Issues in Definitive to
Procedural Translation

Nathan Griffiths
August 20, 1996

_/






1
Motivation

There are several issues involved in the translation of a definitive program
into a procedural one. However, before looking at these it is useful to con-
sider why we might wish to do this. There are two main reasons why this

kind of translation, or code generation, would be useful.

e Firstly, from the point of view of the Empirical Modelling Project, the
conversion of a definitive script into a procedural program allows for
circumscribing some of the definitions. This is equivalent to closing the
open-world development of the script. A definitive script is very open-
ended since any definition can be changed at run-time with a simple
re-definition. This makes it an ideal prototyping tool. However there
will come a point in the development at which some of the definitions
will not need to be changed, and the functionality of the system is as
desired. At this juncture it would be useful to be able to remove the
facility to change the model. This might be done by introducing some
kind of read/write permissions to definitive variables, however it could
also be done by freezing definitions, making definitive variables into

procedural ones, or in other words, performing a translation.

e Secondly, from a more practical and implementation point of view a
procedural program should be more efficient than a definitive one, since
there is no need for run-time definition maintenance to be done in a
procedural program. Once a program is no longer in the development
phase the need to be able to change the defining structure of the
program is removed, thus the need for run-time definition maintenance

is removed. It would be useful to take advantage of the performance



increase that this type of modification could provide.

There have been previous investigations into translation, all using roughly
the same translation technique!. Each attempt tries to analyse the depen-
dency between variables and action calls. When a variable is reassigned, a
sequence of reassignments and procedure calls follows it. In other words,
the translator tries to predetermine the sequence of evaluations that EDEN
will perform when a variable changes value, and then encodes this sequence
into the translated program.

These translators suffer from two main limitations, namely that the eval-
uation sequence is completely predetermined and the user interface is not
specified in the EDEN script. The problem with a predetermined evaluation
sequence is that the translator cannot cope with changing dependency. Thus
the interaction between user and resulting program is restricted to changing
those variables with explicit values. In a sense this isn’t a bad thing, since
we are effectively closing the open-world development phase of the program.
However, it is not unreasonable to assume that the user might actually need
some definitive variables to be redefined after the translation—this is not

possible if the evaluation sequence cannot be altered at runtime.

'See “Agent-oriented Modelling for Interactive Systems”, Dr Y P Yung, 1996, Depart-

ment of Computer Science, University of Warwick.



2
Translation schemes

There are a number of possible approaches to translation, each having differ-
ent merits. Unfortunately there is not one singular method which possesses

all of the merits, with none of the drawbacks.

2.1 The EDEN interpreter in C

This method simply wrappers the EDEN interpreter into an object library,
which can then be called from a C program. The whole of the interpreter
is linked into the program and since it is still present there is no increase
in efficiency. This method doesn’t really close the open-world development
phase either, since any definitions can still be changed through calling the
interpreter. It also requires a program to be re-written manually in C,
rather than automatically translated. However this method does give the
advantage of being able to write definitions in a conventional programiming

language.

2.2 Full analysis of consequences of actions

This approach is something of a non-starter, since the conditions of variables
cannot be certain after a conditional statement, or on entry to a procedure
(assuming the procedure can be called from more than one place in the
program). To make the analysis possible some means of ensuring a variable

is up to date is required, leading to the following scheme.



2.3 Generation of procedures for definition management

For each variable in the definitive script a set of small definition management
routines are created. There are two types of variable in an EDEN script—
implicitly defined and explicitly defined. If in a script we have ‘a is b + ¢’
then we say a is an implicitly defined definitive variable, conversely, if the
definition was ‘a = b + ¢’ then a would be explicitly defined. In the former
case if b or ¢ were also implicitly defined then we say that a depends on a
definitive variable.

Both implicitly and explicitly defined variables are translated through
the introduction of definition management routines. The explicit case re-
quires just two routines of SET and MARK. Implicit variables require an
extra routine called EVAL. The SET procedure is used each time the variable
is redefined (although redefinition of variables in procedural EDEN programs
is not currently supported). MARK is used to set all dependent variable to
be out of date, and EVAL is used to compute the value of the variable, i.e.
make the variable up to date. The translation process has the effect of hard
wiring the dependencies. These definition management routines are called
whenever a variable used. By way of example consider the triggered func-
tion result in the guess program (See Appendices A and B for source code).
The trigger variable for this function is correct. To translate the definitive
description of result into procedural EDEN we need to introduce a flag to
represent whether it is possible to evaluate the value of correct using pro-
cedural assignment. We call this flag correctREADY, and it is checked at
the start of the procedural version of the result procedure. Assuming the
value can be computed, we then use another procedure, EVALcorrect, which
performs the procedural evaluation of correct. We can then continue with
the if (correct)... statement. In (Figure 2.1) we can see the form of the
translation from a definitive EDEN action to procedural.

The nature of a definitive script is such that definitions are not circum-
scribed, but are instead open-ended. When a definitive program is to be
translated into a procedural program, the dependency structure must be
tied down and the interface between the user and the set of definitions de-
scribed. To do this a protocol is derived (from the LSD specification), and
this protocol specifies the interactions that may take place between agents.
To generate a procedural script from a definitive script we add a proto-

col, and then apply some standard utility functions. This protocol must



proc result : correct {

if (correct)...

proc result {
if (correctREADY == ~1) return;
EVALcorrect();

if (correct)...

Figure 2.1: Definitive and procedural EDEN for result

be specified in the definitive script (by means of a comment) if automated
translation is to be performed. In the procedural version it may be the case
that there is a choice of actions which are applicable. If this is the case
then the user will be prompted (using the predefined user_input() func-
tion) with a list of the actions from which the most desirable one should be
chosen.

This approach is promising but still suffers limitations, for example the
replay function in the billiards simulation does not work in the procedural
translation.

The translator def2proc translates definitive EDENinto procedural EDEN
by generating procedures for definition management. The expectation is
that the resultant code should be more efficient, however this is not the case.
The definitive version runs significantly faster than the procedural equiva-
lent. The reason for this lies in the implementation of the EDEN interpreter.
When executing a standard definitive script the definition management is
handled by the definition maintainer, which is written in C and optimised
(Figure 2.2). If the need for definition maintenance is removed by the intro-
duction of EDEN procedures, i.e. the manner that def2proc functions, then
there is considerably more EDEN code for the interpreter to handle. By the
nature of the interpreter this has the net effect of a reduction, rather than

an increase in speed.



A e procedural

definition managementy

Definition maintainer
(written in C)

definitive

Figure 2.2: Definitive cf. procedural

2.4 Freezing variables

Variables can be frozen using the EDEN interpreter interactively. For ex-
ample if there is a variable defined by ‘a is b + ¢’ then it’s value will be
frozen by passing ‘a = a’ to the interpreter. This has the advantage of pre-
venting redefinitions of frozen variable i.e. closing the open development
environment, while still allowing unfrozen variables to be redefined in the
normal manner. An increase in speed is dependent on the symbol table
being updated to take account of a variables status as an explicit variable
which no longer needs to be looked after by the dependency maintainer.

This approach isn’t a true translation since there are many variables that
have to remain implicitly (definitively) defined and the program is still in-
terpreted and relies on the dependency maintainer. However if tkeden could
provide an interface allowing a programmer to choose which variables could
be explicitly defined, then this would be a useful tool. A list of variables
could be presented by tkeden and the programmer could click on the ones
that were to be frozen. It would not be realistic to implement a mechanism
of automatically ascertaining which variable may be converted since there is
no simple manner in which the semantics of a script can be analysed. The
programmers knowledge is required to know which variables will not need
to be redefined.

When a variable is frozen using the assignment method its entry in the



symbol table is updated. The variable changes status from being a formula
to a var which doesn’t require updating through the definition maintainer.
This allows the program to run more efficiently. The graph in (Figure 2.3)
shows that the version of the test program which had the frozen variables

ran consistently faster than the pure definitive version.

Timings for definitive and "frozen variable" test script
71 T T T T T T T T
“definitive" ——
“frozen" ----
70.8 -

706 - I

70.4 b

702 | b

70 B

time

69.8 |- :
69.6 .
69.4 | -

69.2 | 4

69 1 1 1 1 1 X 1 L

Figure 2.3: Program timings



3
Technical problems with C++

Let us assume that we will use the existing EDEN to procedural EDEN trans-
lator def2proc. This is a sensible assumption to make since the translator
works for all of the simple test cases, and could be made to work for the more
complicated cases such as the billiards simulation. A hand coded fix to the
billiards simulation has been suggested, to allow the replay function to work
as normal. The def2proc translator copes alleviates the need for a language
shift in the early stages of translation, and deals wholly with the paradigm
shift, namely from definitive to procedural. However the procedural lan-
guage it translates into is not a typical procedural language and as such
there are a number of problems that are encountered when the procedural

EDEN is translated in a language such as C++.

3.1 General

There are several general problems with translating EDEN into C++. Some
of these are relatively trivial to solve, while some are somewhat harder.

In EDEN variables don’t have to be declared, while in C++ they do. This
means that the translator would have to generate C++ code to declare any
variables, and mofe importantly determine their type.

In EDEN a programmer can refer to a function name before it is declared,
again this is not permitted in C4+4. For example, in the guess program (see
Appendices A and B) EVALcorrect () calls EVALsqrx (), which is yet to be
defined. This problem could be solved by declaring all functions which are
referred to before their definitions at the top of the code. In fact there is
no reason why all functions shouldn’t be declared at the top of the code,



since this solves the problem, is easier to implement, and is no less efficient.
To solve this problem a two pass complier is needed, or at least a one pass
complier with a stack to push functions declarations onto.

In C++ a programmer must declare the arguments (parameters) of a
function. However in EDEN this is dealt with at run time by the interpreter.
This applies to the return type of a functions also. Eden sometimes uses the
para aliasing, but even this contains no type information. For example in
(Figure 3.1).

func sqr {
para Xx;

return x * x;

Figure 3.1: The lack of type information in EDEN

This code snippet contains no type information, all we can deduce is
that if x is an integer, or a float then the return type will be the same.
EDEN doesn’t support user defined types, which in this case is useful since if
there were a user defined type of vector there would be no way to determine
whether the return type was the same as the parameter type.

The protocol section in procedural EDEN is quite awkward to translate,
since it requires a list in which the first and third elements are function,

whilst the middle element is a string. This is discussed in the next section

3.2 Heterogeneous Lists

Heterogeneous lists can be implemented in C/C++ using void* pointers
but we still need to now the type of a variable to be able to cast it to the
correct type before use. Another problem is that if we had a linked list, -
the basic element would have to be large enough to hold to largest possible
element. Consider the case where everything is an integer except one string
of 1024 chars—this would be grossly inefficient if the list were large.

An alternative would be a linked list of structures, where each structure
consisted of a data member (i.e. a void* pointer) and a type identifier.
The type identifier could be a type from an enumeration declaring the type
and the size of the data. The size is important to know how much memory

should be allocated for a given piece of data.



/* a function with two distinct return types */
func testy {

para x;

if (x) return "x is true";

return x;

X

/* function used to call testy() */
func test : x {
writeln("-->",testy(x));

Figure 3.2: A function with multiple return types (string and integer)

box:q2[31] ttyeden ret_test.eden

1:>x = 0
-=>0
2:>x = 1;

-->x is true
3:>

Figure 3.3: Use of the function defined in (Figure 3.2)

3.3 Multiple Return Types

In EDEN a function declaration does not have to specify its return type,
this information is determined by the interpreter at run-time. In C4++,
as in most other procedural languages (Pascal, C etc.), the return type of
a function must be specified in the function declaration. Since the EDEN
language is interpreted (at least in its current implementation) it is possible
for a function to have a different return type in different situations. This is
not possible in C++ since a function can only have a single, declared return
type. An example of a simple EDEN function having multiple return types
is given in (Figure 3.2) along with simple use in (Figure 3.3).

A possible fix to this is to place the returned value in a global variable,
and have the function return the address (and type) of the variable. If we
just had the return a void* we would not know which type the returned
was, and so we would be unable to cast it for use. We could also have the
functions return the type (eg through an enumeration) and data through
variable that have be passed by reference. This would have the advantage
that the data would not be in global scope, but only in the scope intended.

10



4
Scheme

An alternative approach is to aim for a translation from EDEN into a func-
tional language such as scheme, or ML. ML still suffers from some of the
problems that C and C++ present, the most important being that ML is
a strongly typed language. This means that unless we create some user
defined type the lists problem is still present, as is the function return type
problem. Scheme on the other hand is not a strongly typed language. In
the words of the MIT Scheme Reference Manual:

“Scheme has latent types as opposed to manifest types, which
means that Scheme associates types with values (or objects)

rather than with variables.”

This property means that such statements as (define x (list ’a 3
b)), i.e. the list (a 3 b) are valid in scheme. While scheme solves the
problems associated with heterogeneous lists, and other type related issues,
it introduces as many problems as it remove. One of these problems is assign-
ment. In a function langnage we cannot perform assignments to variables,
as we can in EDEN . However, scheme is not a pure functional language, and
does support assignment though the use of the set! operator. This has the
disadvantage though of removing the mathematical cleanness of a program.

Scheme presents problems with respect to dependencies or triggered
functions, since this is a property of a definitive language. One method
for tackling this would be to use the scheme set! operator, and use scheme
as though it were a procedural language. However, this would result in some
very obfuscated code. The other approach would be to store the environ-

ment in a list (since there are no variables) and pass this list as an argument

11



to a function which calls itself. This functions would have the purpose of
updating dependencies, and called triggered functions. This method would
result in some very nasty code, which was grossly inefficient.

It seems that what at first sight seems like an appropriate choice of
language is in fact worse than the the original choice of C4++. In C++ all
of the difficulties are at the technical level of ‘not quite’ being able to do
something. The difficulties in C++ could be overcome by using the language
in a slightly non-standard manner. However the difficulties with scheme are
at a higher level of the language simply not supporting the operations that

we wish to be able to perform in our programs.

12



5
Conclusion

When both C/C++ and scheme are considered together it seems that C++
would be the best choice. C++ is not ideal by a long way for translating into
from EDEN , however it is possibly more appropriate than scheme. It would,
academically, be interesting to have a translation from EDEN to a functional
language, possible scheme, but the resultant programs would most likely be
next to useless due to their inefficiencies.

The big question is how do we convert EDEN into C++. It would be
ideal if there were some program that we could pipe the output of def2proc
through, which output C++. However this is non-trivial. We would need
to make some changes to the interpreter so that it output the types of vari-
ables in a script, and perhaps also headers for the procedures and functions
within the script. It may be better to (at least initially) opt for a compro-
mise approach. I suggest that this comprise would take similar approach to
def2proc where the user must specify extra information, perhaps again in
the form of a comment. This has the advantage that the user must decide
exactly on the functionality of the script, and explicitly close the develop-
ment. If the programmer were made to give a type to each variable, and
a header to each functions then the translation would become much easier.
The main problems remaining are heterogeneous list and multiple return
types of functions. The lists problem can be fixed through having a list
class where each element is a structure containing a void* pointer to the
data, and a type identifier. This is now feasible since we are being given
the type information. The returning of a functions is perhaps best tack-
led through passing by reference of data and type information—since this

enforces good scoping practise.

13



A

The Definitive Guess Program

func sqr {
para Xx;

return x * x;

sqrx is sqr(X);

correct is sqrx == target;

proc problem : target {

writeln("X is the square-root of ", target, '. What is X?");

proc result : correct {
if (correct)
writeln("You’ve got it!");
else
writeln("The square of ", X, " is ", sqrx, ", not ", target);

3

/* initial setting */
target = 36;

/*protocol
correct -> target = sqr(rand() % 100);
‘correct -> X = int(user_input("Enter X:'));

*/

14



B

The Procedural Guess Program

/***xx* Procedures for definition management ****x/

proc SETcorrect { MARKcorrect(); correctREADY = 1; }
proc MARKcorrect {
if (targetREADY == -1 || sqrxREADY == -1)
return;
correctREADY = 0;
}
proc EVALcorrect {
if ('correctREADY) {
if (!sqrxREADY)
EVALsqrx();
correct = sqrx == target;
correctREADY = 1;

proc SETtarget { MARKtarget(); targetREADY = 1; }
proc MARKtarget {

targetREADY = 0O;

MARKcorrect();

proc SETsqrx { MARKsqrx(); sqrxREADY = 1; }
proc MARKsqrx {
if (XREADY == -1 || sqrREADY == -1)
return;
sqrxREADY = 0;
MARKcorrect();
}
proc EVALsqrx {

15



if (!sqrxREADY) {
sqrx = sqr(X);
sqrxREADY = 1;

proc SETX { MARKX(); XREADY = 1; }
proc MARKX {

XREADY = 0;

MARKsqrx();
}

proc SETsqr { MARKsqr(); sqrREADY = 1; }
proc MARKsqr {

sqrREADY = 0;

MARKsqrx();
}

/*%xx% translations of EDEN procedures and functions #¥i*x*/

func sqr { para x;

return x * x;

/**xx* translations of EDEN actions %%/

proc result {
if (correctREADY == -1) return;
EVALcorrect();
if (correct)
{
writeln("You’ve got it!");
}
else
{
EVALsqrx();
writeln("The square of ", X, " is ", sqrx, ", not ", target);

}

proc problem {
if (targetREADY == -1) return;

writeln("X is the square-root of ", target, ". What is X7");

16



/*%xx% Initial Status EDEN variables:

-1 = undefined, 0 = outdated, 1 = up-to-date *¥k*%/

correctREADY = -1;
target = 36;
targetREADY = 1;
sqrxREADY = -1;
XREADY = -1;
sqrREADY = 1;

/****%* Consequence of the initial definitions #*¥*x/
{

problem() ;

result();

}

/*%%*x Translation of the external triggering variables x¥¥**/
/*%%** Translation of the protocol *¥***/

func guardil

{
EVALcorrect();
return correct;

}

proc actioni

{
target = sqr(rand() % 100);
SETtarget();
problem();
result();

func guard?2

{
EVALcorrect();

return !correct;

proc action2

{

X = int(user_input ("Enter X:'));
SETX();
result();

17



protocol = [
[
guardi,
"target = sqr(rand() % 100);

actiont
1, L
guard2,
"X = int(user_input (\"Enter X:\"));

action?2

]
1;

proc USER_INPUT {
auto i, choice, actionList;
for () {
actionList = [];
for (1 = 1; i <= protocol#; i++) {
if (protocollil[1]1())
/* append actionList, i; */
actionList = actionList // [il;
}
if (actionList# > 1) {
/* have choice */
writeln("Possible actions:");
for (i = 1; i <= actionList#; i++) {
writeln(i, ": ", protocollactionList[i]]1[2]);
}
writeln("Enter your choice:");
choice = int(gets());
if (choice < 1 || choice > actionList#)
continue;
else
protocollactionList [choicel]l[31();
} else if (actionList# == 1) {
protocollactionList[111[3]1();
¥ |
N ,

func user_input { para message;

write(message) ;

18



return gets();

}

USER_INPUT() ;

19






