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ABSTRACT 
The merits of Empirical Modelling (EM) principles and tools as a constructivist approach to computer science 
education are illustrated with reference to ways in which they have been used in teaching topics related to the 
standard computer science curriculum. The products of EM are interactive models – construals - that serve a 
sense-making role. Model-building proceeds in an incremental fashion through the construction of networks of 
definitions that reflect the observables, dependencies and agents associated with a current situation. The three 
principal case studies discussed (teaching bubblesort, solving Sudoku puzzles, and recognising groups from 
their abstract multiplication tables) highlight respects in which EM accounts for aspects of computing that 
cannot be effectively addressed by thinking primarily in terms of abstractions, procedures and mechanisms. 
The discussion of EM as a constructivist approach to computer science education is set in the context of an 
analysis of constructivism in computer science published by Ben-Ari in 2001. Reconciling EM's constructivist 
epistemology with this analysis involves recognising its pretensions to a broader view of computer science.  
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1. INTRODUCTION 
In his paper “Constructivism in Computer Science Education” [1], Mordechai Ben-Ari draws attention to the 
way in which computer science education (CSE) must take account of the fact that “computers form an 
accessible ontological reality”. By this he means that, in effective interaction with computers, “a „correct‟ 
answer is easily accessible, and moreover, successful performance requires that a normative model of this 
reality must be constructed”. This leads him to conclude that, whilst a constructivist pedagogical stance can be 
sustained in CSE, there is no place for “constructivist epistemology, which is nonfoundationalist and fallible". 
The basis for this conclusion is the uncontroversial observation that the behaviour of computers is by design 
reliable and predictable, and the syntax and semantics of programming languages is non-negotiable. 

In reaching his conclusions about a constructivist approach to CSE, Ben-Ari implicitly subscribes to a particular 
stance on the nature of computer science itself. In this stance, programming stands at the core of the subject: 
the proper scope of computer science as a discipline – at least in so far as it can be deemed to be a science – 
is defined by how we can account for interactions with computers as of their essence "program-like". 

When taken in this widely-accepted but narrow sense, computer science naturally places its fundamental 
emphasis on formality and formalism. As Ben-Ari observes, “intuitive models of computers are doomed to be 
non-viable” ([1],p56). This highlights the importance of being able to think in abstract mathematical/machine-
like terms as a key skill for the computer scientist. It is in this spirit that Wing [2] champions “computational 
thinking”, that Kramer [3] poses the question: “Is abstraction the key to computing?” and that Dehnadi and 
Bornat [4] stress the importance in developing programming skills of being able to manipulate symbols strictly 
in accordance with rules without regard for their meaning.  

There is a complementary story to be told. Few disciplines potentially engage more with every aspect of life, in 
all its breadth and informality, than computing. In many computing applications, such as games and music, it is 
the experience generated by computing technology that is most significant [5]. Coping with informality is crucial 
in developing complex software. Brooks [6] identifies the importance of seeking conceptual integrity, but the 
perspectives and sources that inform software are exceptionally rich and defy immediate formalisation. 
Software development accordingly is much concerned with hybrid activities that originate in a world of concrete 
experiences and potential confusion and strive towards rationalisation and order. This has been part of the 
motivation for broader approaches such as model-driven development, agile methods and participatory design.  

73



 

 

ITALICS Volume 8 Issue 2 June 2009 

ISSN: 1473-7507 

In traditional approaches to marrying the formal with the informal, it is the formal nature of the computer that is 
in the foreground. Though few believe that formal methods and mathematical approaches to programming 
supply comprehensive solutions to the problems of practical computing, the idea that computing has its 
foundation in logic and mechanism is hardly ever questioned. Enlightened theorists nonetheless recognise the 
importance of the experiential aspects of computing. For instance, David Harel – a computer scientist whose 
thinking has strong theoretical roots  – proposed statecharts as a way of giving greater expressive power to 
formalism [7], but in doing this acknowledged the importance of the visual in managing the complexity of the 
development process. His more recent research on "play-in scenarios" [8] also seeks to make direct links 
between the informal understanding of requirements that informs users' interaction with prototypes and 
refinements to the specifications of such prototypes. Jackson [9] wrestles with related concerns in his 
discussion of "What can we expect of program verification?", as does Ridley [10] in his discussion of 
“Database Systems or Database Theory”. 

The context to which Ben-Ari‟s characterisation of computers as an “accessible ontological reality” is most 
relevant is that in which classical computer science was originally conceived. In contemporary applications of 
computing technology, there are compelling reasons for seeking richer conceptual foundations for practice 
than a formal account of computing can supply [11]. The blurring of the boundary between computer science 
and engineering in many aspects of such practice itself presents a major challenge. When Ben-Ari ([1], p46) 
asserts that CSE “probably has more in common with engineering education than with science education”, he 
acknowledges the potential limitations of his analysis of constructivism in CSE by inviting readers with an 
engineering background to speculate about its applicability to their field. 

The modern context for software development typically embraces physical and human aspects in a way that 
has more in common with engineering than classical computer science. Where classical computer science is 
predicated on the prior completion of a design and engineering process that leads to the production of a 
programmable computer together with a generic abstract programming language, exploiting computing 
technology is now quite as much concerned with orchestrating the interaction between human and automatic 
agents communicating like the components of an engineering system as with programming individual devices. 
In aspiration, this orchestration leads to a product that is sufficiently fluid to allow for negotiated requirements 
and emergent uses, in keeping with the spirit of a constructivist epistemology such as Ben-Ari recognises as 
inappropriate in the natural habitats of classical computer science. The difficulty of supporting such 
negotiations of meaning and realising such flexibility in practice with methodologies that are rooted in the 
epistemological framework of classical computer science is acknowledged by Kallinikos in [12]. 

In this paper, Empirical Modelling (EM) is introduced as an alternative approach to computing that embraces a 
constructivist epistemology. As explained in more detail in [13], EM can be seen as a generalised form of 
programming, but one that incorporates both the identification of reliable mechanisms and patterns of 
interaction that must be carried out prior to the specification of processes in orchestrating the development 
environment and the sense-making activities that bind state-change to meaningful entities that can be 
observed and manipulated appropriately by the human and automatic agents involved. In keeping with 
Cantwell-Smith‟s analysis of the role of logic in computing applications [14], the target for this modelling activity 
is not the semantics of the programming language, which relates merely to the abstract computational 
mechanisms that are being specified, but what Cantwell-Smith describes as the „semantics of the semantics‟. 
That is to say, as will be illustrated in the next section, the modelling activity is directly guided, moment-by-
moment, by the desire to craft the current state and potential for atomic state-transition so that it is congruent 
to the current state and potential for atomic state-transition in the referent.  

As an approach to computer science education, EM is based on foregrounding the informal and experiential 
aspects of interaction with computing technology. The spreadsheet is a helpful motivating example of an 
application that embraces these aspects. A spreadsheet that functions effectively relies upon the computer to 
update dependencies in a timely fashion, and display the results to the human interpreter. Though the 
algorithms that effect the dependency maintenance are formally specified as far as their abstract function is 
concerned, it is necessary to invoke real-time concerns – and in general to take the characteristics of the 
human interpreter into account – to determine whether these algorithms execute at an appropriate speed. 
What is more, because the complexity of the dependency networks that need to be updated is determined by 
the external meaning of the values in cells, it cannot in general be constrained to a fixed size or depth. On that 
basis, the most important characteristic of the spreadsheet relates to informal, potentially observer-dependent 
and hardware-dependent semantics that cannot be comprehensively formally specified. 

This paper reviews some applications of EM in computer science teaching, highlighting issues that prove 
problematic when considered primarily from a classical computer science perspective. Section 2 is a brief 
introduction to the principles and tools of EM. Section 3 illustrates, by means of a simple example (viz. 
Teaching Bubblesort), how EM can be used to explore the kinds of experimental activity and empirical 
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knowledge that lie behind the identification of algorithmic procedures. Section 4 considers how elaboration of 
the EM bubblesort model exposes the subtlety of the relationship between processes that admit formal 
analysis in the spirit of theoretical computer science, and those that demand a more pragmatic “engineering” 
approach. Section 5 discusses the way in which EM shifts the focus from using the computer as a calculator to 
disposing the results of calculation semi-automatically in such a way that they can be more readily assimilated 
and experienced as meaningful. This is illustrated in Section 6 with reference to EM construals to support 
human solving of Sudoku puzzles and the development of an environment in which the five distinct abstract 
mathematical groups of order 8 can be displayed so as to expose their structure and informal interpretations. 

The four EM environments discussed in this paper (relating to a visual pun, bubblesort, Sudoku and group 
theory) have all been developed using variants of the principal EM tool: the EDEN interpreter (see the Software 
link on the EM website [15]). All four can be accessed using the web-enabled variant of EDEN that has been 
developed by Myers [16]. By exercising these Web Eden models, interested readers can trace the interactions 
discussed in this paper themselves. This is helpful, if not essential, in gaining a good understanding. 

2. EMPIRICAL MODELLING PRINCIPLES AND TOOLS 
Empirical Modelling (EM) is an approach to computing based on principles and tools that have some key 
qualities in common with spreadsheets (see [15,17] for more background). The primary concepts in EM are 
observables, dependencies and agents. An observable more closely resembles the quantity associated with a 
spreadsheet cell than a traditional program variable, in that it refers to some significant quantity that is 
meaningful in the external context. (For instance, a cell may relate to the mark achieved by a particular student 
on a specific exam, or to the average mark attained by all students on an exam etc.) The definitions that relate 
the cells of a spreadsheet express dependencies between the values of observables such that a change to the 
value of one observable effects changes to the values of other observables according to some formulaic 
recipe (such as is used to compute the average mark for an exam). The ways in which the cells of a 
spreadsheet are liable to be updated are linked to the kinds of agent that are privileged to redefine the values 
or defining formulae of cells. (For instance, each mark associated with a specific exam is assigned by the 
examiner, whilst the way in which the overall mark for a module is computed from components of assessment 
may be subject to modification by the examination board to take account of special circumstances.)  

EM has been under development in Computer Science at the University of Warwick for many years. Over that 
period, it has been the topic for a distinctive contribution to the curriculum at the undergraduate/postgraduate 
interface. Its potential as an educational technology has been the theme of many papers (see e.g. 
[18,19,20,21]) and of two doctoral theses [22,23]. Much understanding has stemmed from making links 
between EM and mainstream computer science – see e.g. [21,24,25]. EM principles and tools have also been 
employed to support teaching of traditional computer science. Relevant resources, all of which are available for 
download from the EM archive at [26], include models of the modes of the visual editor "vi" 
(vimodesBeynon2006 at [26]), of the properties of projection mappings in computer graphics 
(graphicspresHarfield2007 at [26]), of the display and mechanisms of a digital watch (digitalwatchFischer1999 
at [26]), of the heapsorting algorithm and an associated weakest precondition specification 
(heapsortextendRun-bol2001 at [26]), and of the evaluation of SQL queries in a relational algebra framework 
(sqleddiWard2003 at [26]). Some of these exploit the EM presentation environment (empeHarfield2007 at [26]) 
in which all aspects of the model and presentation are expressed by dependencies maintained by EDEN (cf. 
Figure 1).  

A full elaboration of the ideas and concepts of EM is beyond the scope of this paper; a brief discussion is 
sufficient for the present purpose. In EM, an observable is an identifiable entity to which a status or value can 
be associated in a particular context. In the first instance, the concept refers to elements that contribute to the 
modeller's direct experience of the current situation. By extension, an observable might relate to the role of a 
human agent other than the modeller, such as the teacher or learner in the context of an educational model. 
An observable might also describe some aspect of a situation which a non-human agent could register and 
respond to immediately, but which a human agent might not be able to access or react to in the same way. 
Observables relate to what can be deemed to directly influence the behaviour of state-changing agents.  

The objective in framing observables and agents is to express plausible expectations and explanations for the 
way in which a situation changes, either as a result of intervention on the part of the modeller or autonomously. 
This we call 'making a construal'. An observable corresponds to "what can potentially undergo change", and an 
agent is "what is deemed to be responsible for change". A dependency then expresses the way in which 
changes to observables are deemed to be linked – if a change to an observable x directly effects changes to 
other observables in some predictable way, these observables are said to depend on x. The pragmatic nature 
of the characterisation of observables, agents and dependencies reflects the many different construals we can 
make of one and the same situation. 
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The model cabinetdigitpresBeynon2007 (available at [26]) introduces a simple example of an EM construal. 
Screenshots from the model are presented in Figures 1a and 1b. To the left-hand side of these screenshots 
there is an Interactive Display that shows the current status of some of the key observables in the model and 
an Input Box through which new definitions of observables can be introduced. 

 

 

Figure 1a: A screenshot depicting an open filing cabinet in plan, together with its associated script 

 

 

Figure 1b: A screenshot depicting an LED displaying the digit 8, together with its associated script 
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The two identical line drawings that feature in the Interactive Display constitute a visual pun. The set of 
definitions, or script, that defines one of these drawings is displayed in the panel to the right hand side of 
Figure 1a. This drawing can be construed as the floorplan of a filing cabinet that is currently fully open. The 

dependencies in the script are such that if the observable open is redefined to a value between 0 and 1, the 
associated line drawing is reconfigured so as to represent a filing cabinet that is open to a degree between 0 
(closed) and 1 (fully open). Such a redefinition can be made by entering a new definition for the observable 

open via the Input Box. 

The script that defines the second line drawing is depicted in Figure 1b. In this case, the line drawing is to be 
interpreted as a digit from an LED display – currently as the digit „8‟. Redefining the value of the observable 

digit to a value between 0 and 9 transforms the corresponding line drawing so that it displays that digit. 

Conceptually, an EM construal is to be thought of as an interactive environment rather than a program. At any 
point in interacting with the construal, there is an associated current family of definitions similar in character to 
those that link the cells of a spreadsheet. Though these definitions specify a dynamic updating activity 
(“dependency maintenance”) that is carried out automatically by the EDEN tool, this is invisible to the human 
interpreter. The definitions are rather to be regarded as “defining the current state”. In interaction with the 
construal, the modeller (or a human agent in some other role) explores her construal through redefining the 
current state in a thoughtful manner. The trajectory for this exploration need be in no way preconceived or 
fixed. A useful analogy may be made with taking a walk, where we are not obliged to place our feet in specific 
places, are at liberty to make digressions or retrace our steps, and may or may not be led by reference to a 
guide, a guidebook, or our previous memories. 

The character of the knowledge that is associated with interaction with a construal is quite distinctive. 
Interaction with the construal serves as a means to disclose and challenge understanding. As a simple 

illustration, as depicted in Figure 2, redefining the observables open and digit disambiguates the identical line 
drawings displayed in Figure 1. 

 

Figure 2: Disambiguating the two identical line drawings through redefining key observables 

In general, EM construals have to be interpreted in conjunction with patterns of interaction and interpretation 
that have been rehearsed and become familiar. The meanings of the observables are expressed only in this 
way, and remain at all times fluid and negotiable. Closer examination of the dependencies that define the filing 
cabinet drawer in Figure 1a reveal that the lines that define the drawer do not in fact behave like a real drawer 
– as the drawer is closed its projection on to the floorplan is squashed flat to the cabinet. Though this suits the 

purpose of the visual pun, it is unsatisfactory when we attempt to “pull the drawer right out” by setting open to 
a value greater than 1, since this simply “stretches the drawer”. One natural way to adapt the model through 
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redefinition is to reconfigure the dependencies that connect the lines that describe the drawer to the 

observable open so as to address this problem. 

The way in which an EM construal „represents‟ its real-world referent is quite different from a formal 
representation. How changes to observables are linked in interactions (like “opening the drawer”) that are 
perceived as atomic is crucial to the interpretation of the cabinet and the digit. A whole variety of atomic 
interactions are afforded by the families of observables and dependencies associated with the cabinet and the 
digit. They form an open-ended family of possible redefinitions some of which are evidently meaningful, some 
of which are interpretable with a little imagination about the possible context, and others (the overwhelming 
majority) that appear meaningless. Instances of redefinitions might be: making the width of the cabinet or the 
LED very small, or making two vertices of the cabinet plan or LED coincident. The negotiation of meaning in 
this context is in tune with a constructivist epistemology as characterised by Ben-Ari in [1]. It is also oriented 
towards an engineering perspective rather than a classical computer science perspective on the problems of 
system development. The relevance of this for education is endorsed by Ferguson‟s observation in [27], p168: 

―The real problem of engineering education is the implicit acceptance of the notion that high-status analytical 
courses are superior to those that encourage the student to develop an intuitive 'feel' for the incalculable 
complexity of engineering practice in the real world.‖ 

The plethora of atomic interactions afforded by the scripts in Figure 1 and the extent to which each of these is 
interpretable reflects the "incalculable complexity" of the referents associated with these geometric figures. 

In the elaboration of an EM construal, a significant feature is the neutrality in the kinds of agency and 
interpretation that is being invoked at all times. There need be no specific user or purpose in mind and the 
modeler can freely elide from one role – such as ―demonstrating the visual pun‖ in Figure 1, to another – such 
as ―making the drawer more realistic‖. In a similar spirit, in the modeller's mind, the LED and the cabinet can 
be seen as disjoint or as conjoined, just as in everyday experience I may apprehend two distinct objects in one 
scene either separately or together. In the context of Figure 1, such a connection between the digit and the 
cabinet drawings can be made by introducing a dependency that opens the drawer to a degree that is 
determined by a digit between 0 and 9 for instance. It is also possible to invoke automatic agency to enable 

specific kinds of redefinition (e.g. to add a slider to set the value of open) or to animate specific patterns of 

redefinition (e.g. progressively opening the drawer by incrementing digit from 0 to 9). In this fashion, more 
constrained and program-like behaviours can be enacted within the model, though the essential openness to 
intervention and redirection through interaction in any intermediate state remains.  

The neutrality of the agency in a construal means that EM principles are particularly well-oriented towards 
teaching and learning in a constructivist idiom [18,19,21,22]. In the constructivist ideal, learning, teaching and 
development have to blend in a manner that is ill-supported by traditional programming. By exploiting 
construals, the roles of a developer, a teacher and a learner can all be identified with different patterns of 
interaction and interpretation, each of which involves different varieties of redefinition associated with one and 
the same model of state. Subject to making the process of redefinition more accessible to the computing non-
specialist, it is possible to imagine that an EDEN-like tool, especially if web-enabled, will support a rich process 
of distributed development, whereby teachers and pupils elaborate their own extensions to learning 
environments and make these available to others. The potential for integrating Web Eden with established 
learning environments, such as Moodle, has already been demonstrated by Harfield [20]. 

3. TEACHING BUBBLESORT 
Bubblesort is an example of the kind of elementary algorithm that can be used to introduce basic procedural 
thinking. The application of the principles and tools of Empirical Modelling (EM) to CSE is introduced here by 
showing how they can be used to construct a model to support teaching bubblesort (see Figure 3 and [16]). 

The key concepts in EM are observables, dependencies and agents. Making the Bubblesort model involves 
identifying how these concepts relate to teaching bubblesort, and – through an incremental process - 
embodying these concepts in the model. The radical difference in emphasis between making such a model 
and writing a conventional computer program is that the focus is placed on what the learner has to experience 
in order to understand the principles of bubblesort as they might be taught using old-fashioned teaching 
techniques, such as using chalk on a blackboard. In the first instance, the Bubblesort model aims to produce a 
teaching and learning experience similar in character to blackboard use, but one that exploits the power of the 
computer to enable change and maintain relationships in ways that could not be directly supported without 
such a technology.  

The discussion in Section 2 sets the scene for model-building in EM. Whereas programming is of its essence 
concerned with implementing a process (as e.g. in a computer animation of bubblesort), EM is primarily 
concerned with building an interactive artefact (cf. the array that is drawn on the blackboard) whose current 
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state at any time reflects that of a current situation (cf. the specific set of values presently in the array) and 
context (for instance, whether or not a bubblesort is currently in progress). The reference here to 'current state' 
is an acknowledgement that the artefact, like the drawing on the blackboard, is to be interpreted by taking into 
account interactions with it in which human thought processes and supplementary communication play an 
indispensable role. This highlights a fundamental difficulty – no matter what technology is available – in 
conveying a sophisticated computer science concept, such as a procedure, a computational step or an 
optimisation; what is there to be experienced by the learner at any moment, as in a snapshot of current state, 
is a mere hint at what is in the teacher's imagination. It is in order to convey the richer picture that the teacher 
interacts with the artefact on the blackboard, modifying it so as to draw attention to the range and significance 
of possible contexts and issues this interaction can conjure in the learner's imagination. EM aspires to support 
a similar kind of open-ended interactive and interpretative activity.  

 

Figure 3: An EM construal for bubblesort presented using the EM presentation environment 

Note that the primary emphasis in this approach to teaching an algorithm is necessarily on illustration by a 
specific example, though of course the teacher may make exploratory adaptations in an open-ended 
interactive way. A teacher might draw an array on the board for instance, and modify and annotate it in 
conjunction with asking certain questions about it: "Let's suppose that we are sorting the array of numbers 
<3,2,23,4,64,1,18>"; "Focus your attention on the biggest element in the array"; "What would happen if two 
numbers were identical?"; "What pass in the bubblesort process is currently in progress?"; "What is the next 
step in the bubblesort?"; "What would happen if the array was already sorted?"; "Would the process work if 
one of the numbers in the array was changed in the middle of the sorting process?" etc. Though these 
questions may seem rather concrete and elementary in nature, they involve quite sophisticated implicit 
assumptions about the context in which a question is being asked that are not normally given explicit support 
in a computer-based learning environment. For instance, some relate to the properties of the specific array as 
a static object prior to any sort being in progress, others to the condition of the partially sorted array when a 
bubblesort is in progress, others to the relationship between the bubblesort process and possible instances of 
arrays to which it might be applied. Note also that some informative questions might not strictly speaking relate 
to bubblesort at all – for instance, the possibility that array elements might be changed during the sorting 
process is not admitted in the formal problem specification.  

Superficially, a computer animation has advantages over the chalk-and-blackboard approach where 
distinguishing between different contexts of interpretation are concerned. The computer can display the static 
array to be sorted, and display the sequence of states through which the array passes in bubblesorting. From 
the learner's perspective, it is important to note that – whichever approach is being used and whatever the 
context for the observation – what is visible at any particular moment is merely an array of numbers in a 
particular state. And whilst the computer animation may make provision for 'contemplating the current array as 
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a static object' and 'contemplating the current state of the array whilst bubblesort is in progress', these two 
possible contexts for observation of an array are much less nuanced than the contexts to which the teacher 
can draw attention at the blackboard. The important distinction being made here is between merely enabling 
the learner to see the effects of the sorting process in operation and helping the learner to imagine the 
mechanisms by which this process is guided (cf. [28]). It is learning of the latter kind that is promoted by the 
focus on identifying observables, dependencies and agents in EM.  

Identifying the observables involved is the first step in building a model to assist in teaching bubblesort. In 
teaching bubblesort using a blackboard, the learner's attention is drawn to the physical representation of an 
array on the board, and to the values placed in this array. Because of the elementary nature of the sorting 
process, the only kind of comparison and exchange to be considered is that of elements that are adjacent in 
the array. When the basic steps of comparing and exchanging consecutive array entries have been 
introduced, attention can be given to the way in which these steps are combined in a systematic way in the 
sorting process. It is natural for a teacher to first demonstrate this by hand-tracing the sorting process and 
highlighting the way in which it can be described with reference to several passes in which each pair of 
adjacent entries not yet output from the sort is considered in turn. In the context of such a trace, the index of 
the current pass is a meaningful observable.  

The most appropriate choice of construal in general depends on the teaching context. For instance, the 
description of the sorting problem in terms of the observables identified in the above discussion is only 
appropriate if the learner is able to interpret the entries in the array and immediately assess which of two 
entries is the bigger. If this level of familiarity cannot be assumed, the analysis of observation required would 
be yet more detailed. It might take account for instance of how individual digits were being observed and 
interpreted in order to compare array entries. Modelling this component of understanding might itself be the 
subject of another similar study.  

In a blackboard based exposition of bubblesort, a teacher may well wish to perform actions outside the scope 
of the formal algorithm. They might change a value in the array in the middle of the sorting process, for 
instance, to demonstrate some feature of the sort. Such on-the-fly reinterpretations of context underline the 
richness of the construals that come into play in teaching an algorithm, but are not well-matched to the 
interpretation that surrounds a typical computer implementation. 

4. RELATING THE FORMAL AND PRAGMATIC PERSPECTIVES 
The distinction between the tightly prescribed formal computer algorithm and the teacher's open-ended 
informal construals illustrates the relationship between formal and pragmatic perspectives on computing in 
microcosm. The invariants that guarantee the correctness of the algorithm cannot apply whilst the teacher is 
liable to intervene in the quasi-computational process in an arbitrary way. It is also significant that the 
interventions that subvert the orthodox sorting process are those that have particular educational value, as 
they alert the learner to important assumptions that are tacit in routine executions. For instance, as further 
discussed below, it is helpful to highlight the extent to which the bubblesort algorithm can cope with on-the-fly 
changes to the values being sorted, as this gives insight into the character of the invariants.  

The EM construal of bubblesort is a vehicle for practical exploration of the way in which conflicts between 
logical constraints on state change and open-ended agency can be resolved. As illustrated in section 2, the 
modeller at all times has the power to change the state of the construal in ways that defy prediction and 
expectation, so that anything that may be asserted by way of a predicate governing the relationships between 
observables is liable to be falsified. Certain observables, such as the current pass in the bubblesorting 
process, are meaningful only provided that the state-changes to which the model is subject are constrained. 
Logical concepts, such as "invariants of bubblesort", are subject to similar considerations. The term 
'constrained' may here relate to discretion on the part of human agents ("the modeller chooses not to redefine 
values in the array"), limitations on action imposed by the interface ("no scope for inappropriate redefinition is 
afforded by the interface to a human agent acting in a specific role"), or automated agency that respects the 
integrity of the model ("the appropriate sequence of comparisons and exchanges is programmed to occur").  

By way of illustration, it may be asserted of a bubblesort of n elements that, in the k-th pass (where 1 ≤ k ≤ n) 
the elements with indices between n-k+1 and n are in sorted order, and, for k ≥ 2, the element with index n-k+2 
is greater or equal to every element with index between 1 and n-k+1. Such an invariant can be treated as a 
form of observable. For this purpose, a boolean observable whose value is defined by the appropriate 
predicate can be introduced to the model. The current value of this observable depends on the current pass of 
bubblesort and on the current values of the entries in the array. The value of this observable will always be true 
when interaction with the bubblesort model respects the steps of the bubblesort algorithm. Viewed in this way, 
the observable is an entity whose value is constant subject to exercising discretion in interacting with the 
bubblesort model and interpreting this interaction.  
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From a teaching and learning perspective, it is the nature of the constraints that an invariant places upon the 
sorting process that give most insight into its meaning. Though in fact the invariant is never violated in 
following the bubblesorting procedure faithfully, the teacher may well find it appropriate to draw attention to 
circumstances in which the invariant might be violated, as this obliges the learner to study the invariant more 
carefully and highlights characteristics of bubblesort. For instance, it is apparent from the invariant that 
permuting the values of array elements that have yet to be output (i.e. whose index is in the range 1 to n-k+1, 
where k is the current pass) and that have yet to be processed in the current pass (i.e. that have yet to be 
compared with another element during the current pass), will not subvert the sorting process. More generally, 
modifying these values in any way that renders them no bigger than the element with index n-k+2 can be 
accommodated. The fact that normally an additional invariant is imposed upon bubblesort to ensure that the 
set of values being sorted does not change in the course of the sort does not detract from the educational 
value of contemplating this type of experimental intervention in the normal sorting procedure.  

A natural extension of this kind of activity concerns sorting a set of keys that are subject to change through the 
dynamic intervention of agents. As a simple example, it might be that bubblesorting is being conducted in a 
context where the value of each key is being incremented at each tick of a clock. Because the invariant 
discussed above refers only to the relative size of keys, it is apparent that this does not subvert the sorting 
process. If on the other hand some limits are placed on the size of keys, so that the keys are indices modulo a 
specific integer for instance, then the process of incrementing keys from time to time leads to the value of a 
key jumping from being the largest to the smallest. Depending upon precisely at what stage this jump in value 
occurs, and which keys it affects, this may or may not lead to violation of the invariant. It is clear that reference 
to the invariant then provides the information required to restore the bubblesorting process to a consistent 
point, though this may involve revisiting an earlier pass.  

The EM model of bubblesort is an appropriate experimental testbed on which to explore such variants of 
bubblesort (see [16] for a Web EDEN implementation). In considering the possible behaviours that arise when 
considering how keys may be affected by agents acting in parallel, possibly in ways more random than those 
proposed above, it becomes clear that – useful as invariants may be as auxiliary observables in guiding 
recovery procedures – engineering issues become quite as prominent as abstract logical concerns. It would be 
impossible to make a comprehensive analysis of possible quasi-bubblesort behaviours under different 
circumstances without considering both the speed and frequency with which agent interventions were prone to 
occur and the speed with which the steps of the sorting process itself might be executed. If a variant of 
bubblesort were being used to maintain the order of a set of keys that was subject to very rapid updates (e.g. 
as a result of real-time update of sensory data), there would be intervals of time during which the invariant was 
invalid and the keys were unsorted, and just how far this would subvert the sorting process could not be 
predicted without both experimental and analytical study of how the steps in the updating and sorting 
processes were synchronised. And whilst some computer scientists may wish that the study of such real-time 
concerns might be guided by a more theoretical ("computer science") and less pragmatic ("engineering") 
approach (see for instance [29] p.16), it seems implausible that any general theory can be invoked unless 
specific and artificial constraints upon the nature of the agency involved are presumed. 

5. FROM CALCULATION TO DISPOSITION 
The core focus of computer science on calculation and computational processes is a natural legacy of history. 
It promotes a valuable emphasis on formalising activities to the point where they can be automated. But it is 
also essential to give a proper complementary account of the exploratory human activities that precede and 
potentially defy automation. To neglect these is to endorse a false impression of the relationship between 
reasoning and sense-making. EM redresses the balance between automation and exploration by developing 
principles and tools that can support sense-making. This is relevant not only prior to rationalisation and 
automation but also in comprehending and assimilating the results of computation.  

The spreadsheet and the statechart exemplify the kind of support that the computer can offer in sense-making, 
especially where artefacts of this nature are being developed and used in a dynamic interactive fashion. Such 
uses are documented for instance in Baker and Sugden's review of applications of spreadsheets in education 
[30], Nardi's discussions of the use of spreadsheets in software development [31], and Horrocks's account of 
the benefits of using statecharts in maintaining interfaces [32]. 

The role that computer artefacts such as spreadsheets and statecharts play in mediating understanding and 
communication owes at least as much to the way in which they impact on human cognition as to their abstract 
mathematical content. It is how the results of calculations and computationally significant relationships are 
disposed and mediated to the human interpreter that gives these artefacts special power to support human 
processes. Paying primary attention to disposition rather than to conceiving procedures to meet specific goals 
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is characteristic of a culturally quite distinct tradition of thought such as is represented in the ancient Chinese 
notion of shi [33].  

EM is particularly well-suited to giving computer support for exploring dispositions [34]. Embodying patterns of 
observables and dependencies in artefacts and subjecting these to open-ended interaction and interpretation 
reflecting many different kinds of agency is a means to comprehending a domain. As has been illustrated in 
previous sections, EM can generate construals that can then be applied in many different ways in support of 
both manual and computational processes.  

The above discussion has relevance for teaching basic mathematics for computer science. In introductory 
mathematical modules to support core theoretical topics such as formal specification and verification, 
automata theory and abstract data structures and algorithms, it is tempting to emphasise the formal aspects of 
mathematics that are best matched to automatic calculation and inference. For instance, it is easy to give 
disproportionate emphasis to the automatable procedures that have been developed in classical mathematics, 
and to mathematical structures as exemplifying logical theories based on axioms and inference.  

To exaggerate the role of mechanical deduction is of course to misrepresent the nature of mathematics as it is 
practised [35]. Computer science students are often alienated by a vision of mathematics of the kind that might 
appeal to a robot rather than a person. Without appreciating the roots of mathematics in human experience of 
problem-solving across a wide spectrum of applications, they cannot fully appreciate the benefits and power of 
mathematical abstraction.  

Mathematics does indeed highlight many instances of problems that can be addressed through introducing 
powerful abstractions and techniques. In this respect, it provides inspiration for the application of formal 
methods to the task of developing complex software systems. But formalised mathematics did not precede the 
informal exploration of structures and procedures, often carried out in response to "ambiguity, contradiction 
and paradox", that Byers [35] identifies as a vital component of the discipline. It is explorations of this nature 
that led mathematicians to formulate abstract logical systems of axioms and inference [35]. Similar kinds of 
activities are associated with what Brooks [6] characterises as establishing "conceptual integrity" in software 
development. And though many mathematical problem contexts and problem-solving procedures have been 
rationalised to the point where axiomatisation and inference can be invoked, they do not in general address the 
problems that the software engineer faces in conceiving a complex new application. 

6. CASE STUDIES IN CONSTRUING MATHEMATICS 
Two case studies serve to illustrate how EM construals can engage with the creative and intuitive aspects of 
the mathematical agenda. The first is represented by a series of workshops, originally developed for gifted and 
talented school pupils with an interest in computing, devoted to construals that support the human solver of 
Sudoku puzzles (see [16]). The second is an environment, developed in conjunction with teaching a second 
year module on formal specification and verification, that shows how the tools of formal methods can be used 
to generate mathematical structures and how an experienced mathematician might interpret the results 
informally.  

The informal nature of mathematical investigation as it is pursued in practice is in some respects better 
represented in recreational puzzle solving than in the standard mathematical exercises associated with a 
lecture course. As Andrew Hodges has said of Sudoku: 'Sudoku may not require long multiplication or division, 
but it is a very good puzzle that replicates the pattern of thinking required to solve quite complex logical 
problems in maths' [36]. The human interest in puzzles derives from the way in which they typically elude 
comprehensive systematisation, and engage the solver in thinking that does not follow routine paths. The 
emphasis is on the enjoyment derived from the moment-by-moment experience of organising information and 
understanding relationships, and the pleasure of meeting new challenges en route to finding a solution. The 
satisfaction that specific puzzles, or puzzles of a particular genre, give to the human solver tends to diminish 
as and when they are able to find mechanical approaches to their solution.  

Human solving of Sudoku puzzles illustrates many of the key issues. Writing a computer program to solve a 
Sudoku puzzle (e.g. by exhaustive search) is a straightforward exercise. Such a program will not normally 
throw much light on the patterns of reasoning that the human solver must employ. In making an EM construal 
of the solving process, the focus is on tracing the solver's state of mind as they progress towards a solution 
rather than automating a mechanical process. This involves explicitly recording the solver's observation of the 
puzzle and maintaining those dependency relations that can realistically be apprehended at each step.  

The notion of dependency in EM is illuminated by the way that it is applied in this context. There are several 
different senses in which the digit in a cell can be deemed to depend on the digits assigned to other cells. 
Provided that a Sudoku puzzle is well-posed, the digit that should occupy any given square is in fact 
determined from the outset of the solving process. But in considering Sudoku puzzle solution from a human 
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perspective, there is a crucial distinction between those assignments of digits that the solver can see "at once" 
to be consequences of elementary inferences, and those that become apparent only after many further steps 
of reasoning have been carried out. 

The EM construal for Sudoku solving (see Figure 4) is similar in nature to the construal of bubblesort. It 
comprises routine observables to record the location of grid cells, the contents of all cells, whether the content 
is given in the puzzle or to be inferred etc, together with more sophisticated observables such as are 
associated with applying simple rules. The set of plausible digits that could presently be entered into a cell 
taking into account existing entries in the same row, column or region is one such observable. 

 

Figure 4: A screenshot from the EM model to support semi-automated Sudoku solving 

Whereas it is relatively easy to identify the interactions and observables that are most relevant in the case of 
bubblesort, there is more freedom to consider new modes of interaction and observation in solving a Sudoku 
puzzle. This is because there is no universal set of standard rules to be followed in arriving at a solution, and 
human skill and speed of perception have a significant role to play. The incremental and open-ended way in 
which an EM construal is developed is well-suited to the solving activity in this respect. For instance, it is 
natural to extend the construal to allow the solver to record the fact that a digit that might plausibly be placed in 
a particular cell by the naive criterion described above is in fact ruled out by some other consideration. (Such a 
situation is illustrated in Figure 4, where the naive criterion indicates that 1, 4, 5 and 7 are plausible for the 
selected cell, but the choice of 4 is excluded by observing that this precludes placing a 4 in the region 
immediately above.) 

Finding a Sudoku puzzle solution can not only be viewed of itself as a matter of disposition (viz. placing digits 
in the appropriate cells), but is influenced by disposition of a higher-level nature concerning the way in which 
the information garnered from observation and inference is organised and mediated to the solver. A relevant 
question in this context is how far automatic support for the human solver can simplify the solver's task without 
detracting from the pleasure of the solving process. The variant of the EM construal depicted in Figure 4 is a 
"Colour Sudoku" extension of a simpler construal in which all cells had a white background. In this variant, 
distinct colours are associated with the digits 1 to 9, and the background colour of a cell is a blend of the 
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colours of those digits that could plausibly be placed in it. This extension of the basic construal enables the 
solver to identify cells for which there is only one plausible digit by direct inspection and colour-matching.  

The support that EM gives to a more holistic view of mathematics can be illustrated by considering an 
environment developed in association with a second-year module devoted to formal specification [34]. This 
environment is intended to illustrate how the automatic generation of a mathematical object from an axiomatic 
specification differs from, but can connected with, the ways in which mathematicians typically approach 
construction.  

For the purpose of this illustration, groups with eight elements form a suitable source of examples. There are 
five such essentially different groups, all of which can be generated automatically from an axiomatic 
specification using a tool such as the Alloy Analyzer [37]. The five groups comprise three commutative groups, 
in which the product of a pair of elements is independent of their order (C8, C2×C4 and C2×C2×C2), and two 
non-commutative groups (the dihedral group D8 and the quaternions Q8). They illustrate a range of different 
ways in which groups can be manifest in concrete terms. For instance, they can be respectively identified with: 
addition modulo 8; multiplication of co-prime residues modulo 15; addition of subsets of {1,2,3} defined by 
symmetric difference; transformations that respect the symmetry of a square tile; and by the quaternions (a 
generalisation and extension of complex numbers that can be linked to transformations of objects in three 
dimensional space). The structure of these five groups is sufficiently rich to enable concepts such as 
subgroups, quotient groups and normal subgroups to be illustrated. 

The students for whom the group display environment was developed had been introduced to basic group 
theory in a previous module. In such an introduction, aimed at computer science students, it is natural to 
emphasise those aspects of the mathematical theory that link most directly to the abstract foundations of 
computing. The use of Alloy to enumerate instances of groups with 8 elements by making inferences from the 
group axioms illuminates this formal stance. The limitations of such inference need to be appreciated, 
however, and a deeper appreciation of group theory has to come from a more informal intuitive engagement 
with specific examples and applications. Relevant activities might include: studying groups in the concrete 
forms in which they arise in number theory, geometry and linear algebra; analysing the structure of a group 
from its multiplication table; or displaying it as a finite automaton (as a group graph [38] or "Cayley diagram"). 
Students who do not play with concrete examples of groups of this nature typically fail to see the point of 
studying mathematical theory. They also fail to appreciate the essential character of theory, which is typically 
rooted in experimental and intuitive studies of concrete structures that precede axiomatisation.  

Technological support for the intuitive exploration of groups presents quite a different challenge from 
computing support for automated formal analysis. It is necessary to enable a high level of exploration and 
experiment where the learner has greater autonomy and scope for making connections. The computer has 
historically served in the role of calculator, presenting the results to the user for off-line interpretation (albeit 
possibly now in visually much more impressive and informative ways than ever before), but it is the process of 
interpretation itself that now demands a dynamic blend of computer automated and manual human-directed 
interaction.  

To fully enable this new kind of learning application, it is necessary to ensure that models of the learning 
domain, and artefacts to represent and manipulate conceptual objects within it, can be constructed by teachers 
and learners, not merely by specialist developers. This is an aspiration for EM; it is not yet realised in practice, 
but many fundamental elements are in place. A key unifying idea is that all interactions, whether they originate 
from the developer, the teacher or the pupil, are expressed as redefinitions of observables that correspond 
closely to meaningful observables in the learning domain. This is in contrast to the different ways in which the 
developer, the teacher and the pupil interact with conventional learning artefacts. Some of the qualities and 
potential can be illustrated by describing the development of the group display environment to date (see [16]).  

The first step in constructing the group display environment had a serendipitous aspect. The Sudoku solving 
construal discussed previously supplied a 9-by-9 grid that was well suited to the presentation of an 8-by-8 
group table, subject only to redefining the digits in cells and omitting superfluous observables that were 
relevant only to Sudoku solution. The association of a colour with each decimal digit was a feature of our 
Sudoku model that was retained, and subsequently simplified. Colour serves a useful function in concretising 
the abstract group elements. Though the concept of re-using and adapting a model in this way is within the 
scope of what a developer using object-oriented principles might consider, the nature of the underlying script 
that defines the EM construal of Sudoku here offers scope for a teacher to exploit re-use. Indeed, the Sudoku 
model can in principle be adapted on-the-fly by redefining the values of the appropriate observables 
appropriately. Conceptually, the dependencies to be discarded and introduced in this manner are easily 
grasped from knowledge of the intended application, and require only a modest amount of technical expertise.   

The entry of an 8-by-8 group table into the Sudoku grid can be effected manually, but in order for the 
environment to serve its illustrative role, it was necessary to write a Unix shell script to translate the outputs of 

84



 

 

ITALICS Volume 8 Issue 2 June 2009 

ISSN: 1473-7507 

the Alloy analyzer so that they could be presented in the group table. It was soon apparent that it was not 
straightforward to discriminate between one abstract group and another simply by inspecting the raw group 
table. It is possible to distinguish commutative from non-commutative groups by seeing whether the table is 
symmetric about the top-left bottom-right diagonal, but further analysis involves identifying the number of 
elements of a particular order. For instance, the group is the cyclic group C8 if it has an element of order 8, 
and is C2×C2×C2 if all its non-identity elements have order 2.  

With a little experience and knowledge, this mechanical process of checking can lead to a reasonably speedy 
process of formal identification of instances of the five groups. It is not well-matched to the comprehension of 
group structure as a mathematician experiences it, however. For instance, a mathematician asked to construct 
the group table of C8 would develop a table in which row was a cyclic shift by one cell of the previous row. She 
might also identify the elements as 0,1,2,3,4,5,6,7 to reflect the addition of residues modulo 8. The EM 
interactive environment allows this process of re-organising the table and renaming its elements to be carried 
out with computer support by entering a small set of redefinitions (cf. the 5 definitions that are specified in the 
Input Window in Figure 5(a)) that can be recorded and replayed. Suitable reorderings and renamings that can 
be applied to the other four groups of size 8 are likewise specified and illustrated in the environment. 

Further manipulation of the visual representations illuminates other basic concepts of group theory. To enable 
this, the original association of colours with digits in cells, as inherited from the Sudoku model, was overwritten 
by a simpler more explicit assignment of colours to digits, so that definitions to set the colour of one digit to that 
of another could be conveniently introduced. In this way, subgroups, quotient groups and normal subgroups 
can be identified with particular visual patterns that can arise through colouring and ordering group elements. 
For instance, displays (a) and (b) in Figure 5, derived from the original group table for D8 by making simple 
redefinitions of the element ordering, naming and colouring, expose {1,f} and {1,r,r2,r3} as subgroups, and 
reveal the latter as a normal subgroup for which the associated quotient is C2. 

The openness of the modelling environment also allows additional components to be added by introducing a 
small file of definitions. For instance, Figure 5(c) depicts an extension whereby the learner can make the 
correspondence between elements of D8 and transformations of a square tile. The tile on the left depicts the 
original state of the tile, and that on the right its state when the transformation associated with the currently 
selected group element (as highlighted in Figure 5(b)) is applied. 

 

Figure 5: Displaying (a) a subgroup of D8 and the associated redefinitions of colours, (b) a normal subgroup of 

D8 and (c) the element f when interpreted as a transformation of a square 
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7. CONCLUDING DISCUSSION 
When introducing a novel approach to computer science education, it is appropriate to evaluate and report the 
results. Despite the considerable body of work that has been outlined in this paper, objective evaluation of its 
impact has proved problematic. In the first instance, as the introductory orientation in section 1 makes clear, 
there are radical differences between constructivist computer science education as it is understood by Ben-Ari 
in [1] and as it has here been portrayed from an EM perspective. It would indeed be fair to say that the 
development of EM has been quite as much – if not more – concerned with challenging the accepted notion of 
computer science as with making learning artefacts to support mainstream computer science teaching. As 
documented by Antony Harfield in his doctoral thesis (see [23], p190-192), this difference in perspective 
between EM and computer science is appreciated by MEngCS students who are exposed to EM in a fourth 
year module. It is sufficiently great for it to be hard to understand the relationship between EM concepts and 
those of traditional computer science. 

The experience of former doctoral students from the EM group is symptomatic of these difficulties. Yun Pui 
Yung was one of the first students to obtain a doctorate from the EM research group [39] and was a major 
contributor both to the thinking behind EM and to the development of the EDEN interpreter. In a personal 
communication in January 2009 [40], he writes: 

“Occasionally I do think back and try to see how my experience in Warwick contributed to my current 
programming practice.  One of the things that has been helpful is the concept of indivisible state transition.  Of 
course I am not writing EDEN scripts at my work (I am mostly writing in JAVA and Perl), but I always do a 
mental check, if not writing a subroutine to do so, to make sure that the program state is consistent, and – 
when an exception condition occurs – that the state should also be resolved to a meaningful one.  It definitively 
[sic] helped to me to write codes that have fewer bugs.  I think this kind of "bridge" between "pure" EM and 
day-to-day programming practice may have mutual benefits. On the one hand, EM will gain more attention and 
on the other, practitioners can write better programs.” 

Some of the most significant issues in comparing and contrasting an EM approach to CSE with a more 
conventional approach to CSE are exposed by revisiting the recommendations that Ben-Ari makes regarding 
constructivist CSE in [1].  

The characteristic of EM that distinguishes it most forcefully from a more orthodox constructivist approach to 
CSE is its constructivist epistemological stance. For certain kinds of scientific mind, such a stance is anathema 
and seemingly gives licence to thinking that lacks the objectivity essential to many core computing 
applications. As Bruno Latour‟s account of "the promises of constructivism" [41] vividly explains, there are 
good reasons to be sceptical of many proposals for a constructivist epistemology, and the needs of a science 
are not well-served by the extreme zeal with which some commentators have proclaimed the social 
construction of knowledge. Whereas responses such as that by Winograd and Flores [42] to too “rationalistic” 
an approach to computing are based on shifting the focus from formal languages to language as it is informally 
and contingently interpreted in social and cultural contexts, EM argues for a philosophical stance that is rooted 
not in language but in the immediate experience of personal interaction with artefacts [43]. In this respect, it is 
well-aligned to the 'radical empiricism' of William James [44,45] and to the philosopher of science David 
Gooding's notion of 'construal' [46]. It is also potentially well-placed to support Latour's vision for a notion of 
construction that is acceptable to science and to sociology [19,41]. Whilst many computer science students 
have been able to make important contributions to EM research without engaging with these philosophical 
issues, they alienate some. 

Of course, the theoretical endorsement of distinguished thinkers counts for nothing without practical evidence 
that EM can generate viable models. Perhaps the most topical example of such a model is that developed by 
the author to teach relational database theory to undergraduates over the period 2001-3 (see [24]). As is well-
known, there are discrepancies between the model of relational query evaluation used by SQL and Codd‟s 
relational theory. By using EM principles, the author was able to develop an environment in which the 
interpretation of SQL queries in relational algebra could be realised either according to the appropriate strict 
mathematical conventions or taking those liberties with the semantics of sets and operations that are to be 
found in a standard SQL implementation. In realising this development, the scope for keeping in close touch 
with the current state of the environment and modifying its behaviour incrementally redefinition-by-redefinition 
proved to be highly significant. It might well have proved difficult to use a formal approach to specify the 
mathematically flawed evaluation model in SQL and at the same time enable the flexible switching between 
one evaluation strategy and another. 

Ben-Ari‟s analysis of constructivism in CSE [1] leads him to identify several important issues that impinge on 
teaching methods. Several of these have counterparts in the alternative constructivist framework of EM. 
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As remarked in the introduction, the emphasis that Ben-Ari places upon ensuring that the student has a viable  
model of the computer can be seen as related to the concern in EM for crafting the environment for interaction 
between agents prior to prescribing behaviours [13]. Such activity has been illustrated in the discussion of 
bubblesort. In this context, construals are playing the role of intuitive models of the (generalised) „computer‟. 
Whilst this seems to be in conflict with Ben-Ari‟s claim that such models are ”doomed to be non-viable”, it is 
important to bear in mind the significant distinction between „a crafted environment in which reliable patterns of 
interaction between agents suitable to support specific-purpose behaviours have been identified‟ and „a 
classical general-purpose computer equipped with a formal programming language‟. The former is more 
typical of the kind of contextualised, but not typically formalised, mechanism that is identified by the engineer.  
And if the idea of a „construal‟ to which EM appeals appears to lack credibility, its resemblance to the notion of 
construal introduced by Gooding in [46] should be borne in mind. Gooding after all invokes such a notion to 
explain how Faraday‟s experimental methods led him to develop the first electric motor. 

Other parallels can be drawn between the conclusions concerning constructivist CSE to which Ben-Ari is led in 
[1] and the principles of EM. For instance: 

 Ben-Ari discusses the need for icons to “undergo semiosis”, so that “the user can construct a mental 
model of the object being represented”. This brings to mind the manner in which the semantic relation 
between an EM construal and its referent is constructed (cf. the discussion of the filing cabinet model in 
section 2). A noteworthy difference in emphasis here is between signs that represent actions (such as 
„paste‟), and symbols that denote a complex entity (like a filing cabinet drawer). 

 Ben-Ari stresses the need not to start with abstraction. This principle is clearly observed in EM, where the 
experiential – if not necessarily concrete – nature of the observables is at all times crucial. EM is clearly 
consonant with Piaget‟s principle that “abstraction follows assimilation”. And whereas Ben-Ari criticises the 
premature introduction of object-like abstractions “to forget detail that you never knew or even imagined”, 
the association of observables through dependency in EM is experientially mediated. The flexibility for 
modifying the associations between observables that modelling with dependencies affords brings to mind 
the feature of objects to which Ben-Ari alludes, viz. the role that modifying, extending and defining objects 
plays in creating abstractions. The relationship between a dependency and a functional program also 
echoes his endorsement of “models that can be explained in relatively high-level, hardware-free terms”. 
Where a dependency cannot be formulated using the standard operators available in special-purpose 
notations in EDEN (cf. the notations whose use is illustrated in Figures 1, 2 and 3), there is provision in 
EDEN for specifying user-defined operators and such operators are to be interpreted as simple functional 
programs. They are, however, specified using a basic procedural programming notation. In this respect, 
current EM tools still rely at the most primitive level on knowledge of elementary constructs of conventional 
programming. 

 Ben-Ari identifies bricolage and minimalism as features of a constructivist stance that have severe 
limitations where large-scale development is concerned. The aspiration in EM is to maintain a model 
throughout its development within an environment in which the semantic relationships between 
observables in the model and the external counterparts to which they refer can be readily made accessible 
in immediate experience. Practical experience of EM shows that apprehension of semantic relationships of 
this nature can be sustained for models with a few thousand definitions even with such an imperfect tool 
as EDEN (cf. the Sudoku model depicted in Figure 4, which comprises some 5000 observables).  It is 
unsurprising that when we attempt to maintain a similar „experiential‟ grasp of the relationship between a 
procedural program of several thousand lines and its intended behaviour, we typically flounder. Indeed, 
bricolage and minimalism are essential characteristics of EM, and their expressive range within the EM 
paradigm is yet to be decisively determined. 

The research reported in this paper suggests that EM has promise as an alternative constructivist approach to 
computer science education. Wider adoption and support for tool and model development is essential – 
without this, it will be difficult to obtain sufficient objective evidence for the potential benefits we believe can be 
realised. A most encouraging characteristic of EM is the fact that the incremental construction of networks of 
dependencies is a process that can be recorded and re-enacted in precise detail. This feature has already 
been informally exploited in the reconstruction in 2007 by Harfield (see [23], p194-202) of a highly significant 
moment in a process of model-building carried out by an undergraduate student in November 2003. This 
highlights the scope for interesting and informative qualitative analysis through reconstruction of many kinds of 
activity that have been documented in the EM archive.  

To date, the sole EM publication devoted to evaluation [47] is directed at EM education rather than 
conventional CSE. This reflects our primary interest in the future development of computer science itself. EM 
aspires to principles and tools that meet the needs of computing practice effectively in respect of both its 
formal and experiential aspects, and that have enough philosophical integrity to be an acceptable broader 
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basis for computing science. The issues that stem from the assimilation of computing into engineering [9] 
business [48] and the humanities [49] clearly point to the need for a wider conceptual framework for the 
academic discipline. A proposal for a wider curriculum for computing such as EM endorses was set out in 
connection with a workshop on Thinking Through Computing held at Warwick in November 2007 [50]. 

Though computer science is still a young and immature discipline, its indirect influence on the way in which 
human processes are conceptualised has been strong. The process by which computer science research in 
UK universities is currently monitored itself reflects this influence. There is a danger that this process, whilst 
giving due reward to the progress that is being made in computer science through specification, automation 
and optimisation, promotes the ossification of the discipline around a rationalistic, dualistic and linguistic 
philosophical stance. The future health of computer science as an academic discipline depends upon also 
recognising the potential for a science of computing that has stronger roots in our lived experience. 
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