)
100x100x50 4 2x2 14.66 13.95 4.81
200x200x50 16 4x4 17.31 15.91 8.09
200x250x50 20 4x5 17.57 16.55 5.82
200x300x50 24 4x6 18.29 17.2 5.98
200x400x50 32 4x8 19.83 18.48 6.79
300x400x50 48 6x8 20.54 19.19 6.57
350x350x50 49 7x7 19.95 18.81 5.71
250x500x50 50 5x10 21.56 20.1 6.76
350x400x50 56 7x8 21.04 19.46 7.51

of this validation PAPI was not available on the SGI Altix system to accurately ascertain the
number of floating point operations executed by the Intel Itanium-2 processors.

Contrasting the process of obtaining prediction through simulation to that of the use of
the reusable analytic model, shows that the main potential advantage of a simulation system
such as PACE is its promise of automation. Particularly, the high effort and time for develop-
ment of predictive models may be reduced with the use of tools such as capp and the use of
a PSL to directly extract simulation events. But the PACE tools (and the subsequent WarPP
tool kit described in the next section) as well as other contemporary simulation tools are yet to
demonstrate significant support for fully automated performance model generation that can
be used on a wide range of complex parallel applications. For example, developing the paral-
lel template for the Sweep3D application required a level of understanding of the application
by a performance engineer.

We find that the depth of insights gained are specifically directed towards building
a PACE simulation model and obtaining a runtime prediction value, as opposed to gaining
a concrete understanding of the complexities of a parallel application. On the other hand,
we feel that a deeper more exact level of understanding comes naturally when developing
analytic models. Thus we argue that the advantage of a simulation system such as PACE
should be viewed as a support tool for initial evaluation of an unknown parallel application

106

6. WAVEFRONT SIMULATION MODELS

and not as a technique to obtain the full picture in one attempt. For sure as mentioned in
Chapter 2, simulation techniques may be built at a greater level of detail, but in the context of
predictive models for applications such as Sweep3D, such details may obscure the important
performance aspects of the application. Nevertheless, an accurate simulation model provides
an excellent cross validation technique. This second advantage is explored in the next section.

6.4 The WarPP Simulation Toolkit

The WarPP simulation toolkit [4, 43] draws on the insights from PACE and attempts to de-
liver tools and a simulation systems that (1) reduces the time required to construct an initial
performance model and (2) further improves predictive accuracy and simulator performance
for predictions for large processor configurations. More specifically it is aimed at supporting
performance engineering studies of applications executing on massively parallel processor
machines (MPPs) which may contain multi-core, multi-processor nodes each having complex
performance properties. In this final section we briefly discuss the WarPP toolkit and present
cross-validations of the analytic model predictions with that of simulation and actual runtime
measures for the Chimaera particle transport application running on a Intel-InfiniBand HPC
cluster. The underlying objective is to present the agreeability of the results from the analytic
model when compared to that of the simulation results.

The WarPP tools provide a C-like scripting language (a Performance Specification Lan-
guage - PSL) that can be used to develop a simulation model by hand (user), by automated
code analysis or by automated generation of trace-based profiles. The simulation system is
a discrete event simulator similar to PACE but provides several significant developments.
Firstly, its smallest unit of computation granularity is represented by the execution of an entire
“basic block” drawing from the research insights detailed in the previous section.

Secondly, the simulator has the ability to incorporate hybrid models into one single
simulation. For example, parts of the model can be made by the use of traditional PSL like
statements or analytic sub-models or trace/profiler-based models.

Thirdly, WarPP supports multi-layer network models. A network in an MPP system
could be made of a high bandwidth, low latency core-to-core bus within a single processor,
interprocessor communications networks found within multi-processor nodes and node-to-
node interconnects such as Gigabit Ethernet, InfiniBand and the Cray SeaStar. Each sub-
network is described in simulation as a set of latency, bandwidth pairs or a “profile” mapped
to a range of the message size space, with the topology of the system being encoded by an
assignment of MPI rank pairs for each profile. Finally, recent tools being developed as part
of the WarPP project attempt to provide a system for rapid initial model construction and pa-
rameterisation in order to reduce the effort of the performance engineers [7]. One approach
examined is trace-based simulation model developments. More details of the WarPP tools can
be found in [43].

Table 6.6 and Table 6.7 detail validations of the reusable analytic model against predic-
tions from the WarPP simulation model and actual run times from the system for the Chimaera
2403 problem. The target HPC system in this case is an Intel Xeon cluster interconnected by an
Infiniband interconnect at the Warwick Centre for Scientific Computing (hereafter referred to
as CSC-Francesca). The key system specifications are noted in Table 6.5.

107

6. WAVEFRONT SIMULATION MODELS

Table 6.5: Intel InfiniBand (CSC-Francesca) Cluster - Key Specifications
Processor Dual-Intel Xeon 5160

3 GHz
Cores/Processor 2
Processors/Node 2
Memory/Node 8GB

Interconnect QLogic InfiniBand 4X, SDR
Operating System SUSE Linux

Enterprise Server 10
Achieved 110 MFLOPS

Floating-point
operation rate

Compilers used Intel C/Fortran
Compiler Suite 10

Total Cores 960

Table 6.6: Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 1203 total problem
size

NPE Nx/n Ny/m Analytic Execution WARPP Analytic Simulation
Prediction (Sec) Simulation Error Error

(Sec) Predictions (%) (%)
(Sec)

32 15 30 88.9 107.18 89.58 -17.05 -16.42
64 15 15 47.25 56.72 48.75 -16.69 -14.05
96 7.5 20 35.43 40.89 33.8 -13.36 -17.34

128 7.5 15 30.28 32.56 28.98 -7.01 -11

Table 6.7: Chimaera Model Validation on a Intel Xeon-InfiniBand luster - 2403 total problem
size

NPE Nx/n Ny/m Analytic Execution WARPP Analytic Simulation
Prediction (Sec) Simulation Error Error

(Sec) Predictions (%) (%)
(Sec)

81 27 27 324.35 342.33 330.46 -5.25 -3.47
96 15 40 268.57 297.03 277.56 -9.58 -6.55

100 24 24 259.37 278.37 248.32 -6.82 -10.79
128 15 30 205.74 225.65 207.18 -8.82 -8.19
169 19 19 167.83 174.35 177.09 -3.74 1.57
256 15 15 108.81 129.65 117.98 -16.08 -9
512 8 15 63.08 66.64

1024 8 8 37.99 37.29
2048 4 8 23.27 22.49
4096 4 4 15.6 15.59
8192 2 4 11.86 11.57

16384 2 2 10.15 10.11

The network models used in these validations are based on simple linear equations
parametrised by message size similar to the models developed for the Cray XT3/XT4 systems
in the previous chapters. For simplicity we use a latency/bandwidth model for this network

108

6. WAVEFRONT SIMULATION MODELS

without loosing predictive accuracy. The communication time for a message of length x bytes
can be modelled as tsend(x) = (1/B)x+nl with the bandwidth (B) and latency (nl) associated
with the appropriate region for x. The time for a receive is modelled by: trecv(x) = (1/B)x
since the receiver does not experience the latency required to establish the connection but must
spend at least the actual transmission time in a locked state accepting data from the network
interconnect. Note the difference between the definitions of nl and the LogGP parameter L,
where the former is a combination of both the message processing overhead (o) and network
latency (L) based on the MPI messaging protocol. The separation of nl in terms of o and L

was not possible with the communications profiles of CSC-Francesca. However, predictive
accuracy remains at a higher level, even with such an abstract communications model. Table
6.8 details the network parameters used in the validations. Note that the network benchmark-
ing is partitioned into two regions by message size. The point at which the split in network
performance occurs is 2048 bytes, indicating that the InfiniBand management system may be
configured for a maximum transmission unit (MTU) size of 2Kbytes.

Table 6.8: InfiniBand network model parameters

Network Profile Message Size nl B
(Bytes) (µSec) (GBytes/s)

on-chip ≥ 0 0.655 2.70
(core to core)
off-processor < 2048 0.69 2.80

(processor to processor) ≥ 2048 0.91 3.83
off-node < 2048 2.64 0.46

(node to node) ≥ 2048 3.63 0.73

We have not observed contention on the CMP nodes of CSC-Francesca machine that is
similar to the Cray XT3/XT4. Thus we have ignored these costs (if any) in our predictions. As
can be seen from Table 6.6 and Table 6.7, there is good agreement between the analytic model
and simulation model predictions. This further increases our confidence in the accuracy of the
models. Additionally, the results show that the model is equally accurate for systems other
than the Cray XT3/XT4 on which the reusable analytic model was initially developed.

6.5 Summary

This chapter has described the research work that used simulation to investigate the perfor-
mance properties of wavefront applications. Developing predictive simulation models was
presented in contrast to the analytic model analysis of wavefront codes given in the previous
chapters. The PACE simulation system was used to model the Sweep3D application. An en-
hancement to the model development was also presented where coarser grained computation
timings are used to characterise computation performance of serial kernels. This has shown
to give higher predictive accuracy and scalability when modelling applications for modern
HPC systems. This key improvement was subsequently implemented in the WarPP toolkit
enabling the system to model over 100K processors with less than 20% predictive errors in
tractable time.

109

6. WAVEFRONT SIMULATION MODELS

We also demonstrated the high level of agreement between the analytic and simulation
predictions for wavefront codes (specifically using the Chimaera application on a modern HPC
system). The strong correlation between the analytic and simulation results means that when
a real system is not available for validation the simulation results can be equally well used as
a form of validation of our analytic models (or vice-versa). This enables us to cross compare
the results from the analytic model for additional confidence. As a result, we use WarPP as an
alternate validation for several optimisations developed in the next chapter.

110

7 Optimisations and System Procurement

7.1 Introduction

In this final contribution chapter we return to the use of the reusable analytic models to address
one of the key open questions that motivated this research. The objective is to investigate the
bottlenecks that affect the operation and the possible optimisations for the parallel pipelined
wavefront algorithm in terms of computation, communication and synchronisation behaviour.
Recall that in Chapter 5 section 5.5, one possible optimisation based on the particle transport
codes (Sweep3D and Chimaera) was presented. In this chapter we explore further the utility
of the analytic models in understanding such possibilities for near optimal code design. More
specifically, we show how the models provide significant insight to: (1) identify the qualita-
tive and quantitative benefits of several key possible optimisations, including an analysis for
wavefronts operating on irregular/unstructured data grids as well as heterogeneous systems;
(2) bottleneck analysis of the algorithm in support of system procurement. The results from
the WarPP simulator are used for validations of several optimisations and provide insights
when an actual system is not available for executing the code. The target HPC system in these
optimisations is the Intel Xeon/InfiniBand cluster at the Warwick Centre for Scientific Com-
puting (CSC-Francesca), unless otherwise stated. For ease of reference, the analytic model
from Chapter 4 is reproduced below.

Table 4.2 Plug-and-play LogGP Model: One Core Per Node, on 3D Data Grids
Wpre = Wg,pre ×Htile ×Nx/n×Ny/m 4.2.6
W = Wg ×Htile ×Nx/n×Ny/m 4.2.7

StartP1,1 = Wpre 4.2.8
StartPi,j = max(StartPi−1,j +Wi−1,j + Total CommE +ReceiveN ,

StartPi,j−1 +Wi,j−1 + SendE + Total CommS) 4.2.9
Tdiagfill = StartP1,m 4.2.10
Tfullfill = StartPn,m 4.2.11

Tstack = (ReceiveW +ReceiveN +W + SendE + SendS +Wpre)Nz/Htile −Wpre 4.2.12
Time per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront 4.2.13

7.2 Shifting Computation Costs

We begin by investigating an optimisation inspired by a key difference between NPB-LU and
the two particle transport codes (Sweep3D and Chimaera) that was used in the development
of the reusable analytic model in previous chapters. Recall from listings 3.8, 3.9 and 3.10 one
of the main contrasting features of LU was that the computation time per sweep step consists

111

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

-14

-12

-10

-8

-6

-4

-2

0

256 512 1024 2048 4096 8192 16384 32768 65536

P
er

ce
nt

ag
e

ch
an

ge
in

ru
nt

im
e

Number of Processors (P)

25 o/o 50 o/o 75 o/o 100o/o

Figure 7.1: Optimisation by shifting computation costs to pre-computation - strong scaling
(Speculative Chimaera type application, 240x240x240 Cells, 1 time step, 16 energy groups 419

iterations, Htile = 1)

of a pre-computation (i.e. a computation before the MPI receives) and a main computation.
The analytic model accounts for these by modelling them in Wpre and W respectively. In this
section we investigate the quantitative and qualitative affects of completing part of the main
computation during the pre-computation block. More specifically, in an application such as
Chimaera where there is no pre-computation, we speculate as to the affects of completing parts
of the main computation in an artificial pre-computation block. However, the amount that can
be shifted to the pre-computation block depends on the underlying mathematics solved, but in
this optimisation we are interested in the speculative case where there are no such limitations.

The pre-computation occurs before receives are posted and therefore does not require
any boundary values from near neighbour processors. This in turn means that all processors
can compute the pre-computation simultaneously. Thus we investigate how much savings (if
any) can be gained by re-structuring the computation in the pipelined wavefront code. Pre-
dictions for this optimisation can be easily obtained without any extensions to the reusable
analytic model. If we consider the computation per sweep step (W) in a Chimaera-type wave-
front application, then we simply multiply the W in (4.2.9) and (4.2.12) by a factor of α where
0 ≤ α ≤ 1, while replacing Wpre in (4.2.8) and (4.2.12) by (1− α)W to obtain predictions.

For instance Figure 7.1 presents the model predictions for the case with α =
0.25, 0.5, 0.75, 1, representing a 25, 50, 75 and 100 percent shift of computation on to the pre-
computation block when using strong scaling. It should be noted that shifting 100% of the
computation is presented as a boundary case where in reality such an instance may not be
viable. In strong scaling, the number of cells computed by a processor reduces as the num-
ber of processors increases. This has the effect of reducing the benefits of the optimisation as
predicted by (4.2.9). But as the length of the pipeline increases the time spent in pipeline fill
increases with the number of processors. The effect of these contradicting benefits results in
a run time reduction of approximately 13% on 2K to 8K processors. From Figure 7.2 we see
the contribution of the optimisation clearly increasing as the number of processors increases

112

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

850

900

950

1000

1050

1100

1150

1200

1250

1300

1024 2048 4096 8192 16384 32768

T
im

e
(S

ec
on

ds
)

Number of Processors (P)

Original runtime
Optimised runtime

Figure 7.2: Optimisation by shifting 100% of computation costs to pre-computation - weak
scaling (Speculative Chimaera type application, 8x8x1000 Cells/PE, 1 time step, 16 energy

groups 419 iterations, Htile = 1)

in the case of weak scaling. In this case the length of the pipeline (given by the number of x-y
diagonals) increases with the number of processors, while the computation time per sweep
step remains constant.

Thus, we can conclude that when developing wavefront codes, it is significantly more
beneficial to structure the computation such that as much of the computation as possible is
performed during the pre-computation block.

7.3 Multiple Simultaneous Sweeps

The wavefront applications investigated so far have all had a specific ordering in which the
multiple sweeps were executed. LU’s two sweeps occur one after the other as a forward and
a backward sweep without any overlapping. Sweep3D and Chimaera perform eight sweeps
with two sweeps overlapping up to a maximum of half of the pipeline fill time (as detailed in
chapter 3). We have not yet explored the case when the wavefront sweeps are fully overlapped.
More specifically, this entails performing all 8 sweeps beginning at the same time at their
respective corners of the 3D data grid and sweeping across to the opposite corner. In this
section we extend the reusable model to predict the performance of such an application.

The motivation for this optimisation is again to reduce the pipeline fill times. When
executed simultaneously, the eight sweeps are expected to only have a single pipeline fill time.
We investigate this optimisation in the following two forms for a typical modern HPC system
consisting of CMP nodes:

1. Each sweep is computed by separate processor cores simultaneously.

2. All cores compute all the sweeps simultaneously.

113

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192 16384 32768 65536

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Processors (P)

Measured
Predicted

Figure 7.3: Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 2403 total
problem size, Htile = 1)

7.3.1 Multiple Simultaneous Sweeps on Separate Cores

Modern HPC systems consist of nodes with multiple processing units. Nodes with multi-
core processors are part and parcel of such systems. Thus the availability of high processor
counts may enable us to assign separate sweeps to separate processing elements on a node.
For example in a Chimaera type application the runtime flat-lines after about 4K processors
(see Figure 7.3). Thus in a system with say 16K processor cores, assigning one fourth of them
to compute only two sweeps may provide a better trade-off in performance if the sweeps are
computed on 4K processors using simultaneous sweeps. There is only a minor degradation for
the computation performance per tile, but due to simultaneous sweeps the pipeline fill time is
reduced.

Consider the case where a total problem size of 2403 is solved for a Chimaera type
application with the eight sweeps computing simultaneously, beginning from the four corners
of the 2D processor array. Assuming that a node consists of a single quad-core processor we
assign two sweeps to be computed by a single core on each node. Figure 7.4 depicts such a
distribution of work. In this case the time to solution can be predicted simply by considering
the time to compute a single sweep from one corner of the processor array to the opposite
corner. If we assume that the time to compute a block of cells of height Htile for a single sweep
on a single processor is W , due to a core processing two sweeps we model the computation
time per sweep step to be double the computation time for a single sweep step. Similarly, the
message size was also doubled to account for larger messages being sent per sweep step. We
compare the predictions with those of the original Chimaera runtime predictions in Figure 7.5.

The results show that the benefits of performing multiple wavefronts increase for large
processor counts. This is directly attributable to the savings from longer pipeline fill lengths.
It should be noted that any contention due to multiple wavefronts crossing node boundaries
have been ignored in the model. In a system such as the Cray XT4 used in the previous chap-
ters, we anticipate communication contention on the node due to sharing communication re-

114

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

Sweeps
5, 6

Sweeps
3, 4

Sweeps
7, 8

Sweeps
1, 2

Sweeps
5, 6

Sweeps
3, 4

Sweeps
7, 8

Sweeps
1, 2

Sweeps
5, 6

Sweeps
3, 4

Sweeps
7, 8

Sweeps
1, 2

Sweeps
5, 6

Sweeps
3, 4

Sweeps
7, 8

Sweeps
1, 2

Core

Quad core
Node

Figure 7.4: Multiple simultaneous sweeps on separate cores

0

20

40

60

80

100

120

256 512 1024 2048 4096 8192 16384
0

10

20

30

40

50

60

70

80

90

100

110

120

T
im

e
(S

ec
on

ds
)

P
er

ce
nt

Number of Processors (P)

Original Chimaera
Simultaneous Sweeps

Percentage runtime reduction

Figure 7.5: Simultaneous Sweeps on Separate cores (Speculative Chimaera type application,
240x240x240 Cells, 1 time step, 16 energy groups 419 iterations, Htile = 1)

sources such as the single bus to RAM and the NIC. Although a speculative analysis of such
a case can be given for the XT4 with the CMP communication models developed in Chapter
4, a concrete application that uses multiple simultaneous sweeps will be required to further
explore this issue.

7.3.2 Multiple Simultaneous Sweeps on All Cores

In the second case, we assign all 8 sweeps to be simultaneously processed, beginning at each
corner of the 2D processor grid, by all the processor cores. In this case, during the operation

115

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

4 overlapping2 overlapping 8 overlapping

Sweeps 1, 2Sweeps 7, 8

Sweeps 5, 6 Sweeps 3, 4

Sweeps 7, 8 Sweeps 1, 2

Sweeps 5, 6 Sweeps 3, 4

Sweeps 7, 8 Sweeps 1, 2

Sweeps 5, 6 Sweeps 3, 4

Sweeps 7, 8 Sweeps 1, 2

Sweeps 5, 6 Sweeps 3, 4

(a) (b)

(c) (d)

Figure 7.6: Simultaneous multiple wavefronts overlapping steps

of multiple sweeps at any time, a processor may compute a minimum of 2 sweeps up to a
maximum of 8 sweeps. This is illustrated in Figure 7.6, where based on the progression of the
first wavefront of each sweep there are (a) 2 sweeps, (b) and (c) 4 sweeps, or (d) 8 sweeps being
computed by some processor (i, j).

If we assume that the time to compute a block of cells of heightHtile for a single sweep
on a single processor is W and the time to compute η simultaneous sweeps on a single pro-
cessor is ηW , then the critical path time to complete all 8 sweeps depends on the steps during
which each sweep starts to overlap with any other sweep. We assume here that the commu-
nications primitives used are non-blocking MPI sends. Therefore, the extensions required to
model multiple sweeps will at least require finding the steps during which η varies from 2, 4
to 8.

Consider a 3D data grid decomposed on to a 2D processor array of size m× n. At the
beginning of a sweep each processor will be computing 2 sweeps (one originating from the top
of the 3D cube and one from the bottom). Assuming n > m, afterm/2 steps, sweeps 1, 2 and 3,
4 as well as sweeps 5, 6 and 7, 8 overlap. If m > n then sweeps 1, 2 and 5, 6 as well as 3, 4 and
7, 8 overlap first. But in both cases this will amount to a maximum of four sweep overlaps.
Finally, as in Figure 7.6 (c), after (n+m)/2 steps, all sweeps overlap. As the overlappings occur
during the initial pipeline fill stages of the wavefront operation we increase the computation

116

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

time per sweep step from 2W to 4W and 8W after m/2 and (n+m)/2 respectively, as in (7.3.1)
and (7.3.2).

StartP1,1 = ηWpre (7.3.1)

StartPi,j = max(StartPi−1,j + η(Wi−1,j +
1
2

(Total CommE +ReceiveN)),

StartPi,j−1 + η(Wi,j−1 +
1
2

(SendE + Total CommS))) (7.3.2)

η =


2, default

4, if m/2 < i+ j or n/2 < i+ j

8, if i+ j ≥ (m+ n)/2

As there are 2 sweeps originating from one corner of the 2D processor array, we
again assume that the communication operations pack boundary values for both these sweeps
into one MPI message with double the message length. After the maximum overlapping is
achieved, wavefronts complete each step with η = 8 in a steady state operation until the
pipeline empty stages. During the pipeline empty stages, the reverse of pipeline fill occurs,
where the overlapping number of sweeps per processor reduces from 8 to 4 and finally to 2.

Tstack = η(
1
2

(ReceiveW +ReceiveN) +W +
1
2

(SendE + SendS) +Wpre)

(Nz/Htile − (m+ n− 1))−Wpre (7.3.3)

Time per iteration = 2nfullTfullfill + nsweepsTstack + Tnonwavefront (7.3.4)

The time for a pipeline empty is equivalent to the time for a pipeline fill. We use the
multiplier 2 in the first term of (7.3.4) to accounts for this. The number of steps (m+ n− 1) for
pipeline empty is subtracted in (7.3.3). The communication terms in the above equations are
also multiplied by η, to account for the worst case sequentialising of communications when
multiple wavefronts are processed. Although we assume MPI non-blocking primitives, we
believe contention on the NICs may have the effect of serialising messages. If the number
of tiles in the z dimension is less than the number of pipeline fill stages given by Nz/Htile −
(m+ n− 1) then Tstack reduces to 0. This is due to the fact that in such a setup the maximum
overlapping of all sweeps only occurs briefly during the pipeline fill stages, and that cost is
included in (7.3.2). It is also important to note that such a configuration is not efficient, as
many processors will remain idle during the pipeline fill and empty stages.

Previous related work on models for multiple wavefront sweeps has been published
in [24] and [37]. The former uses the maximum number of multiple wavefronts (i.e. 8) crossing
the boundaries of a processor and neglects the dynamic overlapping during pipeline fill and
empty. The latter documents the use of multiple simultaneous sweeps in the solution of an un-
structured grid particle transport application without specifics of the model extensions. Thus

117

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

0

20

40

60

80

100

120

256 512 1024 2048 4096 8192 16384
0

10

20

30

40

50

60

70

80

90

100

110

120

T
im

e
(S

ec
on

ds
)

P
er

ce
nt

Number of Processors (P)

Original Chimaera
Simultaneous Sweeps

Percentage runtime reduction

Figure 7.7: Simultaneous sweeps on all cores (Speculative Chimaera type application,
240x240x240 Cells, 1 time step, 16 energy groups 419 iterations, Htile= 1)

we believe that the model detailed in this section provides a more precise and equally simpler
model to predict the performance of multiple simultaneous sweeps. Moreover, the extension
also shows the re-usability of the wavefront model. Figure 7.7 details the predictions from this
model.

Particle transport codes such as Chimaera use a convergence criterion to halt the exe-
cution of application. The authors of Chimaera have noted that the convergence of the appli-
cation depends very much on the order in which the sweeps are performed on the 3D grid of
data. Thus, they say that the number of iterations for convergence will increase when simulta-
neous multiple sweeps are executed. But as the benefits of performing multiple simultaneous
sweeps keeps increasing at large scale, we see that there is a trade-off that can be explored for
this specific application. A further disadvantage of multiple simultaneous sweeps would be
the increased requirement for memory and memory bandwidth between processor cores and
main memory. More memory will be required for holding intermediate steps of the computa-
tion performed by all 8 sweeps. This will however this will be less of a problem on smaller tile
sizes. A high memory bandwidth is needed to continually feed the cores with data to perform
the computations for all 8 sweeps per sweep step. Thus having a node architecture with high
memory bandwidth (such as the Cray XT3/XT4) will be advantageous.

7.4 Model Extensions for Heterogeneous Resources and Irreg-

ular/Unstructured Grids

The analytic reusable model in Chapter 4 assumes that the wavefront application operates on
a regular orthogonal grid of data. Additionally the model implicitly assumes that the com-
putational resources and the communication network is homogeneous. This implies that the
computation per sweep step, and each of the near neighbour communication costs remain the
same (or have very low variance) across the 2D processor array. In this section we develop sim-

118

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

ple extensions to the model to account for (1) heterogeneous computation and communication
resources and (2) high variance across computation requirements - i.e. irregular/unstructured
data grids.

Both irregular/unstructured data grids and heterogeneous compute nodes increases
the variance of the time to compute a block of cells on a processor. Therefore we explore both
of these cases, by considering the variance of W based on the processor indices (i, j). More
specifically, when a 3D data grid is assigned to a 2D processor array (as in Figure 4.1), let the
time to compute a block of cells of heightHtile assigned to a processor (i, j) be given byWi,j . If
the 3D data grid is irregular/unstructured and/or the compute resources are heterogeneous,
then we can assume considerable differences between Wi,j and Wi′,j′ where i 6= i′ and j 6= j′.
We consider three cases based on the heterogeneity of the compute and communication re-
sources and the computational requirements of the 3D data grid, to motivate the model exten-
sions as follows:

1. Each cell in the 3D data grid has similar computational requirements (i.e. homogeneous
cells), the 3D grid is structured (i.e. is 3D orthogonal), but the computational resources
(i.e. processors) are heterogeneous.

2. Each cell in the 3D data grid has different computational requirements (i.e. heteroge-
neous cells), the 3D gird is structured, and the computational resources are homoge-
neous.

3. Each cell in the 3D data grid has similar computational requirements (i.e. homogeneous
cells), the 3D grid is unstructured and the computational resources are homogeneous.

The first case is simply when a structured regular orthogonal grid of data is solved,
using different types of processors. In the second case, the 3D data grid is assumed to consist
of cells that have different computational requirements. For instance, the number of floating-
point operations to be solved per cell may vary on each cell across the grid. In the final case,
an unstructured grid is considered, where the division of work across processors will vary as
now the 3D grid is not orthogonal. We explore each case in the following subsections.

7.4.1 Homogeneous Cells, Structured Grid and Heterogeneous Resources

Recall that the basic reusable model was developed considering the critical path time for wave-
front execution, and that the diagonals of the 2D processor array were considered as stages of
a pipeline. Thus when there are heterogeneous Wi,j times, the critical path will be deter-
mined by the processors that have the largest Wi,j costs on the path of a given wavefront.
More specifically, considering a wavefront that begins at the corner processor (1, 1) and ends
at the opposite corner processor (n,m), the critical path consists of the time to fill the stages
of the pipeline and repeats at the rate of the slowest stage. Thus only 2 considerations and
modifications to the basic reusable model are required in the case of heterogeneous resources
computing a regular orthogonal grid of data.

The first of these is finding a method to obtain the worst case path cost from processor
(1, 1) to (n,m) considering a single sweep. This can be easily obtained by examining the pro-
cessors in the 2D array as edges of a directed graph with Wi,j values as costs to traverse the

119

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

graph. Now the problem reduces to finding the path with the highest costs that connect (1, 1)
and (n,m). From a practical point of view this will require measuring the average computa-
tion per tile on each processor. The critical path time for pipeline fill can then be computed
using the recursive expression in (4.2.9), where the maximum cost for each stage is already
considered.

However, when using the model for speculative studies, measuring Wi,j for each pro-
cessor is not practical. For instance, if we are speculating on the scalability of the applica-
tion for a system that has a larger number of processors, than is actually available. More
specifically, consider the following example: Let a 3D wavefront application be assigned to
a 2D processor array with a total number of processors n × m, where the pool of processors
takes a range of times to compute a block of cells of height Htile. Let this range be given by
W1,W2,W3, ..,Wr, ..,Wmax. Additionally, let the probability that a processor takes Wr time to
complete a block of cells of height Htile be given by Pr, where

∑max
r=1 Pr = 1. To account for

the variance of computation, we modify the computation timeW in (4.2.9) by replacing it with
the averaging expression in (7.4.1).

Wavg =
max∑
r=1

PrWr (7.4.1)

As can be seen, we are using simple averaging to account for the variance in compu-
tation time. We show that such approximations will provide adequately accurate qualitative
speculations. But, if any other more detailed distribution function is known for the variance
of W (for example if the probabilities that Pr changes with the number of processors, and this
function is known) then that could be easily included in the (4.2.9) expression.

The second consideration is that the time for the steady state wavefront operation in
Tstack should be set to the rate of the longest Wi,j . Assuming Wmax is the largest time to
compute a block of cells we replace W in (4.2.12) by Wmax.

Table 7.1: Predictions for a system with heterogeneous processors (Chimaera 240x240x240
Cells, 1 time step, 16 energy groups 419 iterations, Htile = 1)

Number of Simulation Model Analytic Model Difference
Processors Predictions (sec) Predictions (sec) (%)

256 206.78 202.21 -2.21
512 114.63 113.1 -1.34
1024 68.99 64.83 -6.03
2048 38.9 36.8 -5.4
4096 24.65 22.45 -8.93
8192 18.07 15.33 -15.12

16384 13.1 11.93 -8.94
32768 12.37 10.68 -13.69
65536 11.42 10.78 -5.66

Table 7.1 gives representative validations of this model comparing predictions from the
model, to those from the WarPP simulation models. The scenario explored in this validation
is for a pool of processors that take 0.5W,W and 2W times to compute a tile. The probability
that a processor will take 0.5W,W or 2W is : 0.5, 0.13 and 0.37 respectively. This example
was inspired by a typical procurement practice with a limited budget, where an organisation

120

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

might already have a pool of processors that compute a tile in 2W time, but intend to expand
its system by procuring processors that compute a tile in W and 0.5W during the course of
two upgrade cycles. Thus our model is able to provide predictions for the capability of the
system after the upgrades.

Another scenario that can make use of such a probability distribution may occur when
running a wavefront application on a wide area network (WAN). The network may have sev-
eral partitions, each located at a different site. Each site might be made up of homogeneous
processors while different sites have different processors. Now, assuming the job scheduler
can select any processor from any site with equal probability to execute a parallel job, we can
easily determine the probabilities of processor distribution as above. If a different scheduling
policy is used, then this can also easily be incorporated into the probability distribution. For
example, a workload characterisation of the systems in the WAN may provide a statistical
measure that takes into account the typical availability of resources and the behaviour of the
scheduler in such scenarios.

Similarly, for wavefront applications running on heterogeneous communication re-
sources, the critical path time is limited by the worst case communication link. Thus, we use
the maximum cost for communicating in (4.2.12), while a similar averaging cost can be used
for the communication terms in (4.2.9). To simplify the measurement process and the model,
we note that if in a wavefront code the messages sent are sufficiently small, then we can ignore
the contribution of bandwidth if the sum of message overhead and network latency is large.
I.e. in such a case we characterise the network performance by the value given by the intercept
of graphs such as Figure 4.2. Our experience has been that for high performance configura-
tions of a given wavefront code, the messages sent are sufficiently small to satisfy the above
assumption. We see the importance of latency compared to bandwidth in Figure 5.16 and give
further proof of this later in this chapter.

7.4.2 Heterogeneous Cells, Structured Grid and Homogeneous Resources

In this case, each cell has different computational requirements. This essentially makes the
computation time of each tile computed per sweep step different, even within a single pro-
cessor. Thus the steady state terms in (4.2.12) need to take in to account the maximum com-
putation and communication costs for each sweep step. If we denote the set of all processors
by ∀P and the set of all communication links by ∀l then we can rewrite (4.2.12) to account for
heterogeneous cells as follows:

Tstack =
Nz/Htile∑
step=1

{max
∀l

(ReceiveW) +max
∀l

(SendE) + (7.4.2)

max
∀l

(ReceiveN) +max
∀l

(SendS) +max
∀P

(Wi,j +Wpre,i,j)}

In other words, the critical path now consists of the maximum computation block and
communication link at each sweep step of the wavefront code. No modifications are needed to
(4.2.9) as the maximum is already considered. Unfortunately, knowing the maximum before
execution of the code may be difficult in practice. This limits our ability to make speculative
studies using the model. From historical data however, the compute requirements for each cell

121

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

may be obtainable. For instance it may be possible to build a map of the 3D cells by detailing
each cell’s floating-point operation count. Then by using a processor’s achieved floating point
operation rate (for computing particle transport codes for instance) we can obtain the compute
time per tile on each processor for each tile given the size of Htile.

7.4.3 Homogeneous Cells, Unstructured Grid and Homogeneous Re-
sources

In the case where the data grid is unstructured (i.e. each processor computes a different num-
ber of cells) the critical path time of the wavefront application will again be limited by the
worst case compute block and worst case communication link. The model given in the pre-
vious section can therefore still be used to model this case. Assuming that the computational
requirements of each cell are homogeneous, the variation in the computation time per sweep
step occurs due to processors not computing an equal number of cells. In other words there is
a load imbalance. In unstructured data girds, the assignment of cells to each processor is usu-
ally handled by a mesh partitioner [166, 167]. Thus, if the partitioning of the grid is known, the
computational time per sweep step could be computed for each tile on each processor. Again,
some historical knowledge of the code’s runtime behaviour and computation, communication
requirements as needed, but once a map of the number of cells assigned to each processor is
built, (4.2.9) and (7.4.2) can be easily used to obtain predictions.

7.5 System Procurement and Bottleneck Analysis

Identifying key issues that affect the performance of a workload is particularly important for
application optimisation as well as for HPC procurement, operation, maintenance and up-
grading. In this section we assess several system procurement questions with regard to the
Chimaera benchmark, using the analytic model. Furthermore we attempt to shed light on the
features of an HPC system that are best suited to running wavefront codes.

7.5.1 Larger Problem Sizes

The decision to purchase a new HPC system or upgrade an existing one may often be due
to an increase in problem size. For example an increased resolution of the 3D grid may be
needed to obtain higher accuracies for the problem solved. The computation/communication
requirements of such scenarios for wavefront applications can be easily explored using the
analytic models developed in this research. Figure 7.8 details the expected parallel efficiency
of solving larger problem sizes of the Chimaera application on a system similar to the CSC-
Francesca system with an increasing number of processors.

Recall that parallel efficiency (given by (2.3.2)) can be used as a measure of scalability
of the application on a target system. There is a decline in parallel efficiency when increasing
the number of processors. This can be attributed to the time spent in communication, which
proportionally increases relative to computation as the problem size per processor reduces.
Moreover, the pipeline fill increases with the larger number of processors, also contributing
to increased communication. An organisation might prefer a parallel efficiency of 50% as

122

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

0

10

20

30

40

50

60

70

80

90

100

64 256 1024 4096 16384 65536

P
ar

al
le

lE
ffi

ci
en

cy
(o/

o
)

Number of Processors (P)

1000x1000x1000
500x500x500
240x240x240

Figure 7.8: Parallel efficiency of larger problem sizes (Chimaera, 1 time step, 16 energy
groups 419 iterations)

a very basic metric of evaluating the number of processors a user should choose during a
Chimaera run. This half way mark may be considered as the point where enough useful
(computation) work is done with an acceptable execution time. In other words at the lower
end, say at less than 30% efficiency, communication time makes up a substantial propotion of
the execution time. At the high end, although more useful work is done, the time to solution is
unacceptably large. Depending on the system-wide number of jobs to be run simultaneously,
at 50% efficiency, an approximate processor core count for procurement may be obtained. It
can be seen that the scalability increases with larger problem sizes, requiring more processor
cores to reach the 50% mark.

7.5.2 Computation, Latency and Bandwidth

Recall that in Chapter 5, Figures 5.13, 5.14, 5.15 and 5.16, detailed the breakdown of computa-
tion/communication as well as the contributions of latency and bandwidth to the critical path
of a wavefront code’s execution, on the Cray XT4. In this section we further explore the run-
time trade-offs when each of these components is changed. Similar to all the previous results
in this chapter, we base our analysis on an Intel/Xeon, Infiniband cluster. Figure 7.9, presents
the predicted change in runtime from using processor cores with 10%, 20% and 50% higher
performance. We see that in small processor configurations (i.e. towards the left of the graph)
the improvement on computation significantly reduces the runtime. When the total runtime
becomes more dependent on the communication performance on larger processor configura-
tions, the computing benefit diminish.

Similarly, the affects of changing latency and bandwidth are presented in Figure 7.10
and Figure 7.11. We see that on larger processor configurations, the bottleneck is due to the la-
tency of the network. The model predicts that improvements to the bandwidth of the network
contribute less to the critical path. However, we suspect that lower bandwidth manifests itself
as network contention, degrading the performance of a wavefront code. It can be shown that

123

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

64 256 1024 4096 16384 65536

C
ha

ng
e

in
R

un
tim

e(o/
o
)

Number of Processors (P)

10 o/o improvement
20 o/o improvement
50 o/o improvement

Figure 7.9: Change in runtime due to improved computation performance (Chimaera
240x240x240, 1 time step, 16 energy groups 419 iterations)

-70

-60

-50

-40

-30

-20

-10

0

64 256 1024 4096 16384 65536

C
ha

ng
e

in
R

un
tim

e(o/
o
)

Number of Processors (P)

25 o/o reduction
50 o/o reduction
75 o/o reduction

Figure 7.10: Change in runtime due to reduced network latency (Chimaera 240x240x240, 1
time step, 16 energy groups 419 iterations)

the message size and the frequency of injecting messages to the NIC by a processor connected
to a 3D torus network such as the one found in a CrayXT4 will not saturate the network. Thus
we can safely ignore any network contention on such a system.

For an InfiniBand network, given the number of ports on a switch (288 in the switch in
CSC-Francesca), such a claim require further investigation for wavefront codes, given insights
regarding contention explored in recent works [168]. The message injection rate of a node
running four MPI tasks from a wavefront code such as Chimaera will also not saturate the
switch. However, depending on the number of NICs per node, the topology of the network
and the number of available ports on the switch, multiple switch levels and the number of
cores or processors in a node, there may be a possibility of network contention. These issues

124

7. OPTIMISATIONS AND SYSTEM PROCUREMENT

-8

-7

-6

-5

-4

-3

-2

-1

0

64 256 1024 4096 16384 65536

C
ha

ng
e

in
R

un
tim

e(o/
o
)

Number of Processors (P)

25 o/o increase
50 o/o increase
75 o/o increase

Figure 7.11: Change in runtime due to increased network bandwidth (Chimaera
240x240x240, 1 time step, 16 energy groups 419 iterations)

are currently being investigated as future work. A further problem with multiple switches is
the increased physical wire time and possible router overheads. These costs degrade the net-
work latency even if the possible contention issues are ignored. Given the choice to buy two
different versions of InfiniBand networks, one having two or four times more bandwidth than
the other and thus being considerably more expensive, while both has the same latency, the
model shows that for wavefront codes it is better value for money to purchase the lower band-
width InfiniBand network. Alternatively, investing in a lower latency network will provide
better performance.

7.6 Summary

The optimisations detailed in this chapter, as well as in Chapter 5, are by no means exhaus-
tive. There may be other variations and different HPC hardware/software platforms that yet
provide further insights for those systems and configurations. However, we believe that the
predictive reusable models developed in this thesis and the insights gained in wavefront op-
erations will serve as a significant aid to understanding any existing or future unexplored
variations.

125

8 Conclusions and Future Work

Pipelined wavefront computations are an important and ubiquitous class of parallel applica-
tions. Computational solutions for a number of scientific and engineering problems are based
on these codes. To aid the design, configuration and optimisation for these applications, as
well as to assist in the procurement of HPC systems that are to execute these codes, there has
been, and continues to be, significant research in understanding their performance. Despite
previous research, a number of key open questions remain.

Each of the previous performance engineering studies were specific to the two wave-
front applications NPB-LU and Sweep3D. These studies require significant and unspecified
restructuring to apply them to other wavefront applications of interest. The complex syn-
chronisation patterns of computation and communication in these codes presents significant
amount of variation and optimisation possibilities. Therefore, a key difficulty has been that
each new application of this type has had to be re-analysed and re-modelled. This problem
is compounded due to the fast development rate of HPC hardware and software systems. As
a result, previously unexplored systems’ performance issues were difficult to incorporate into
existing performance models. Previous approaches of modifying existing performance studies
to reflect the behaviour of new code on new systems was error-prone and required extensive
validation. One of the underlying goals of this research therefore was to develop methods that
reduce this effort, and in so doing alleviate some of the above problems, and therefore assist
in future performance engineering work of wavefront applications.

A final key motivation was to address the lack of a comprehensive exploration of the
performance and optimisation possibilities of the applications that belong to the pipelined
wavefront class of applications. That is, given the underlying scientific or numerical solution,
what is the optimum software design for this class of applications and how should it best be
run on a particular HPC system. The aim was to develop techniques that not only answer
these questions, but also motivate and expose new questions and at the same time enable us
to obtain solutions in an efficient and low cost manner.

8.1 Contributions and Conclusions

Motivated by the above key issues, the first part of this thesis presented the development of
a reusable analytic model to predict the runtime and scaling behaviour of pipelined wave-
front computations. As this class of applications is ubiquitous in modern HPC workloads,
our approach was to abstract the commonly occurring computation-communication patterns
and develop a reusable performance characterisation. The goal was to demonstrate the bene-
fits of developing reusable performance models to reduce the demanding task of performance
engineering.

126

8. CONCLUSIONS AND FUTURE WORK

The first contribution of this dissertation is the formulation and development of a
reusable - plug-and-play - analytic model based on LogGP for the predictive performance anal-
ysis of pipelined wavefront computations. The model enables the prediction of the runtime
and scaling behaviour of different message-passing-based wavefront applications running on
modern parallel platforms. A key feature of the model is that it requires only a few input pa-
rameters to project performance for wavefront computations with a range of variations. Fur-
thermore, the parameters are simple and are not difficult to obtain. A given set of parameter
values succinctly describe the operation of a wavefront code, allowing the use of these values
as a concise summary that describes the configuration and variations of a given application.
As the name implies, the parameters can be used in a plug-and-play fashion to obtain models
for a variety of existing and speculative wavefront codes.

The reusable model uses expressions that capture the various sections of the critical
path of the operation of wavefront codes. These expressions can be used as building blocks to
elucidate the critical path of execution. The model is abstract in order to capture the perfor-
mance details that matter in general. Due to its reusable nature, its flexibility can be extended
to capture more specific performance behaviours for a given application and a given HPC sys-
tem. The extensions explored in this dissertation include predictive models for performance of
wavefront codes (1) on the Cray XT4 which has CMP node architectures, (2) on heterogeneous
resources, and (3) on irregular/unstructured data grids. Other extensions include variations
in computation per sweep step, differences in iterations, multiple sweeps (both serial, over-
lapped and simultaneous) and operation of wavefronts on a 2D data grid.

Further contributions due to model development and analysis include (1) the highly
accurate MPI send, receive and all-reduce communication models that have been developed
for the Cray XT3/XT4 and (2) the model extensions that capture the contention issues during
wavefront operation on CMP nodes on the Cray XT3/XT4. The former develops models for
both node-to-node (off-chip) as well as core-to-core (on-chip) communications. These models
are themselves reusable in other applications that use MPI communications primitives. The
CMP extensions provide a first look at the limitations of CMP architectures when processor
cores are sharing resources such as single bus to RAM, shared DMA memory access controllers
and shared NIC. On the CrayXT3/XT4 system at the time of our research, we modelled the
contention caused by a shared bus on nodes with a dual-core processor. The model was then
used to extrapolate further models that capture the behaviour of 4, 8 and 16 core processors.

The reusable model was applied to predict the performance of three important bench-
marks that use wavefront computations - NPB-LU, Sweep3D and Chimaera. Each model was
validated on up to 8K processors on the Cray XT3/XT4 at ORNL as well as up to 256 pro-
cessors on a smaller commodity cluster based on Intel Xeon processors and an InfiniBand
interconnect. Results show excellent qualitative accuracy. Quantitative accuracy for all high
performance configurations was over 85%. Further validations were carried out against a dis-
crete event simulator showing high agreement of predictions for up to 65K processors. This
level of accuracy has given us great confidence in the ability of the model to be used in various
speculative studies to explore “what if” scenarios.

Experience from the analytic model development also provided a significant insight
into increasing the accuracy and scalability of the PACE discrete event simulation system.
The techniques that were subsequently deployed by the WarPP simulation system which has

127

8. CONCLUSIONS AND FUTURE WORK

enabled us to model wavefront computations running on over 100K processor systems with
predictive errors below 15%.

In the second part of this dissertation, the analytic model was used to conduct an exten-
sive investigation into the performance behaviour of wavefront applications. In particular the
model was used to obtain projections and insights for optimisations showing the significant
utility of the reusable analytic model. Specific evaluations include (1) software configuration
performance, (2) hardware platform questions including platform sizing, configuration and a
case study that uses the performance engineering insights to assess system procurement de-
cisions, (3) hardware platform design alternatives such as the optimal number of processor
cores per node, and (4) optimisations and performance bottlenecks for wavefront computa-
tions demonstrating quantitatively and qualitatively the performance improvements from the
optimisations.

8.2 Future Work

Plug-and-play performance models, where the user only needs to specify a few input param-
eter values in order to obtain performance predictions for application codes with different be-
haviour, have not been previously explored. Furthermore, the fact that the model developed
here is for a significantly complex class of parallel applications is also novel. An open ques-
tion addressed in this research is whether building in the various possible behaviours leads
to a more complex set of equations, possibly negating the advantages of the model generality.
Our work has shown that it has been possible to generate a set of equations that is as simple
as the equations that are tailored to a given application. This unanticipated result may or may
not hold for other classes of applications. However, the results are an incentive to extend this
study more widely and use reusable performance characterisations for other important classes
of applications.

There are several further areas for future work. These falls into two distinct categories:
(1) Extensions to the reusable model, and (2) future work on wavefront computations. The first
involves several further validations and extensions to the reusable model, particularly when
applying it to study more specific performance issues. The latter forms a set of longer term
ideas that have been identified due to the work in this thesis in conjunction with the current
and future anticipated HPC research needs.

8.2.1 Further Validations and Model Extensions

A collection of model extensions and issues discussed in Chapter 7 were analysed in a specula-
tive manner due to the unavailability of applications to validate the predictions. These include
wavefront operation on irregular and/or unstructured grids of data, heterogeneous resources
and multiple simultaneous wavefronts. The model predictions have given us insights as to
the performance behaviour of these deployments. The models should be applied to specific
applications to further ascertain our insights. The case of using heterogeneous resources is of
further interest for investigating wavefront behaviour on widely distributed networks. Ow-
ing to the tightly coupled and frequent communication pattern of wavefront codes, it has
been only used in low-latency and high bandwidth networks, particularly MPPSs, SMPs and

128

8. CONCLUSIONS AND FUTURE WORK

tightly coupled clusters. It would be appropriate to investigate the behaviour of these codes
on a more loosely coupled network such as a Condor [169] pool. Condor is a middleware
that enables implementation of a Computer Grid [170]. In such a case the computation and
communications resources would be heterogeneous. Such systems in most cases are made up
of workstations spread across an organisation’s sites and scavenge idle nodes to run codes via
Condor. Thus, these systems are significantly cheaper and may present an organisation with
an almost free parallel computational resource. Thus, predicting the performance of wavefront
codes running on such systems may provide insights that are significant.

The reusable model’s ability to be extended can be investigated with several more spe-
cific performance issues. One of these will be investigating and modelling network contention
arising in very low bandwidth networks. The analytic models predict a very low contribution
arising from the network bandwidth. Most modern HPC systems have more than enough
bandwidth to support the rate of message injection by the nodes to the network without satu-
rating it. An interesting issue would be to analyse the case where the network is saturated or is
close to saturation. We anticipate that such a scenario will require a model which accounts for
network contention. Modelling such contention will be specific to the network and application
and will be very useful in understanding bottlenecks on such systems.

More application specific models can be easily incorporated into the reusable model.
An example would be a sub-model that parametrises the memory performance of a node
such that computation per sweep step can be predicted. Such sub-models are inherently
application-specific but may provide further insights into optimisation possibilities.

8.2.2 Future Work on Wavefront Computations

With the advent of multi-core processors, and the increasing availability of parallel sys-
tems, there has been a growing need for parallel programming languages, and programming
methodologies which explicitly support parallelism. The current dominant parallel program-
ming standards - MPI and OpenMP, both implement parallelism on top of sequential pro-
gramming languages such as Fortran and C. Moreover, a huge amount of programmer effort
and time is required to develop applications using them. To ease this burden, as well as to
develop languages and supporting methodologies that explicitly facilitate writing programs
in parallel, there are several key on-going research and development efforts - Unified Parallel
C [171, 172], Co-array Fortran [173], Titanium [174], Fortress [175], Chapel [176] and X10 [177].
All of these languages use, the Partitioned Global Address Space (PGAS) model to achieve
parallelism. In the PGAS model, a global memory address space is assumed where it is logi-
cally partitioned and each partition is allocated to each processor. Thus a local processor (or
a thread) has an affinity to its partition of memory, but other processors (threads) can access
this memory by addressing both the processor and the memory location without explicit mes-
saging as in message passing [178]. Additionally, the explicit partitioning of data is also not
required as is the synchronisation of data. Thus the aim is to free the programmer to solve the
domain problem, rather than worry about parallelism at a low level.

Wavefront computations have yet to be implemented using languages that adhere
to this new PGAS model. The performance properties will clearly require a comprehensive
study, but it would be interesting to see the performance relationships of such an implemen-
tation with the existing applications based on the message passing paradigm. The PGAS lan-

129

8. CONCLUSIONS AND FUTURE WORK

guages may ease the process of parallel programming. Whether an application written in
these languages results in higher performance, and what bottlenecks will need to be overcome
to achieve this, remains to be seen.

Similar to these emerging parallel programming languages, new hardware and sys-
tems architectures have shown their use as viable HPC platforms. Examples include com-
putational units that make use of Graphics Processor Units (GPUs) or Vector elements based
processors such as the IBM Cell [179] and Field Programmable Gate Array based solvers (FP-
GAs). These innovative hardware platforms are now being increasingly incorporated into tra-
ditional HPC systems as accelerator units that promise speedy solutions for particular types of
computations. Developing performance models for wavefront applications running on such
platforms will be an important and interesting study. We hope that the insights gained from
the reusable wavefront model will be advantageous for such work and that it will enable fur-
ther extensions to the models to capture such specialist hardware.

∼∼∼∼∼

Traditional scientific research, based on experimental and theoretical approaches have
been greatly enhanced by modern computer systems. With the increasing availability of par-
allel systems, the use of computational methods and HPC has enjoyed rapid growth in the last
decade. Programming in parallel and the understanding the related parallel performance be-
haviour of applications on modern HPC systems continues to present many challenges. Nev-
ertheless, methods, tools and techniques to address these challenges appear to be attainable.
We look forward to the significant insights resulting from performance engineering studies
and to the advancement of parallel programming and high performance computing design.

130

Bibliography

[1] S.A. Jarvis, D.P. Spooner, G.R. Mudalige, B.P. Foley, J.Cao, and G.R. Nudd. Performance Evalua-
tion of Parallel and Distributed Systems, chapter Performance Prediction Techniques for Large-scale
Distributed Environments. Mohamed Ould-Khaoua and Geyong Min Eds. Nova Science, 2005. v

[2] G.R. Mudalige, M.K. Vernon, and S.A. Jarvis. A Plug-and-Play Model for Evaluating Wavefront
Computations on Parallel Architectures. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, April, 2008. v

[3] G.R. Mudalige, S.A. Jarvis, D.P. Spooner, and G.R. Nudd. Predictive Performance Analysis of
a Parallel Pipelined Synchronous Wavefront Application for Commodity Processor Cluster Sys-
tems. In Proc. IEEE International Conference on Cluster Computing - Cluster2006, Barcelona, Septem-
ber 2006. IEEE Computer Society. v, 105

[4] S.D. Hammond, G.R. Mudalige, J.A. Smith, and S.A. Jarvis. Performance Prediction and Pro-
curement in Practise: Assessing the Suitability of Commodity Cluster Components for Wavefront
Codes. In Proc. Performance Engineering Workshop ’08 (UKPEW), Imperial College, London, July
2008. v, 94, 107

[5] G.R. Mudalige, S.D. Hammond, J.A. Smith, and S.A. Jarvis. Predictive Analysis and Optimi-
sation of Pipelined Wavefront Computations. In Proc. 11th Workshop on Advances in Parallel and
Distributed Computational Models (APDCM 2009), 23rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2009), Rome, Italy, May 2009. IEEE Computer Society. v

[6] S.D. Hammond, G.R. Mudalige, J.A. Smith, and S.A. Jarvis. WARPP - A Tool Kit for Simulating
High-Performance Parallel Scientific Codes. In Proc. 2nd International Conference on Simulation Tools
and Techniques (SIMUTools’09), Rome, Italy, March 2009. ACM Press. vi, 8, 94

[7] S.D. Hammond, J.A. Smith, G.R. Mudalige, and S.A. Jarvis. Predictive Simulation of HPC Applica-
tions. In The IEEE 23rd International Conference on Advanced Information Networking and Applications
(AINA 2009), Bradford, U.K., 26-29 May. IEEE Computer Society. vi, 107

[8] D. Sundaram-Stukel and M.K. Vernon. Predictive Analysis of a Wavefront Application Using
LogGP. In PPoPP ’99: Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 141–150. ACM Press, 1999. x, 3, 5, 21, 31, 48, 50, 54, 55, 57, 59, 60, 63,
69, 82

[9] D.J. Kerbyson, A. Hoisie, and H.J. Wasserman. Modelling the Performance of a Large-Scale Sys-
tems. In S.A. Jarvis, editor, Proceedings of 19th Annual U.K Performance Engineering Workshop, pages
2–14, University of Warwick, U.K, July 2003. WARWICKPRINT. 1

[10] S.A. Jarvis, D.P. Spooner, H.N. Lim-Choi-Keung, J. Cao, S. Saini, and G.R. Nudd. Performance
Prediction and its Use in Parallel and Distributed Computing Systems. Future Gener. Comput.
Syst., 22(7):745–754, 2006. 1

[11] D.P. Spooner. Performance-based Middleware for Grid Computing. PhD thesis, University of Warwick,
Department of Computer Science, 2005. 1, 94

131

9. BIBLIOGRAPHY

[12] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, and D.V. Wilcox. PACE: A
Toolset for the Performance Prediction of Parallel and Distributed Systems. Int. Journal of High
Performance Computing Applications, 14(3):228–251, Fall 2000. 1, 8, 29, 30, 31, 94, 98

[13] D.J. Kerbyson, A. Hoisie, and H.J. Wasserman. Use of Predictive Performance Modeling During
Large-Scale Systems Installation. In 1st Int. Workshop on Hardware/Software Support for Parallel and
Distributed Scientific and Engineering Computing(SPDEC-02), Charlottesville, September 2002. 1

[14] M. Yarrow and R. Van der Wijngaart. Communication Improvement for the LU NAS Parallel
Benchmark: A Model for Efficient Parallel Relaxation Schemes. Technical Report NAS- 97-032,
NASA Ames Research Center, November 1997. 2, 5, 31, 35, 40, 41, 44, 48

[15] F. Petrini, G. Fossum, J. Fernndez, A.L. Varbanescu, M. Kistler, and M. Perrone. Multicore Sur-
prises: Lessons Learned from Optimizing Sweep3D on the Cell Broadband Engine. In International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–10. IEEE, 2007. 2

[16] L. Lamport. The Parallel Execution of DO Loops. Commun. ACM, 17(2):83–93, 1974. 2, 35, 37

[17] A. Hoisie, H. Lubeck, and H.J. Wasserman. Performance and Scalability Analysis of Teraflop-Scale
Parellel Architectures using Multidimentional Wavefront Applications. Int. J of High Performance
Computing Applications, 14(4):330–346, Winter,2000. 2, 3, 31, 41, 49, 59, 80, 83

[18] Los Alamos National Laboratory LANL. http://www.lanl.gov/. 2

[19] The Atomic Weapons Establishment (AWE). http://www.awe.co.uk/. 2

[20] The Message Passing Interface (MPI). http://www-unix.mcs.anl.gov/mpi/. 2, 14, 20

[21] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, D. Dagum, R.A. Fatoohi, P.O.
Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga.
The NAS Parallel Benchmarks. The International Journal of Supercomputer Applications, 5(3):63–73,
Fall 1991. 2, 41

[22] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP: Incorporating Long Mes-
sages into the LogP Model for Parallel Computation. Journal of Parallel and Distributed Computing,
44(1):71–79, 1997. 3, 7, 21, 51

[23] Sweep3d. The ASCI Sweep3d Benchmark.
http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/

asci sweep3d.html. 3, 41, 47

[24] M.M. Mathis, N.M. Amato, and M.L. Adams. A General Performance Model for Parallel Sweeps
on Orthogonal Grids for Particle Transport Calculations. Technical report, Texas A&M University,
2000. 3, 49, 117

[25] D.J. Kerbyson, A. Hoisie, and H.J. Wasserman. A Comparison Between the Earth Simulator and
Alphaserver Systems using Predictive Application Performance Models. Computer Architecture
News (ACM), December 2002. 3, 5, 49, 59, 60

[26] A. Hoisie, O. Lubeck, H.J. Wasserman, F. Petrini, and H. Alme. A General Predictive Performance
Model for Wavefront Algorithms on Clusters of SMPs. In ICPP ’00: Proceedings of the Proceedings
of the 2000 International Conference on Parallel Processing, page 219. IEEE Computer Society, 2000. 3,
31, 49

132

http://www.lanl.gov/
http://www.awe.co.uk/
http://www-unix.mcs.anl.gov/mpi/
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html

9. BIBLIOGRAPHY

[27] J. Cao, D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Performance Modeling of Parallel and
Distributed Computing Using PACE. In 19th IEEE Int. Performance, Computing and Communications
Conf(IPCCC), page 485492, Phoenix, AZ, USA, Feb. 3, 49, 50

[28] J. Cao. Agent-based Resource Management for Grid Computing. PhD thesis, University of Warwick,
2001. 3

[29] S. Prakash and R.L. Bagrodia. MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs. In
WSC ’98: Proceedings of the 30th conference on Winter simulation, pages 467–474, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press. 3, 30, 32, 49, 50

[30] R. Bagrodia, E. Deeljman, S. Docy, and T. Phan. Performance Prediction of Large Parallel Applica-
tions Using Parallel Simulations. In PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 151–162, New York, NY, USA, 1999. ACM.
3

[31] V.S. Adve, R. Bagrodia, J.C. Browne, E. Deelman, A. Dube, E.N. Houstis, J.R. Rice, R. Sakellariou,
D. Sundaram-Stukel, P.J. Teller, and M.K. Vernon. POEMS: End-to-End Performance Design of
Large Parallel Adaptive Computational Systems. IEEE Trans. Softw. Eng., 26(11):1027–1048, 2000.
3, 30, 31, 49, 50

[32] F. Wolf and B. Mohr. KOJAK - A Tool set for Automatic Performance Analysis of Parallel Appli-
cations. In Proc. of the European Conference on Parallel Computing (Euro-Par), volume 2790 of Lecture
Notes in Computer Science, pages 1301–1304, Klagenfurt, Austria, August 2003. Springer. Demon-
strations of Parallel and Distributed Computing. 3, 27

[33] E. Papaefstathiou. Design of a Performance Technology Infrastructure to Support the Construc-
tion of Responsive Software. In WOSP ’00: Proceedings of the 2nd international workshop on Software
and performance, pages 96–104, New York, NY, USA, 2000. ACM. 3

[34] E.C. Lewis. Achieving Robust Performance in Parallel Programming Languages. PhD thesis, University
of Washington, 2001. 3

[35] V.S. Adve. Analyzing the Behavior and Performance of Parallel Programs. PhD thesis, University of
Wisconsin - Madison, October 1993. 5, 31

[36] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, and M. Gittings. Predictive Perfor-
mance and Scalability Modelling of a Large-Scale Application. In Proceedings of SuperComputing,
Denver, 2001. 5, 31, 60

[37] M.M. Mathis and D.J. Kerbyson. Performance Modeling of Unstructured Mesh Particle Transport
Computations. In Proceedings of International Parallel and Distributed Processing Symposium (IPDPS),
Santa Fe, NM, April 2004. 5, 31, 47, 49, 117

[38] M.M. Mathis, D.J. Kerbyson, and A. Hoisie. A Performance Model of Nondeterministic Particle
Transport on Large-Scale Systems. In Proc. Computational Science - ICCS 2003, LNCS, volume 2659,
pages 905–915. Springer-Verlag, 2003. 5, 31

[39] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Mea-
surement,Simulation, and Modeling. Wiley-Interscience, New York, NY, April 1991. 6, 22, 24, 25, 26,
28, 30, 32, 33

133

9. BIBLIOGRAPHY

[40] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.
Plishker, J. Shalf, S.W. Williams, and K.A. Yelick. The Landscape of Parallel Computing Research:
A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006. 7

[41] BLAS. Basic Linear Algebra Subprograms. http://www.netlib.org/blas/. 7, 25

[42] LAPACK. Linear Algebra PACKage. http://www.netlib.org/lapack/. 7

[43] The WARwick Performance Prediction Toolkit (WarPP). http://go.warwick.ac.uk/ep/pg/

csrcbc/research/wppt/. 8, 29, 31, 49, 94, 107

[44] D. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach
(The Morgan Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann, August
1998. ISBN 1558603433, pp. 15,26-27,190. 11, 13, 18

[45] M.J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions on Comput-
ers, C-21(9):948–960, September 1972. 12

[46] E.W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Commun. ACM,
8(9):569, 1965. 13

[47] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent Control With “readers” and “writers”.
Commun. ACM, 14(10):667–668, 1971. 13

[48] E.W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Informatica, 1(2):115–138, 1971.
13

[49] The OpenMP Specification for Parallel Programming
. http://www.openmp.org/. 13

[50] MATLAB - the Language of Technical Computing.
http://www.mathworks.com/products/matlab/. 14

[51] High Performance Fortran (HPF). http://hpff.rice.edu/. 14

[52] L.M.Silvay and R.Buyya. High Performance Cluster Computing: Programming and Applications, chap-
ter 2. Prentice Hall PTR, NJ, USA,, 1999. 15

[53] G.M. Amdahl. Validity of the Single-Processor Approach to Achieving Large Scale Computing
Capabilities. In American Federation of Information Processing Societies, volume 30, pages 483–485,
1967. 15, 16, 17, 30

[54] J.L. Gustafson. Re-evaluating Amdahl’s Law. Commun. ACM, 31(5):532–533, 1988. 15, 17, 30

[55] M.D. Hill. What is Scalability? SIGARCH Comput. Archit. News, 18(4):18–21, 1990. 17

[56] J. von Newmann. First Draft of a Report on the EDVAC. Technical report, 1945. 18

[57] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In STOC ’78: Proceedings of the
tenth annual ACM symposium on Theory of Computing, pages 114–118, New York, NY, USA, 1978.
ACM. 18

[58] B. Parhami. Introduction to Parallel Processing: Algorithms and Architectures. Kluwer Academic
Publishers, Norwell, MA, USA, 1999. 18

134

http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://go.warwick.ac.uk/ep/pg/csrcbc/research/wppt/
http://go.warwick.ac.uk/ep/pg/csrcbc/research/wppt/
http://www.openmp.org/
http://www.mathworks.com/products/matlab/
 http://hpff.rice.edu/

9. BIBLIOGRAPHY

[59] T.J. Harris. A Survey of PRAM Simulation Techniques. ACM Comput. Surv., 26(2):187–206, 1994.
18

[60] C. Papadimitriou and M. Yannakakis. Towards an Architecture-independent Analysis of Parallel
Algorithms. In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing,
pages 510–513, New York, NY, USA, 1988. ACM. 19

[61] A. Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency in PRAM Computations.
In SPAA ’89: Proceedings of the first annual ACM symposium on Parallel algorithms and architectures,
pages 11–21, New York, NY, USA, 1989. ACM. 19

[62] A. Aggarwal, A.K. Chandra, and M. Snir. Communication Complexity of PRAMs. Theor. Comput.
Sci., 71(1):3–28, 1990. 19

[63] L.G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–111, 1990. 19

[64] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and Answers about BSP. Scientific Pro-
gramming, 6(3):249–274, Fall 1997. 19

[65] W.F. McColl. General Purpose Parallel Computing. In A M Gibbons and P Spirakis, editors,
Lectures on Parallel Computation. Proc. 1991 ALCOM Spring School on Parallel Computation, pages
337–391. Cambridge University Press, 1993. 19

[66] The parallel virtual machine
. http://www.csm.ornl.gov/pvm/. 20

[67] R. Miller. A library for bulk synchronous parallel programming. In BCS Parallel Processing Specialist
Group Workshop on General Purpose Parallel Computing, pages 100–108. BCS, December 1993. 20

[68] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards Efficiency and Portability: Pro-
gramming with the BSP Model. In ACM Symposium on Parallel Algorithms and Architectures, pages
1–12, 1996. 20

[69] J.M.D. Hill, K. Lang, W.F. McColl, S.D. Rao, D.C. Stefanescu, T. Suel, and T. Tsantilas. A Proposal
for a BSP Worldwide Standard. BSP Worldwide Standard
. http://www.bsp-worldwide.org/, April 1996. 20

[70] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Principles Practice of
Parallel Programming, pages 1–12, 1993. 21

[71] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP. In SPAA ’96:
Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
25–32, New York, NY, USA, 1996. ACM. 21

[72] M. Frank, A. Agarwal, and M.K. Vernon. LoPC: Modeling Contention in Parallel Algorithms. In
Principles Practice of Parallel Programming, pages 276–287, 1997. 22, 31

[73] C. A. Moritz and M.I. Frank. LoGPC: Modeling Network Contention in Message-Passing Pro-
grams. IEEE Trans. Parallel Distrib. Syst., 12(4):404–415, 2001. 22, 31

[74] J.J Dongarra. Performance of Various Computers Using Standard Linear Equations Software.
Technical Report CS-89-85, Dept.of Computer Science University of Tennesee Knoxvill and Com-
puter Science and Mathematics Division Oak Ridge National Laboratory, November 6 2004. 24

135

 http://www.csm.ornl.gov/pvm/
http://www.bsp-worldwide.org/

9. BIBLIOGRAPHY

[75] Linpack.
http://www.netlib.org/linpack/. 24

[76] HPL - A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers.
http://www.netlib.org/benchmark/hpl/. 25

[77] Top 500 Supercomputing Sites.
http://www.top500.org/. 25

[78] F.H. McMahon. The Livermore FORTRAN Kernels: A Computer Test of the Numerical Perfor-
mance Range. Technical report, Lawrence Livermore National Laboratory, 1986. 25

[79] HPCC the HPC Challenge Benchmarks.
http://icl.cs.utk.edu/hpcc/. 25

[80] Standard Performance Evaluation Corporation. http://www.spec.org/benchmarks.html. 25,
26

[81] Intel MPI Benchmarks.
http://www.intel.com/software/products/cluster/mpi/mpi benchmarks lic.htm.
25, 62

[82] Benchmakking MPICH.
http://www-unix.mcs.anl.gov/mpi/mpptest/. 25

[83] Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A Network Protocol Independent Performace
Evaluator. In IASTED International Conference on Intelligent Information Management and Systems,
1996. 25

[84] Special Karlsruher MPI Benchmark.
http://liinwww.ira.uka.de/˜skampi/. 25

[85] EPCC openMP Microbenchmarks.
http://www.epcc.ed.ac.uk/research/openmp/. 25

[86] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Concurrency in Software. Dr.
Dobb’s Journal
http://www.ddj.com/, March 2005. 25

[87] STREAM Sustainable Memory Bandwidth in High Performance Computers.
http://www.cs.virginia.edu/stream/. 25

[88] H. J. Curnow and B. A. Wichmann. A Synthetic Benchmark. Computer Journal, 19(1), 1976. 25

[89] R.P. Weicker. Dhrystone: A Synthetic Systems Programming Benchmark. Commun. ACM,
27(10):1013–1030, 1984. 25

[90] D.A. Patterson and J.L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2003. 25

[91] ASC the Advanced Simulation and Computing Program.
http://http://www.lanl.gov/asc/. 25, 41

[92] NAS Parallel Benchmark.
http://www.nas.nasa.gov/Resources/Software/npb.html. 25, 41

136

http://www.netlib.org/linpack/
http://www.netlib.org/benchmark/hpl/
http://www.top500.org/
http://icl.cs.utk.edu/hpcc/
http://www.spec.org/benchmarks.html
http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm
http://www-unix.mcs.anl.gov/mpi/mpptest/
http://liinwww.ira.uka.de/~skampi/
http://www.epcc.ed.ac.uk/research/openmp/
http://www.ddj.com/
http://www.cs.virginia.edu/stream/
http://http://www.lanl.gov/asc/
http://www.nas.nasa.gov/Resources/Software/npb.html

9. BIBLIOGRAPHY

[93] J. Gustafson. Purpose-Based Benchmarks. International Journal of High Performance Computing
Applications, 18(4):475–487, 2004. 26

[94] V. Strassen. Gaussian Elimination is not Optimal. Numer. Math, 13:354–356, 1969. 26

[95] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and
Analysis of MPI Resources. Supercomputer, 12(1):69–80, 1996. 26, 27

[96] S.L. Graham, P.B. Kessler, and M.K. McKusick. gprof: a Call Graph Execution Profiler. In SIGPLAN
Symposium on Compiler Construction, pages 120–126, 1982. 26, 27

[97] Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/. 26, 27, 104

[98] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Interface for
Performance Evaluation on Modern Processors. The International Journal of High Performance Com-
puting Applications, 14(3):189–204, Fall 2000. 26, 27

[99] CrayPat.
http://docs.cray.com/. 27

[100] Using OPT - A White Paper.
http://www.allinea.com/downloads/OPTWhite.pdf. 27

[101] D. Reed, R. Aydt, T. Madhyastha, R. Noe, K. Shields, and B. Schwartz. An Overview of the Pablo
Performance Analysis Environment. Technical report, University of Illinois, Department of Com-
puter, 1992. 27

[102] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K. Kun-
chithapadam, and T. Newhall. The Paradyn Parallel Performance Measurement Tool. IEEE Com-
puter, 28(11):37–46, 1995. 27

[103] TAU - Tuning and Analysis Utilities.
http://www.cs.uoregon.edu/research/tau/. 27

[104] S.S. Shende and A.D. Malony. The TAU Parallel Performance System. Int. J. High Perform. Comput.
Appl., 20(2):287–311, 2006. 27

[105] PGPROF - Performance Profiler.
http://www.pgroup.com/products/pgprof.htm. 27

[106] V. Herrarte and E. Lusk. Studying Parallel Program Behavior with upshot. Technical Report
ANL–91/15, Argonne National Laboratory, 1991. 27

[107] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scalable Performance Visualization with
Jumpshot. High Performance Computing Applications, 13(2):277–288, Fall 1999. 27

[108] HPCToolkit.
http://hipersoft.cs.rice.edu/hpctoolkit/. 27

[109] R. Wolski, N.T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Future Generation Computer Systems, 15(5–
6):757–768, 1999. 28

[110] R. Wolski. Experiences with Predicting Resource Performance On-line in Computational Grid
Settings. SIGMETRICS Perform. Eval. Rev., 30(4):41–49, 2003. 28

137

http://icl.cs.utk.edu/papi/
http://docs.cray.com/
http://www.allinea.com/downloads/OPTWhite.pdf
http://www.cs.uoregon.edu/research/tau/
http://www.pgroup.com/products/pgprof.htm
http://hipersoft.cs.rice.edu/hpctoolkit/

9. BIBLIOGRAPHY

[111] P.A. Dinda. The Statistical Properties of Host Load. Sci. Program., 7(3-4):211–229, 1999. 28

[112] P.A. Dinda. Resource Signal Prediction and its Application to Real-time Scheduling Advisors. PhD thesis,
Pittsburgh, PA, USA, 2000. Chair-David R. O’Hallaron. 28

[113] P.A. Dinda. Online Prediction of the Running Time of Tasks. hpdc, 00:0383, 2001. 28

[114] P.A. Dinda. A Prediction-Based Real-Time Scheduling Advisor. In IPDPS ’02: Proceedings of the
16th International Parallel and Distributed Processing Symposium, page 35, Washington, DC, USA,
2002. IEEE Computer Society. 28

[115] P.A. Dinda. Design, Implementation, and Performance of an Extensible Toolkit for Resource Pre-
diction in Distributed Systems. IEEE Trans. Parallel Distrib. Syst., 17(2):160–173, 2006. 28

[116] S. Vazhkudai and J.M. Schopf. Using Regression Techniques to Predict Large Data Transfers. Int.
J. High Perform. Comput. Appl., 17(3):249–268, 2003. 28

[117] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. NetLogger: A Toolkit for Distributed
System Performance Analysis. In MASCOTS, pages 267–273, 2000. 28

[118] S. Chiang and M.K. Vernon. Characteristics of a Large Shared Memory Production Workload.
Lecture Notes in Computer Science, 2221:159, 2001. 28

[119] D.G Feitelson and B. Nitzberg. Job Characteristics of a Production Pparallel Scientific Workload
on the NASA Ames iPSC/860. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing – IPPS’95 Workshop, volume 949, pages 337–360. Springer, 1995. 28

[120] S. Hotovy. Workload Evolution on the Cornell Theory Center IBM SP2. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 27–40. Springer-
Verlag, 1996. 28

[121] K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg. A Comparison of Workload Traces
From Two Production Parallel Machines. In 6th Symp. Frontiers Massively Parallel Comput., pages
319–326, 1996. 28

[122] J.M. Schopf and F. Berman. Stochastic Scheduling. In Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), page 48, New York, NY, USA, 1999. ACM. 28

[123] F.D. Berman, R. Wolski, S. Figueira, J.M Schopf, and G. Shao. Application-level Scheduling on
Distributed Heterogeneous Networks. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM), page 39, Washington, DC, USA, 1996. IEEE Computer
Society. 28

[124] A. Gefflaut and P. Joubert. SPAM: A Multiprocessor Execution-Driven Simulation Kernel. Int.
Journal in Computer Simulation, 6(1):69, 1996. 29

[125] S. Girona and J. Labarta. Sensitivity of Performance Prediction of Message Passing Programs. In
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’99),
Las Vegas, Nevada, USA, July 1999. 29

[126] J. Labarta, S. Girona, and T. Cortes. Analyzing Scheduling Policies Using DIMEMAS. Parallel
Comput., 23(1-2):23–34, 1997. 29

[127] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair. The Rice Parallel Processing
Testbed. SIGMETRICS Perform. Eval. Rev., 16(1):4–11, 1988. 29

138

9. BIBLIOGRAPHY

[128] E.A. Brewer, C. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A High-Performance Parallel-
Architecture Simulator. In Measurement and Modeling of Computer Systems, pages 247–248, 1992. 29

[129] Digital Equipment Corporation. prof(1). Ultrix 4.0 General Information. Vol. 3B (Commands(1):
M-Z). 29

[130] S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis, and D.A. Wood. The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers. In Measurement and Modeling of Computer
Systems, pages 48–60, 1993. 30

[131] S.S. Mukherjee, S.K. Reinhardt, B. Falsafi, M. Litzkow, M.D. Hill, D.A. Wood, S. Huss-Lederman,
and J.R. Larus. Wisconsin Wind Tunnel II: A Fast, Portable Parallel Architecture Simulator. IEEE
Concurrency, 8(4):12–20, 2000. 30

[132] S. Prakash, E. Deelman, and R. Bagrodia. Asynchronous Parallel Simulation of Parallel Programs.
IEEE Trans. Softw. Eng., 26(5):385–400, 2000. 30

[133] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L.V. Kalé. Simulation-based Performance Predic-
tion for Large Parallel Machines. Int. J. Parallel Program., 33(2):183–207, 2005. 30

[134] U. Legedza and W.E. Weihl. Reducing Synchronization Overhead in Parallel Simulation. In Work-
shop on Parallel and Distributed Simulation, pages 86–95, 1996. 30

[135] R. Berry and K.M. Chandy. Performance Models of Token Ring Local Area Networks. In SIG-
METRICS ’83: Proceedings of the 1983 ACM SIGMETRICS conference on Measurement and modeling of
computer systems, pages 266–274, New York, NY, USA, 1983. ACM. 31

[136] V.S. Adve and M.K. Vernon. Performance Analysis of Mesh Interconnection Networks with De-
terministic Routing. IEEE Transactions on Parallel and Distributed Systems, 05(3):225–246, 1994. 31

[137] D.J. Sorin, V.S. Pai, S.V. Adve, M.K. Vernon, and D.A. Wood. Analytic Evaluation of Shared-
memory Systems with ILP Processors. SIGARCH Comput. Archit. News, 26(3):380–391, 1998. 31

[138] M. Chiang and G.S. Sohi. Evaluating Design Choices for Shared Bus Multiprocessors in a
Throughput-Oriented Environment. IEEE Trans. Comput., 41(3):297–317, 1992. 31

[139] M.K. Vernon, E.D. Lazowska, and J.Zahorjan. An Accurate and Efficient Performance Analysis
Technique for Multiprocessor Snooping Cache-consistency Protocols. SIGARCH Comput. Archit.
News, 16(2):308–315, 1988. 31

[140] A.G. Greenberg, I. Mitrani, and L. Rudolph. Analysis of Snooping Caches. In Performance ’87: Pro-
ceedings of the 12th IFIP WG 7.3 International Symposium on Computer Performance Modelling, Mea-
surement and Evaluation, pages 345–361, Amsterdam, The Netherlands, The Netherlands, 1988.
North-Holland Publishing Co. 31

[141] D.J. Kerbyson, S.D. Pautz, and A. Hoisie. Performance Modelling of Deterministic Transport
Computations. In Performance Analysis and Grid Computing, Kluwer, 2003. 31

[142] V. Taylor, X. Wu, and R. Stevens. Prophesy: an Infrastructure for Performance Analysis and Mod-
eling of Parallel and Grid Applications. SIGMETRICS Perform. Eval. Rev., 30(4):13–18, 2003. 31,
32

[143] S.R. Alam and J.S. Vetter. Hierarchical Model Validation of Symbolic Performance Models of
Scientific Kernels. In Euro-Par, pages 65–77, 2006. 31, 32

139

9. BIBLIOGRAPHY

[144] D.C. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-
1997-1342, 1997. 31, 50

[145] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and H.Y. Song. Parsec: A Parallel
Simulation Environment for Complex Systems. Computer, 31(10):77–85, 1998. 32

[146] E. Barszcz, R.A. Fatoohi, V.Venkatakrishnan, and S.K. Weeratunga. Solution of Regular,Sparse
Triangular Linear Systems on Vector and Distributed-Memory Multiprocessors. Technical Report
RNR-93-007, NAS Applied Research Branch, NASA Ames Research Center, Moffett Field, CA
94035, April 1993. 35, 41

[147] K.R. Koch, R.S. Baker, and R.E. Alcouffe. Solution of the First-Order form of the 3D Discrete
Ordinates Equation on a Massively Parallel Processor. Transactions of the American Nuclear Society,
65:198–199, 1992. Annual Meeting, Boston, MA. 35, 44, 49

[148] W. Joubert, T. Oppe, R. Janardhan, and W. Dearholt. Fully Parallel Global M/ILU Preconditioning
For 3-D Structured Problems. 35, 47, 48

[149] J. Qin and T. Chan. Performance Analysis in Parallel Triangular Solve. In IEEE Second International
Conference on Algorithms and Architectures for Parallel Processing, pages 405–412. IEEE Computer
Society, 1996. 35, 47, 48

[150] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks. Technical Report
RNR-91-002, Applied Research Branch, NASA Ames Research Center, Moffett Field, CA 94035,
January 1991. 41

[151] M.R. Dorr and C.H. Still. Concurrent Source Iteration in the Solution of Three-Dimensional Multi-
group Discrete Ordinates Nutron Transport Equations. Technical Report UCRL-JC-116694 Rev 1,
Lawrence Livermore National Laboatory, Livermore, CA, May 1995. 44

[152] Accelerated Strategic Computing Initiative (ASCI) Statement of Work, C6939RFP6-3X.
http://www.llnl.gov/asci rfp, February 12 1996. 48

[153] A. Hoisie, G. Johnson, D.J. Kerbyson, M. Lang, and S. Pakin. A Performance Comparison Through
Benchmarking and Modeling of Three Leading Supercomputers: Blue Gene/l, Redstorm, and
Purple. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 74, New
York, NY, USA, 2006. ACM. 49

[154] S. Kitawaki and M. Yokokawa. Earth Simulator Running. Int.Supercomputing Conference, Hei-
delberg, June 2002. 49

[155] T. Sato. Can the Earth Simulator Change the Way Humans Think? Keynote address, Int. Conf.
Supercomputing, New York, June 2002. 49

[156] Cray XT3 Data Sheet. http://www.cray.com/products/xt3. 60

[157] Cray XT4 Data Sheet. http://www.cray.com/products/xt4. 60, 71

[158] HyperTransport Consortium. http://www.hypertransport.org/. 60

[159] R. Thakur and W. Gropp. Improving the Performance of Collective Operations in MPICH. In 10th
European PVM/MPI Users Group Meeting, Oct 2003. 66

[160] J.D. Turner. A Dynamic Prediction and Monitoring Framework for Distributed Applications. PhD thesis,
University of Warwick, Department of Computer Science, 2003. 94

140

http://www.llnl.gov/asci_rfp
http://www.cray.com/products/xt3
http://www.cray.com/products/xt4
http://www.hypertransport.org/

. BIBLIOGRAPHY

[161] E. Papaefstathiou, D.J. Kerbyson, and G.R. Nudd. A Layered Approach to Parallel Software Per-
formance Prediction: A Case Study. In Proc. of Massively Parallel Processing Applications and Devel-
opment, 1994. 94

[162] J. Cao, D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Modelling of ASCI High Performance
Applications Using PACE. In Proc. UK Performance Engineering Workshop (UKPEW’99), pages 413–
424, Bristol, July. 97, 103

[163] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, T.J. Atherton, and J.S. Harper. An Introduction to
the Layered Characterisation for High Performance Systems, December 5, 1997. Research Report
CS-RR-335,University of Warwick, Dept. of Computer Science. 98

[164] E. Papaefstathiou. A Framework for Characterising Parallel Systems for Performance Evaluation. PhD
thesis, Department of Computer Science, University of Warwick, Coventry, U.K, 1995. 99

[165] J.S. Harper. Analytic Cache Modelling of Numerical Programs. PhD thesis, University of Warwick,
Department of Computer Science, Sept, 1999. 102

[166] G. Karypis and V. Kumar. METIS 4.0: Unstructured Graph Partitioning and Sparse Matrix Order-
ing System. Technical report, Department of Computer Science, University of Minnesota. 122

[167] The METIS home page. http://www.cs.umn.edu/˜metis. 122

[168] G. Johnson, D.J. Kerbyson, and M. Lang. Optimization of Infiniband for Scientific Applications. In
Workshop on Large-Scale Parallel Processing (LSPP), IEEE/ACM Int. Parallel and Distributed Processing
Symposium (IPDPS), Miami, FL, April 2008. 124

[169] Condor: High Throughput Computing. http://www.cs.wisc.edu/condor/. 129

[170] C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kauf-
mann Publishers, November 1998. 129

[171] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared Memory Programming.
John Wiley and Sons, May 2005. ISBN: 0-471-22048-5. 129

[172] Berkeley UPC - Unified Parallel C. http://upc.lbl.gov/. 129

[173] Co-Array Fortran. http://www.co-array.org/. 129

[174] Titanium. http://titanium.cs.berkeley.edu/. 129

[175] Project Fortress. http://projectfortress.sun.com/. 129

[176] Chapel - The Cascade High-Productivity Language. http://chapel.cs.washington.edu/.
129

[177] The X10 Programming Language. www.research.ibm.com/x10/. 129

[178] J.V. Ashby. New Languages for High Performance, High Productivity Computing. Technical
Report RALTR2007012, Computational Science and Engineering Department, STFC Rutherford
Appleton Laboratory, 2007. 129

[179] The Cell project at IBM research. http://www.research.ibm.com/cell/. 130

141

 http://www.cs.umn.edu/~metis
http://www.cs.wisc.edu/condor/
 http://upc.lbl.gov/
 http://www.co-array.org/
 http://titanium.cs.berkeley.edu/
 http://projectfortress.sun.com/
 http://chapel.cs.washington.edu/
 www.research.ibm.com/x10/
 http://www.research.ibm.com/cell/

A Modelling Contention on CMPs

The following analysis illustrates the derivation of contention terms in Table 4.8. The CMP
processors considered here are specific to the Cray XT4 system at the time of this research. As
such the interference term I is machine dependant. But the pattern of wavefront operation is
machine independent, thus providing insights to a possible bottleneck limiting performance
during wavefront application execution on modern CMP processors.

Consider the contention experienced by messages sent by the shaded core. Assuming that
there is a 0.5 probability that two messages will collide we can estimate the contention experi-
enced by messages sent by the shaded core as follows:

A.1 Dual Core CMP

• at step r: one extra communication might contend with 0.5 probability with the horizon-
tal communication done by the shaded core: add 0.5I

• at step r + 1: one extra communication might contend with 0.5 probability with the
vertical communication done by the shaded core: add 0.5I

• at step r+ 2: no extra communication contend with the horizontal communication done
by the shaded core.

• at step r + 3: one extra communication might contend with 0.5 probability with the
vertical communication done by the shaded core: add 0.5I

Thus a total of 1.5I terms should be added where 0.75I per SendS and ReceiveN . Consid-
ering a worst case contention, we use the approximate value of adding one I per SendS and
ReceiveN

Steps (r, r+1)

rr

r+1

r+3

r+3

r+2

r+1

Steps (r+2, r+3)

Figure A.1: Wavefront operation and collisions on dual core nodes

142

A. MODELLING CONTENTION ON CMPS

A.2 Quad Core CMP

• at step r: 2 extra communications might contend with 0.5 probability with the horizontal
communication done by the shaded core: add I

• at step r+1: 2 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add I

• at step r + 2: 2 extra communications might contend with 0.5 probability with the hori-
zontal communication done by the shaded core: add I

• at step r+3: 2 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add I

Total = 4I : i.e. one I per Send and Receive

Steps (r, r+1)

rr

r+1

r+1
r r+2

r+3

r+2

r+3

r+2

r+3r+1

Steps (r+2, r+3)

Figure A.2: Wavefront operation and collisions on quad core nodes

143

A. MODELLING CONTENTION ON CMPS

A.3 8 Core CMP

• at step r: 5 extra communications might contend with 0.5 probability with the horizontal
communication done by the shaded core: add 2.5I

• at step r+1: 4 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add 2I

• at step r + 2: 5 extra communications might contend with 0.5 probability with the hori-
zontal communication done by the shaded core: add 2.5I

• at step r+3: 4 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add 2I

Total = 9I

Steps (r, r+1)

r

r+1

r+1

r

r+1

r+1

r

r

r

r

r+1

r+2

r+3

r+2

r+3

r+3

r+2

r+2

r+2

r+3

r+3

Steps (r+2, r+3)

r+2

Figure A.3: Wavefront operation and collisions on 8 core nodes

A.4 16 Core CMP

• at step r: 9 extra communications might contend with 0.5 probability with the horizontal
communication done by the shaded core: add 4.5I

• at step r+1: 9 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add 4.5I

• at step r + 2: 9 extra communications might contend with 0.5 probability with the hori-
zontal communication done by the shaded core: add 4.5I

144

A. MODELLING CONTENTION ON CMPS

• at step r+3: 9 extra communications might contend with 0.5 probability with the vertical
communication done by the shaded core: add 4.5I

Total = 18I

Steps (r, r+1)

r

r+1

r+1

r

r+1

r+1

r

r

r

r

r+1

r

r

r

r

r+1

r+1

r+1

r+1

r+1

Figure A.4: Wavefront operation and collisions on 16 core nodes

145

A. MODELLING CONTENTION ON CMPS

Steps (r+2, r+3)

r+3

r+3

r

r+3

r

r

r+3

r+3

r+3

r+3

r+3

r+2

r+3

r

r+3

r+2

r+2r+2

r+2

r+2

Figure A.5: Wavefront operation and collisions on quad core nodes

146

B Model Validations

B.1 Chimaera Validations

Table B.1: Chimaera Model Validation on Jaguar (Cray XT4) - 603 problem size, Htile = 1
NPE n m Nx

n
Ny

m W Wg Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

16 4 4 15 15 2.09E−4 9.29E−7 48.71 55.27 -11.87 44.67 4.05
64 8 8 8 8 5.19E−5 9.23E−7 17.22 17.52 -1.72 13.61 3.60

Table B.2: Chimaera Model Validation on Jaguar (Cray XT4) - 1203 problem size, Htile = 1
NPE n m Nx

n
Ny

m W Wg Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

64 8 8 15 15 1.95E−4 8.65E−7 92.15 109.1 -15.54 83.99 8.15
256 16 16 8 8 4.87E−5 8.66E−7 33.04 34.9 -5.35 25.78 7.26
1K 32 32 4 4 1.22E−5 8.66E−7 15.44 18.54 -16.73 7.37 8.07

Table B.3: Chimaera Model Validation on Jaguar (Cray XT4) - 2403 problem size, Htile = 1
NPE n m Nx

n
Ny

m W Wg Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

256 16 16 15 15 3.47E−4 1.54E−6 320.35 365.15 -12.27 304.11 16.25
1K 32 32 8 8 8.16E−5 1.45E−6 104.09 110.43 -5.74 89.87 14.22
4K 64 64 4 4 2.04E−5 1.45E−6 43.33 54.13 -19.96 27.86 15.47

Table B.4: Chimaera Model Validation on a Intel Xeon-InfiniBand cluster - 1203 problem size
NPE n m Nx

n
Ny

m W Wg Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

32 8 4 15 30 1.98E−4 4.40E−7 88.90 107.18 -17.05 83.46 5.44
64 8 8 15 15 1.00E−4 4.44E−7 47.25 56.72 -16.69 42.73 4.53
96 16 6 7.5 20 6.64E−5 4.43E−7 35.43 40.89 -13.36 30.97 4.45

128 16 8 7.5 15 5.52E−5 4.91E−7 30.28 32.56 -7.01 26.17 4.11

Table B.5: Chimaera Model Validation on a Intel Xeon-InfiniBand luster - 2403 problem size
NPE n m Nx

n
Ny

m W Wg Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

81 9 9 27 27 3.73E−4 5.1E−7 324.35 342.33 -5.25 312.17 12.18
96 16 6 15 40 3.05E−4 5.1E−7 268.57 297.03 -9.58 256.7 11.87

100 10 10 24 24 2.94E−4 5.1E−7 259.37 278.37 -6.82 247.89 11.49
128 16 8 15 30 2.30E−4 5.1E−7 205.74 225.65 -8.82 194.82 10.92
169 13 13 19 19 1.84E−4 5.1E−7 167.83 174.35 -3.74 157.68 10.15
256 16 16 15 15 1.15E−4 5.1E−7 108.81 129.65 -16.08 99.72 9.09

147

B. MODEL VALIDATIONS

B.2 Sweep3D Validations

Wg,nf - no fixups,Wg,f - with fixups

Table B.6: Sweep3D Model Validation on Jaguar (Cray XT4) - 10003 total problem size,
Htile = 2, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

1K 32 32 32 32 3.16E−7 3.69E−7 36.01 38.56 -6.62 34.99 1.03
2K 64 32 16 32 3.71E−7 4.26E−7 21.78 24.98 -12.81 20.78 1.00
4K 64 64 16 16 3.71E−7 4.26E−7 11.78 13.36 -11.83 10.79 0.99
8K 128 64 8 16 4.14E−7 5.00E−7 7.34 8.43 -12.87 6.42 0.92

Table B.7: Sweep3D Model Validation on Jaguar (Cray XT4) - 20× 106 total problem size,
Htile = 2, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

1K 32 32 9 9 3.58E−7 3.89E−7 1.23 1.38 -10.68 0.99 0.24
2K 64 32 5 9 4.33E−7 4.78E−7 0.97 1.11 -13.05 0.72 0.25
4K 64 64 5 5 4.40E−7 5.00E−7 0.73 0.94 -22.41 0.47 0.26
8K 128 64 3 5 6.00E−7 6.33E−7 0.68 0.90 -23.85 0.41 0.27

Table B.8: Sweep3D Model Validation on Jaguar (Cray XT4) - 5× 5× 400 per processor
problem size, Htile = 5, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

4 2 2 5 5 4.64E−7 5.19E−7 0.62 0.59 4.81 0.47 0.15
8 4 2 5 5 4.64E−7 5.19E−7 0.62 0.62 0.06 0.48 0.15

16 4 4 5 5 4.64E−7 5.19E−7 0.63 0.67 -6.1 0.48 0.15
32 8 4 5 5 4.64E−7 5.19E−7 0.64 0.67 -4.79 0.49 0.15
64 8 8 5 5 4.64E−7 5.19E−7 0.65 0.7 -6.16 0.5 0.16

128 16 8 5 5 4.64E−7 5.19E−7 0.67 0.71 -6.47 0.51 0.16
256 16 16 5 5 4.64E−7 5.19E−7 0.7 0.77 -9.17 0.53 0.16
1K 32 32 5 5 4.64E−7 5.19E−7 0.78 0.84 -7.35 0.6 0.18
2K 64 32 5 5 4.64E−7 5.19E−7 0.84 0.95 -11.49 0.65 0.19
4K 64 64 5 5 4.64E−7 5.19E−7 0.96 1.07 -10.95 0.74 0.21

148

B. MODEL VALIDATIONS

Table B.9: Sweep3D Model Validation on Jaguar (Cray XT4) - 14× 14× 255 per processor
problem size, Htile = 2.5, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

4 2 2 14 14 3.61E−7 3.69E−7 1.99 1.97 1.17 1.8 0.19
16 4 4 14 14 3.61E−7 3.69E−7 2.02 2.07 -2.54 1.83 0.2
64 8 8 14 14 3.61E−7 3.69E−7 2.08 2.19 -5.31 1.88 0.2

256 16 16 14 14 3.61E−7 3.69E−7 2.19 2.31 -5.27 1.98 0.21
1K 32 32 14 14 3.61E−7 3.69E−7 2.41 2.68 -10.22 2.19 0.22

Table B.10: Sweep3D Model Validation on Jaguar (Cray XT4) - 20× 20× 1000 per processor
problem size, Htile = 5, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

4 2 2 20 20 3.91E−7 4.35E−7 16.29 16.55 -1.58 15.87 0.43
16 4 4 20 20 3.91E−7 4.35E−7 16.41 16.75 -2.01 15.98 0.43
64 8 8 20 20 3.91E−7 4.35E−7 16.65 16.96 -1.85 16.22 0.43

256 16 16 20 20 3.91E−7 4.35E−7 17.13 17.87 -4.14 16.69 0.44
1K 32 32 20 20 3.91E−7 4.35E−7 18.09 19.52 -7.33 17.63 0.46

Table B.11: Sweep3D Model Validation on Jaguar (Cray XT4) - 45× 45× 1000 per processor
problem size, Htile = 5, mmi = 6

NPE n m Nx

n
Ny

m Wg,nf Wg,f Pred Exec Error Compute Comm
(Sec) (Sec) (Sec) (Sec) (%) (Sec) (Sec)

32 8 4 45 45 3.32E−7 3.63E−7 68.77 69.28 -0.73 68.25 0.52
256 16 16 45 45 3.32E−7 3.63E−7 71.47 74.23 -3.72 70.93 0.54
512 32 16 45 45 3.32E−7 3.63E−7 72.82 75.08 -3.01 72.27 0.54
1K 32 32 45 45 3.32E−7 3.63E−7 75.51 78.33 -3.6 74.96 0.55
2K 64 32 45 45 3.32E−7 3.63E−7 78.2 80.46 -2.81 77.64 0.57

149

C cflow work from sweep.x

Listing C.1: sweep.x
(∗
∗ CHIP3S
∗ Applicat ion C h a r a c t e r i s a t i o n Tool
∗ Source : sweep . c
∗ RUV Type : c l c
∗)

.

.
proc cflow work { (∗ Defined at sweep . c : 6 9 7 ∗)

[6 9 7] compute < i s c l c , FCAL>;
[7 4 1] case (< i s c l c , IFBR>) {

do dsa :
[7 4 3] compute < i s c l c , AILL , TILL , SILL >;
[7 4 5] loop (< i s c l c , LFOR> , mmi) {
[7 4 5] compute < i s c l c , CMLL, AILL , TILL , SILL >;
[7 4 9] loop (< i s c l c , LFOR> , nk) {
[7 4 9] compute < i s c l c , CMLL, AILL>;
[7 5 1] compute < i s c l c , AILL>;
[7 5 1] c a l l cflow sign ;
[7 5 1] compute < i s c l c , TILL , SILL >;
[7 5 3] loop (< i s c l c , LFOR> , i t) {
[7 5 3] compute < i s c l c , CMLL, 3∗ARD3, ARD1, MFDL, AFDL

, TFDL, INLL>;
}

[7 4 9] compute < i s c l c , INLL>;
}

[7 4 5] compute < i s c l c , INLL>;
}

}
[7 6 5] compute < i s c l c , SILL >;
[7 6 5] loop (< i s c l c , LFOR> , mmi) {
[7 6 5] compute < i s c l c , CMLL, ARL1 , SILL , INLL>;

}
[7 6 8] compute < i s c l c , SILL >;
[7 6 8] loop (< i s c l c , LFOR> , j t +nk−1+mmi−1) {
[7 6 8] compute < i s c l c , 4∗AILL , CMLL, SILL , TILL>;
[7 7 2] loop (< i s c l c , LFOR> , mmi−1) {
[7 7 2] compute < i s c l c , CMLL, 3∗ARL1, 2∗TILL , AILL , INLL>;

}
[7 7 7] compute < i s c l c , 2∗AILL>;
[7 7 7] c a l l cflow min ;
[7 7 7] c a l l cflow min ;
[7 7 7] c a l l cflow min ;
[7 7 7] c a l l cflow max ;
[7 7 7] compute < i s c l c , 2∗ARL1, 2∗TILL , AILL , 2∗SILL >;
[8 0 0] loop (< i s c l c , LFOR> , ndiag) {
[8 0 0] compute < i s c l c , CMLL, TILL , SILL >;

150

C. CFLOW WORK FROM sweep.x

[8 0 4] loop (< i s c l c , LFOR> , mmi−1) {
[8 0 4] compute < i s c l c , 2∗AILL , CMLL, ARL1 , TILL , INLL>;

}
[8 1 1] compute < i s c l c , 2∗TILL , 3∗AILL>;
[8 1 3] c a l l cflow min ;
[8 1 3] compute < i s c l c , AILL>;
[8 1 3] c a l l cflow sign ;
[8 1 3] compute < i s c l c , TILL , 3∗AILL>;
[8 1 4] c a l l cflow max ;
[8 1 4] compute < i s c l c , AILL>;
[8 1 4] c a l l cflow sign ;
[8 1 4] compute < i s c l c , 3∗TILL , 2∗AILL , ABSI , 5∗ARD1, 2∗MFDL

, 4∗TFDL, ARD3, SILL >;
[8 4 0] loop (< i s c l c , LFOR> , i t) {
[8 4 0] compute < i s c l c , CMLL, ARD3, ARD1, TFDL, INLL>;

}
[8 4 2] compute < i s c l c , SILL >;
[8 4 2] loop (< i s c l c , LFOR> , nm−1) {
[8 4 2] compute < i s c l c , CMLL, SILL >;
[8 4 4] loop (< i s c l c , LFOR> , i t) {
[8 4 4] compute < i s c l c , CMLL, 2∗ARD1, 2∗ARD3, MFDL, AFDL

, TFDL, INLL>;
}

[8 4 2] compute < i s c l c , INLL>;
}

[8 4 8] case (< i s c l c , IFBR>) {
(− i f i x u p s)/(− eps i) :

[8 5 5] compute < i s c l c , TILL>;
[8 5 5] loop (< i s c l c , LFOR> , i t) {
[8 5 5] compute < i s c l c , 4∗CMLL, 3∗ANDL, 8∗ARD1, 8∗MFDL

, 9∗TFDL, 7∗ARD3, 9∗AFDL, DFDL, AILL , TILL>;
}

1−((− i f i x u p s)/(− eps i)) :
[8 8 1] compute < i s c l c , TILL>;
[8 8 1] loop (< i s c l c , LFOR> , i t) {
[8 8 1] compute < i s c l c , 4∗CMLL, 3∗ANDL, 7∗ARD1, 8∗MFDL

, 8∗TFDL, 5∗ARD3, 9∗AFDL, DFDL, SILL , CMDL>;
[9 0 2] case (< i s c l c , IFBR>) {

0 . 5 :
[9 0 4] compute < i s c l c , 2∗AFDL, 4∗TFDL, DFDL, 3∗MFDL

, ARD1, SFDL , CMDL>;
[9 1 0] case (< i s c l c , IFBR>) {

0 . 5 :
[9 1 0] compute < i s c l c , ARD1, MFDL, ARD3, AFDL

, TFDL>;
}

[9 1 2] compute < i s c l c , CMDL>;
[9 1 2] case (< i s c l c , IFBR>) {

0 . 5 :
[9 1 2] compute < i s c l c , ARD1, MFDL, ARD3, AFDL

, TFDL>;
}

[9 1 3] compute < i s c l c , SILL >;
}

[9 1 6] compute < i s c l c , CMDL>;
[9 1 6] case (< i s c l c , IFBR>) {

0 . 5 :
[9 1 8] compute < i s c l c , 2∗AFDL, 4∗TFDL, DFDL, 3∗MFDL

, ARD3, ARD1, SFDL , CMDL>;
[9 2 4] case (< i s c l c , IFBR>) {

151

C. CFLOW WORK FROM sweep.x

0 . 5 :
[9 2 4] compute < i s c l c , ARD1, MFDL, ARD3, AFDL

, TFDL>;
}

[9 2 6] compute < i s c l c , CMDL>;
[9 2 6] case (< i s c l c , IFBR>) {

0 . 5 :
[9 2 6] compute < i s c l c , ARD1, MFDL, AFDL, TFDL>;

}
[9 2 7] compute < i s c l c , SILL >;

}
[9 3 1] compute < i s c l c , CMDL>;
[9 3 1] case (< i s c l c , IFBR>) {

0 . 5 :
[9 3 3] compute < i s c l c , 2∗AFDL, 4∗TFDL, DFDL, 3∗MFDL

, ARD3, ARD1, SFDL , CMDL>;
[9 3 9] case (< i s c l c , IFBR>) {

0 . 5 :
[9 3 9] compute < i s c l c , ARD1, MFDL, AFDL, TFDL>;

}
[9 4 1] compute < i s c l c , CMDL>;
[9 4 1] case (< i s c l c , IFBR>) {

0 . 5 :
[9 4 1] compute < i s c l c , ARD1, MFDL, ARD3, AFDL

, TFDL>;
}

[9 4 2] compute < i s c l c , SILL >;
}

[9 4 5] compute < i s c l c , 4∗TFDL, ARD1, 2∗ARD3, 2∗AILL
, 2∗TILL>;

}
}

[9 5 6] compute < i s c l c , SILL >;
[9 5 6] loop (< i s c l c , LFOR> , i t) {
[9 5 6] compute < i s c l c , CMLL, 2∗ARD3, 2∗ARD1, MFDL, AFDL

, TFDL, INLL>;
}

[9 5 9] compute < i s c l c , SILL >;
[9 5 9] loop (< i s c l c , LFOR> , nm−1) {
[9 5 9] compute < i s c l c , CMLL, SILL >;
[9 6 1] loop (< i s c l c , LFOR> , i t) {
[9 6 1] compute < i s c l c , CMLL, 3∗ARD3, 2∗ARD1, 2∗MFDL

, AFDL, TFDL, INLL>;
}

[9 5 9] compute < i s c l c , INLL>;
}

[9 6 7] case (< i s c l c , IFBR>) {
do dsa :

[9 7 0] compute < i s c l c , SILL >;
[9 7 0] loop (< i s c l c , LFOR> , i t) {
[9 7 0] compute < i s c l c , CMLL, 8∗ARD3, 4∗ARD1, 3∗MFDL

, 3∗AFDL, 3∗TFDL, INLL>;
}

}
[9 8 1] compute < i s c l c , ARD3, TFDL, INLL>;
[9 8 7] compute < i s c l c , 2∗POL1 , AILL , TILL , INLL>;

}
}

} (∗ End of work ∗)
.

152

D Wavefront Model and Extensions

D.1 Model Parameters
Table 4.1 Plug-and-Play Reusable Model Application Parameters
Parameter LU Sweep3D Chimaera
Nx, Ny, Nz Inputsize Inputsize Inputsize

Wg measured measured measured
Wg,pre measured 0 0

Htile(cells) 1 mk ×mmi/mmo 1
nsweeps 2 8 8
nfull 2 2 4
ndiag 0 2 2

Tnonwavefront Tstencil + δh 2Tallreduce + δh Tallreduce + δh
MessageSizeEW 40Ny/m 8Htile ×#angles 8Htile ×#angles

(Bytes) ×Ny/m ×Ny/m
MessageSizeNS 40Nx/m 8Htile ×#angles 8Htile ×#angles

(Bytes) ×Nx/m ×Nx/m

D.2 Single Core Model
Table 4.2 Plug-and-play LogGP Model: One Core Per Node, on 3D Data Grids

Wpre = Wg,pre ×Htile ×Nx/n×Ny/m (4.2.6)
W = Wg ×Htile ×Nx/n×Ny/m (4.2.7)

StartP1,1 = Wpre (4.2.8)
StartPi,j = max(StartPi−1,j +Wi−1,j + Total commE +ReceiveN ,

StartPi,j−1 +Wi,j−1 + SendE + Total CommS) (4.2.9)
Tdiagfill = StartP1,m (4.2.10)
Tfullfill = StartPn,m (4.2.11)

Tstack = (ReceiveW +ReceiveN +W + SendE + SendS +Wpre)Nz/Htile −Wpre (4.2.12)
Time per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront (4.2.13)

D.3 2D Model
Table 4.7 Plug-and-play LogGP Model for Wavefront Codes on 2D Data Grids

Wpre = Wg,pre ×Htile ×Nx/n (4.5.1)
W = Wg ×Htile ×Nx/n (4.5.2)

StartP1 = Wpre (4.5.3)
StartPi = StartPi−1 +Wi−1 + Total commE (4.5.4)

Tfill = StartPn (4.5.5)
Tstack = (ReceiveW +W + SendE +Wpre)Nz/Htile −Wpre (4.5.6)

Time per iteration = nfullTfill + nsweepsTstack + Tnonwavefront (4.5.7)

153

D. WAVEFRONT MODEL AND EXTENSIONS

D.4 Extensions for Cray XT3/XT4 CMP Nodes

Table 4.8 Re-usable Model Extensions for CMP Nodes
Modifications to Equation (4.2.9)

For Cx × Cy cores per node, all communication are off-node except the following:
i mod Cx 6= 0 & Cx 6= 1 : SendE = Sendonchip,E

i mod Cx 6= 1 & Cx 6= 1 : Total commE = Total commonchip,E

j mod Cy 6= 1 & Cy 6= 1 : ReceiveN = Receiveonchip,N

j mod Cy 6= 0 & Cy 6= 1 : Total commS = Total commonchip,S

Modifications to Equation (4.2.12)
For CMPs with a shared bus to memory
let I = (odma +Message size×Gdma)

1× 2 cores/node : add I to ReceiveN and SendS

2× 2 cores/node : add I to each Send and Receive
2× 4 cores/node : add 9I to (4.2.12)
4× 4 cores/node : add 18Ito (4.2.12)

D.5 Model Extensions for Simultaneous Multiple Wavefronts

Modifications to Equation (4.2.8)

StartP1,1 = ηWpre (7.3.1)

Modifications to Equation (4.2.9)

StartPi,j = max(StartPi−1,j + η(Wi−1,j +
1
2

(Total commE +ReceiveN)),

StartPi,j−1 + η(Wi,j−1 +
1
2

(SendE + Total CommS))) (7.3.2)

η =


2, default
4, if m/2 < i+ j or n/2 < i+ j

8, if i+ j ≥ (m+ n)/2

Modifications to Equation (4.2.12)

Tstack = η(
1
2

(ReceiveW +ReceiveN) +W +
1
2

(SendE + SendS) +Wpre)

(Nz/Htile − (m+ n− 1))−Wpre (7.3.3)

Modifications to Equation (4.2.13)

Time per iteration = 2nfullTfullfill + nsweepsTstack + Tnonwavefront (7.3.4)

154

D. WAVEFRONT MODEL AND EXTENSIONS

D.6 Model Extensions for Heterogeneous Resources

Let pool of processors with heterogeneous processing times be in the range of
W1,W2,W3, ..,Wr, ..,Wmax with probability that a processor takesWr time to complete a block
of cells of height Htile given by Pr where

∑max
r=1 Pr = 1.

Modifications to Equation (4.2.7): set W to

Wavg =
max∑
r=1

PrWr (7.4.1)

Modifications to Equation (4.2.12): set W to Wmax

D.7 Model Extensions for Irregular/Unstructured Grids

Let the set of all processors be denoted by ∀P and the set of all communication links by ∀l.

Modifications to Equation (4.2.12)

Tstack =
Nz/Htile∑
step=1

{max
∀l

(ReceiveW) +max
∀l

(SendE)+

max
∀l

(ReceiveN) +max
∀l

(SendS) +max
∀P

(Wi,j +Wpre,i,j)} (7.4.2)

155

E Model Parameter Error Propagation

E.1 General Case

As summing that, Send = αTotal Comm and Receive = βTotal Comm, where 0 ≤ α, β ≤ 1,
from (4.2.13), the total runtime for iter iterations of a wavefront application is given by:

Totaliter = f(W,Wpre, T otal Comm) (E.1.1)

Then the variance of f is given by:

σf
2 =

(
∂f

∂W
σW

)2

+
(

∂f

∂Wpre
σWpre

)2

+
(

∂f

∂Total Comm
σTotal Comm

)2

(E.1.2)

E.2 Error Model for Chimaera

The total runtime (assuming runtime spent in the non-wavefront portions to be negligible) is
given by:

f = iter(ndiagStartP1,m + nfullStartPn,m + nsweepTstack) (E.2.1)

StartP1,m = StartP1,1 + (m− 1)[W + (1 + α)Total Comm] (E.2.2)

StartPn,m = StartP1,1 + (n− 1)[W + (1 + β)Total Comm] + (E.2.3)

(m− 1)[W + (1 + α)Total Comm]

Tstack = [W + 2(α+ β)Total Comm]
Nz

Htile
(E.2.4)

As Wpre for Chimaera is zero, the partial differentials w.r.t W and Total Comm is then given
by:

∂StartP1,m

∂W
= (m− 1) (E.2.5)

∂StartPn,m

∂W
= (m+ n− 2) (E.2.6)

∂Tstack

∂W
=

Nz

Htile
(E.2.7)

156

E. MODEL PARAMETER ERROR PROPAGATION

∂StartP1,m

∂Total Comm
= (m− 1)(1 + α) (E.2.8)

∂StartPn,m

∂Total Comm
= (n− 1)(1 + β) + (m− 1)(1 + α) (E.2.9)

∂Tstack

∂Total Comm
= 2(α+ β)

Nz

Htile
(E.2.10)

Components of (E.1.2)

∂f

∂W
= iter[ndiag(m− 1) + nfull(m+ n− 2) + nsweep

Nz

Htile
] (E.2.11)

∂f

∂Total Comm
= iter[ndiag(m− 1)(1 + α) + nfull(n− 1)(1 + β) +

nfull(m− 1)(1 + α) + 2nsweep(α+ β)
Nz

Htile
] (E.2.12)

For Chimaera ndiag = 2, nfull = 4 and nsweep = 8 then

σf
2 = iter2[(6m+ 4n− 10 + 8

Nz

Htile
)σW]2 +

iter2[(6(m− 1)(1 + α) + 4(n− 1)(1 + β) +

16(α+ β)
Nz

Htile
)σTotal Comm]2 (E.2.13)

The values of α and β depends on the communication model for the target system.

157

	Title Page
	Abstract
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	Notations
	Contents
	List of Figures
	List of Listings
	List of Tables
	Chapter Introduction
	Motivation and Problem Statement
	Analytic Modelling
	Reusable Performance Models

	Thesis Contributions
	Thesis Limitations
	Thesis Overview

	Chapter Performance Analysis and Prediction
	Introduction
	Parallel Computing and Parallel Programs
	Parallel Computing Architectures
	Parallel Programming Models and Languages
	Parallel Decompositions

	Performance Engineering Methodologies
	Amdahl's Law and Gustafson's Law
	Parallel Random Access Machine (PRAM) Model
	Bulk Synchronous Parallel (BSP) Model
	LogP and LogGP Models

	Performance Engineering and the HPC Lifecycle
	Benchmarking and Profiling
	Low-level Benchmarks, Kernels and Microbenchmaks
	Synthetic Benchmarks, Application Benchmarks and Benchmark Suites
	Profiling

	Statistical Analysis
	Simulation
	Analytic Modelling
	Hybrid and Other Methods

	Discussion

	Chapter Pipelined Wavefront Computations
	Pipelined Wavefront Sweeps
	Wavefront Sweeps on 2D Data Grids
	Wavefront Sweeps on 3D Data Grids

	Pipelined Wavefront Applications
	NPB - LU
	Sweep3D and Chimaera

	Related Work

	Chapter A Plug-and-Play Reusable Analytic Model
	Application Parameters
	Reusable Model : Single Core
	The Cray XT3/XT4 and MPI Communications Performance
	MPI Send/Receive: Off-node
	MPI Send/Receive: On-chip
	MPI Allreduce

	Measuring Computation Performance
	Deriving a Model for 2D Regular Orthogonal Grids
	Extending the Reusable Model to CMP Nodes on the XT4
	Model Validations
	NPB - LU
	Sweep3D
	Chimaera
	Discussion on Validation Results

	Summary

	Chapter Wavefront Application and Platform Design
	Application Design: Htile
	Platform Sizing and Configuration
	Platform Design: Multi-core Nodes
	Application Bottlenecks
	Sweep Structure Re-design
	Summary

	Chapter Wavefront Simulation Models
	The PACE Discrete Event Simulation System
	A PACE Model for Sweep3D
	Enhancing the Predictive Accuracy of PACE for Modern HPC Systems
	The WarPP Simulation Toolkit
	Summary

	Chapter Optimisations and System Procurement
	Introduction
	Shifting Computation Costs
	Multiple Simultaneous Sweeps
	Multiple Simultaneous Sweeps on Separate Cores
	Multiple Simultaneous Sweeps on All Cores

	Model Extensions for Heterogeneous Resources and Irregular/Unstructured Grids
	Homogeneous Cells, Structured Grid and Heterogeneous Resources
	Heterogeneous Cells, Structured Grid and Homogeneous Resources
	Homogeneous Cells, Unstructured Grid and Homogeneous Resources

	System Procurement and Bottleneck Analysis
	Larger Problem Sizes
	Computation, Latency and Bandwidth

	Summary

	Chapter Conclusions and Future Work
	Contributions and Conclusions
	Future Work
	Further Validations and Model Extensions
	Future Work on Wavefront Computations

	Bibliography
	Appendix Modelling Contention on CMPs
	Dual Core CMP
	Quad Core CMP
	8 Core CMP
	16 Core CMP

	Appendix Model Validations
	Chimaera Validations
	Sweep3D Validations

	Appendix cflow work from sweep.x
	Appendix Wavefront Model and Extensions
	Model Parameters
	Single Core Model
	2D Model
	Extensions for Cray XT3/XT4 CMP Nodes
	Model Extensions for Simultaneous Multiple Wavefronts
	Model Extensions for Heterogeneous Resources
	Model Extensions for Irregular/Unstructured Grids

	Appendix Model Parameter Error Propagation
	General Case
	Error Model for Chimaera

