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Abstract 
The role that dependency can play in developing programs is a longstanding topic of interest. The idea 

that spreadsheet principles are the key to new more accessible ways of programming continues to be a 

focus for current research. This paper further elaborates an idea whose development has been 

documented in several previous PPIG meetings: that programming can be best understood by 

construing human and automated agency in observational terms. Its main focus is on illustrating and 

discussing a new concept: a with-construct that has been introduced in a recently developed 

environment for making such construals (the ‘MCE’). Preliminary work indicates that introducing this 

concept has a transformative impact both on the practice of making construals and its relationship to 

conventional  programming. 

1. Introduction 
This paper could be regarded as a sequel to a paper presented at the 6th PPIG meeting in 1994 [6]. 

The title of that paper, by Beynon and Joy, was "Computer Programming for Noughts-and-Crosses: 

New Frontiers". Its main purpose was to introduce an approach to agent-oriented modelling in which 

the interfaces that mediate the interaction of each agent are expressed as networks of dependencies 

between observables and to show how this might be applied to developing programs. By way of 

illustration, that paper explored how programs for playing noughts-and-crosses – and variants of 

noughts-and-crosses that were characterised as 'OXO-like games' – could be flexibly developed in this 

way. In keeping with the spirit of PPIG, the emphasis in the paper was on the way in which the 

networks of dependencies, as represented by sets of definitions (aka "definitive scripts"), could be 

interpreted in cognitive terms. A basic cognitive function in playing noughts-and-crosses would be 

'recognising the grid geometry' for instance; a more sophisticated one would be evaluating the merits 

of playing in a specific grid square. The development of scripts to express the agency in a program to 

play an OXO-like game reflected the way in which such cognitive capabilities could be construed as 

layered: one capability being prerequisite for another (cf. the script extracts in Figure 3 below). 

Appending the words 'New Frontiers' to the core title of the paper was in part intended to be facetious 

– surely the idea that programming a simple game could be so challenging as to trespass on the 

boundaries of programming practice was absurd, and, more pretentiously, prescient – reflecting the 

idea that programming was not delivering to its full potential and in great need of an alternative 

vision. By comparison with conventional programming, agent-oriented modelling with definitive 

scripts clearly offered prospects for development more closely matched to human cognitive functions 

and with far greater openness and flexibility to change (cf. [6,5]). It was also an approach that had 

quite the opposite effect from conventional practices: rather than modelling the application domain by 

abstracting and simplifying, it engaged in the first instance and in its essence with the concrete 

experience of the modeller, and encouraged reflection that exposed the cognitive complexity that 

underlies the simplest tasks. The practical implications for giving digital support were intimidating: 

though each individual observable in a script might have an intuitive counterpart and hence be simple 

to interpret, specifying and managing the dependencies between observables and taking account of the 

open-ended range of perspectives on agency generated unprecedented problems. For instance, it was 

hard to imagine how to express the observation involved in surveying the grid to identify a winning 



move, or developing a program that exploited a standard minimax strategy, on account of the number 

of observables involved and the subtlety of their interrelationship, conceptual, spatial and temporal. 

This paper discusses how the principles proposed in [6] are currently being developed and supported 

in such a way that the prospects for more serious application to programming are much enhanced. The 

four main sections which follow relate to: the conceptual framework that has now been adopted – that 

of 'making construals' [3,2]; the with-construct that has recently been introduced into the environment 

for making construals (the ‘MCE’); the significance of the with-construct from a programming 

perspective; and the prospects and challenges for future development and application. 

2. Making construals 
The emphasis in thinking about computing, and the central place of programming within it, owes 

much to Turing’s seminal account of ‘a mind following rules’ [13,16,4]. In placing the emphasis on 

‘computational thinking’, there is a danger of neglecting an equally significant preoccupation for the 

human mind: that of ‘making sense of a situation’. The premise here is that an excellent working 

understanding of a situation is a prerequisite for being able to act by following rules. Informally, it is 

this sense-making activity to which the term ‘making construals’ used throughout this paper refers. 

In this paper, the term “construal” is used in a distinctive way to refer to an interactive physical 

artefact that embodies our ‘working understanding’ of situation in terms of three primary interrelated 

notions: agency, observation and dependency: a concept that is the central theme of many previous 

publications from the Empirical Modelling project [21]. In any situation, agency relates to what we 

believe to be responsible for changes we observe, observation to the specific entities to which we 

believe agents respond and through which their state-changing action is mediated, and dependency to 

the way in which changes to observables are perceived by agents to be concomitant. There is a 

distinguished role in this sense-making activity for the personal agency, observation and dependency 

that is perceived by the maker of the construal, but the understanding of the situation encompasses 

putative agency, observation and dependency that is projected onto other agents of which the maker 

can have no direct experience. Understanding the way in which agency, observation and dependency 

interrelate establishes a template that is characteristic of a situation. In making a construal of a 

situation using contemporary technologies in which computing is an essential ingredient, the 

aspiration is to develop an interactive artefact that embodies counterparts of the agency, observation 

and dependency that interrelate according to this same template. In a computational environment, the 

situations that arise must be crafted so that agency, observation and dependency exhibit highly stable 

patterns of interrelationship that can be reliably reproduced. 

In [9], the psychologist and philosopher of science David Gooding introduced the notion of a 

construal to account for the way in which Michael Faraday achieved the ‘working understanding’ of  

electromagnetism that led him to prototype the first electric motor. This is a precedent for applying 

the term ‘construal’ to hybrid constructions that have both a physical aspect and an associated cloud 

of interactions and interpretations. The spreadsheet is another example of such a blend of physical and 

mental ingredients that serves a sense-making purpose in which the concepts of agency, observation 

and dependency are more explicitly represented. Previous work shows broad potential application for 

making construals with this distinctive emphasis on agency, observation and dependency [21], but this 

has been constrained by the technical limitations of the approach described in [6]. 

The most familiar context in which the term ‘construal’ arises is in natural language understanding. 

An expression such as ‘the polar bear is chilling’ can be construed in several ways. We may imagine a 

polar bear lying in the shade of an iceberg on a sunny day, or a cartoon polar bear with sun glasses 

and a pint of beer lolling on a beach, or a hostile bear standing on its haunches towering above us 

ready to pounce with ‘arms’ and claws outstretched. Observables, dependencies and agents are clearly 

relevant to understanding these scenarios, though these are of a more complex and subtle nature than 

are illustrated in Figure 3. Whether or not the polar bear is seen as ‘chilling’ is an observable. Its 

status is determined by dependency on more prosaic observables: Is the sun shining? Is the bear in the 

shade? Are the bear’s limbs configured in a benign way? Different construals reflect different kinds of 

agency: Is it the bear or the observer who experiences the chilling? At a meta-level, other varieties of 

observation, dependency and agency may be significant. A teacher might use this expression as a way 



of assessing natural language understanding: the capacity of the student to observe different meanings 

being dependent on their level of familiarity with English. 

Construal is an important ingredient in problem-solving. Creating artificial contexts for solving 

puzzles is a good way of exposing characteristic features of construal. In a cryptic crossword puzzle, 

each clue is a phrase that at face value has a natural language meaning, but – with some ingenuity – 

can also be construed as specifying a word to be entered into the grid. There are then standard 

conventions to guide the solver. The solution is always given in a non-cryptic form in the initial or 

final segment of the clue. Words such as ‘leading’, ‘embrace’ or ‘scrambled’ that have literal 

meanings may in fact refer to the disposition of letters in the solution. By way of illustration, consider 

the phrase ‘Force a writer to absorb Republican material’, which is the clue to a 6 letter word in a 

Guardian newspaper crossword [17]. A plausible solution is ‘police’: a writer (construed as Edgar 

Alan ‘Poe’) absorbs (construed as ‘contains’) Republican material (construed as the letters ‘lic’ 

extracted from the word Republican), the first word in the clue – force – being construed as a non-

cryptic reference to the police force.  

The nature of the activity involved in arriving at this solution illustrates several distinctive qualities of 

making construals.  At its core, making construals is a subjective activity that relies upon associations 

that can be experienced by the maker on account of their general knowledge and cultural background 

(the fact that Poe is a writer, and that the police can be described as a force are well-known in the UK 

and USA). These associations can be loose and informal (how many different combinations of letters 

might qualify as ‘Republican material’?) and cut across semantic categories (Poe is perceived both as 

an author and as the string of letters ‘poe’). The plausibility of a construal depends in general on 

conventions for interpretation (how well has the crossword solver – or indeed the crossword setter – 

observed the accepted code of practice). The justification and evaluation of a construal is not 

amenable to abstract logic – it relies upon a process of exposition in which proposed connections have 

to be presented in conjunction with informal explanations and critically examined (consider what 

steps lead us to conclude that the answer to the above clue is ‘a force’ rather than ‘a material’). To 

accept the validity of a construal is to make a pragmatic judgement that takes account of all manner of 

observations about connections being proposed (for instance, Roe is a writer [12] – though not quite 

as celebrated as Poe, ‘ubl’ is a substring of “Republican”, and there is an online reference under a 

Guardian headline from December 2014 citing “a rise in the rouble ... as forcing people to live within 

their means” [19] – but rouble would hardly be deemed to be a convincing solution). In general, the 

status of construal as right or wrong, good or bad, appropriate or inappropriate, is likewise to be 

construed as context-dependent (for example, though ‘police’ is in some sense a good and appropriate 

proposed solution, it is actually incorrect, as reference to [18] (‘spoiler alert’) will show. That is to 

say, it is not consistent with the answers to other crossword clues). In practice, the way in which the 

maker is guided towards a construal can be a very personal matter that may depend on the process of 

construction itself (‘police’ is an alternative solution that would not have been devised had other clues 

been solved first). This interplay between the construction process and the personal perspective of the 

maker of a construal is even more vividly highlighted by the famous NYT crossword published prior 

to the 1996 US election [20], where the answer to one clue could be construed to be either of the  

presidential candidates “Clinton” and “Bob Dole”. This evoked amazement or indignation from 

solvers that reflected their temperament, political affiliation and the solution they found.  

In building on [6], the aspiration is to develop principles and instruments for making construals that 

can do justice to construing in its broadest sense. Though the central focus of the paper is on a 

technical construct that can create a more expressive instrument, the concern is much broader than 

issues of programming language design. 

3. Introducing the with-construct 
Making construals is the central theme of the EU Erasmus+ CONSTRUIT! project [22]. A core aim of 

CONSTRUIT! is to create an online environment for making construals (the 'MCE'). The latest 

version of the MCE [23], whose principal architect is Nicolas Pope (cf. Figure 1), incorporates several 

new features that promise to transform the practices that were first prototyped in [6]. One feature in 

particular has most significant implications for specifying families of definitions that correspond 



closely to the more complex modes of observation encountered in making non-trivial construals. This 

is a "with-construct" that makes it possible to replicate patterns of dependency without needing to 

explicitly clone observables and create bloated scripts with perhaps many thousands of definitions. 

The basic principle behind the with-construct is that where an observable A is defined by an (acyclic) 

network of dependencies in which other observables B and C occur, it is possible to introduce a 

variant of the observable A that makes use of the same dependency network that specifies A but 

incorporates new definitions for the observables B and C. Syntactically, this is expressed:  

newA is A with B is newB, C is newC 

The with-construct has a wide range of potential applications that both have the effect of making 

scripts much more concise and making it possible to express more complex forms of observation. A 

key element in this is being able to generate a set of instances in the form of a list defined via 

list_of_newA is A with B ranging over list_of_newB, C ranging over list_of_newC 

The nature of the with-construct and its full implications for making construals are yet to be explored. 

The illustrative examples represent some of the possibilities to be further discussed and developed.  

Where applications are concerned, several broad categories of use have been identified to date. Each 

of these modes of use of 'with' is illustrated in scripts that can be found in the project repository 

within the MCE [23,24]. A recent version of the MCE can be invoked at the url cited below [23]. A 

basic introductory tutorial for the MCE together with instructions for loading example construals can 

be found via a webpage prepared for use by teachers [24]. Example uses of 'with' include:  

- prototyping in what resembles an object-oriented style: This is the most orthodox application of 

the with-construct, to derive variants from a prototype: "X is a Y with a Z like this ...". To explore 

this, invoke the MCE and load the script at tutorials/scoping/arrow as described above. 

- generation of loci that reflect sophisticated forms of observation: For instance (see Figure 2a), if 

the observable 'mercury' is a circle that represents Mercury in a simple planetary model, and the 

position of 'mercury' depends on the time-based observable 'tick' then  

 smallMercury is mercury with radius is smallRadius  
 traceMercury is smallMercury with tick ranging over (tick - memory) up to tick  

Parametrically defined geometric figures can also be defined in this way. For instance (cf. Figure 2b): 

the ellipse {(a*cos(theta), b*sin(theta)) | 0<=theta<=360} and 

the sine curve {(theta, sin(theta)) | 0 <= theta <= n*360}  

 

Figure 1: Reconstructing the OXO laboratory in the environment for making construals (the MCE) 



- creating generic configurations of mathematical interest: A good application for making 

construals has been creating artefacts that can help to expose abstract mathematical concepts and 

results. For instance, the Marriage Theorem is a basic theorem in matching theory which gives a 

simple criterion for a bipartite graph to have a perfect matching. In the past, it has been relatively 

straightforward to make a construal that captures the relevant observables for a specific small bipartite 

graph (say m by n, where m=n=4), but exceedingly tiresome to handle larger examples, and 

impossible to generalise for larger m and n without introducing complex macros. The with-construct 

makes it possible to construct generic observables to represent bipartite graphs and matchings in ways 

that are cognitively more congenial and better capture the spirit of mathematical abstraction. 

- expressing modes of observation that involve surveying many states: as when examining several 

game states (cf. the listing below), or generalising geometric configurations featuring in games, such 

as the OXO-like games discussed in [6], which include 'cubic', a 3D version of noughts-and-crosses. 

 

Figure 2a: A planetary orbit          Figure 2b: A simple geometric locus 

 

end_of_game is owon || xwon || draw; ## the criterion for the game to be over 

lin_w is lin[1]+lin[2]+lin[3] == -2; ## whether the line lin has two Os on it 

winlineix is lin_w with lin is alllines[ix]; 

winlines is winlineix with ix is 1..8; ## which of the winning lines has two Os, if any 

gapinlin is 1 if lin[1]==0 

else (2 if lin[2]==0 

else (3 if lin[3]==0 else 0)); ## where there is no entry on line lin 

playonlinix is gapinlin with lin is alllines[ix]; 

playonlines is playonlinix with ix is 1..8; ## where you can play on a winning line 

alllinesindices is alllines with 

s1 is 1, s2 is 2, s3 is 3, 

s4 is 4, s5 is 5, s6 is 6, 

s7 is 7, s8 is 8, s9 is 9; 

winindex is _index if winlines[_index] else 0; 

iswinindex is winindex with _index is 1..8; ## indices of lines with two Os, if any 

wline is max(iswinindex); 

when ((player==o) && wline>0 && !end_of_game) { 

boardstate[alllinesindices[wline][playonlines[wline]]] = o; 

} 

## if player O is to move and there is a line with two Os and the game is not over 

## make a winning move by placing an O in a gap on such a line 

 

Listing 1: An experimental script to reflect human observation when seeking a winning move 

 



4. The with-construct from a programming perspective 
What is the significance of with from a programming perspective? In [8], where the relationship 

between ‘making construals’ and proposals for new approaches to programming by Bret Victor [14] 

and Chris Granger [10] is discussed, much emphasis is placed on the distinction making construals 

and programming. This seems to be appropriate, not least because the program-like behaviours that 

are realised through what was characterised in [6] as ‘agent-oriented modelling with definitive 

representations of state’ have clear limitations. Framing behaviours in terms of interactions with 

definitive scripts is ill-suited to programming dynamical systems, does not address the challenges of 

achieving computational efficiency, and (the with-construct notwithstanding) does not suit large-scale 

computational applications where anonymous data variables cannot be avoided. But where definitive 

scripts were recognised in [6] as a powerful way of making the interface that mediates an agent’s 

action intelligible, the with-construct may be seen as serving a complementary function: enabling the 

context for an agent’s observation to be conveniently transformed. In this way, it becomes possible to 

make more direct links between programming and observation than before. 

Listing 1 above is an experimental script that illustrates some of the significant features of introducing 

the with-construct. It is drawn from [2], where it can be studied in context. This script exploits many 

instances of with to describe the observation required by player O when making a winning move in 

noughts-and-crosses. The use of with’s may be compared and contrasted with the directly translated 

extracts from the original script for the OXO grid (cf.the ‘outline of the OXO-model’ presented in 

‘Listing 1’ as an Appendix to [6]) that are shown in the left hand panel and in the bottom half of the 

right hand panel of Figure 3 below. Though these extracts illustrate a mode of observation much 

simpler than that expressed in the above listing, it requires definitions that exploit maker-defined 

functions (such as noofpieces()) formulated in a conventional procedural programming style. This 

tends to subvert the notion that making construals through modelling with definitive scripts is 

conceptually simpler than traditional programming. As the comments in the Listing 1 show, each of 

the with-definitions admits a conceptually simple interpretation in observational terms. In a similar 

manner, the definition of the observable xwon in the top half of the right hand panel of Figure 3 

expresses the notion of surveying each of the possible winning lines (‘alllines’) in a fashion that is 

faithful to human observation and is in sharp contrast to the clumsy procedurally expressed function 

that is used to check the status of each of the potential winning lines in the original OXO-model.  

 

Figure 3: Representing the OXO grid without and game status with and without with’s 

 



The value of linking programming with observation is being recognised in teaching programming. In 

his account of work with kindergarten children, Ivan Kalas [11] alludes to Blackwell’s 

characterisation of programming (cf. [7]), whereby “the user is not directly manipulating observable 

things, but specifying behaviour to occur at some future time”. He then highlights the importance of 

scaffolding the transition from specifying action through direct manipulation of observables to full 

automation. 

Similar principles are illustrated in the work of Dave White [15] on teaching programming in an 

'unplugged' fashion by encouraging learners to conceive systematic ways of carrying out tasks such as 

'drawing a grid'. White has developed some ingeniously crafted environments that support the 

transition from walk-through to automatic execution of such systematic procedures. His work 

highlights the critical role played by the mode of observation of a situation in specifying programmed 

activity within it. Figures 4a and 4b below show how the different modes of observation of a grid of 

this nature can be expressed in the MCE using the with-construct. 

A construal of 'giving change' inspired by Phil Bagge's Coins example in [1] shows how this notion 

can be generalised to transform a strategy for teaching a learner to observe coins in such a way that 

they are eventually able to give change into a 'program' for giving change that is flexible enough e.g. 

to cope with missing denominations and can deal with different currencies. This example also exhibits 

the use of recursively scoped with-definitions. A presentation, built into the MCE [23], that 

introduces this construal can be accessed online by loading the script givingchange/commentary2 

from the project manager of the MCE.  

5. More about the with-construct 
The fundamental respect in which realising program-like behaviours through making construals 

differs from traditional programming is that it makes a clear separation between two aspects of the 

computer's role: 

 the computer performs dependency maintenance, ensuring that the relationship between 

observables is maintained so that it is closely matched to the observations of significant entities in 

the application domain. This dependency maintenance is a background process that provides the 

stage on which the state-changing actions of the agents within the application are played out. 

 the computer automates the state changing actions that are characteristic of the application by 

redefining observables explicitly following a prescribed algorithmic pattern. The algorithmic 

specification is much simpler than that in a conventional program, since a single redefinition of an 

observable affects the values of all dependent observables without the need for explicit updates. 

These two aspects correspond to what was characterised in [6] as 'definitive representations of state' 

and 'agent-oriented modelling' respectively. The powerful advantage of the above separation of 

concerns is that it makes it possible to integrate modes of agency that in traditional program are 

conceptually quite distinct. As explained in detail in [3], after making an appropriate construal of the 

application domain, implicit dependency maintenance sets the stage for redefinition of observables to 

  

Figure 4: Conceiving a 3 by 3 grid (a) in terms of lines and (b) in terms of squares 



represent state-changing actions that might be interpreted, according to the situation, at the discretion 

of the maker, as ‘program design’, ‘implementation’ or ‘use’. 

Prior to the introduction of the with-construct, the benefits of being able to blend design, 

implementation and use in this fashion were compromised by the fact that scripts of definitions were 

statically defined and could not vary in size dynamically as observables in the application domain 

varied. As a simple example, in making a construal of a simple game such as Conway's Life [25], 

where the growth of the population of cells cannot be predicted, there was no easy way to meet the 

need for an unbounded number of observables. This meant that, whilst the model of cell population 

was in some respects far richer than that supported by (say) a functional programming implementation 

of Life (for instance, modelling each game state explicitly and enabling the observer to intervene in 

the simulation to add or remove cells or to adapt the rules on-the-fly), it could not emulate the scope 

for unbounded extension afforded by lazy evaluation. 

As far as the nature of the with-construct is concerned, there are clear parallels with prototype-based 

object-oriented development and with the replication of patterns of dependency that can be achieved 

(e.g.) through cutting-and-pasting rows in a spreadsheet. The with-construct can also be regarded as 

performing a scoping function somewhat resembling that available in JavaScript, in that it changes the 

context in which observables in a script are interpreted. Long experience of trying to integrate 

standard object-oriented notions into modelling with dependency networks suggests that the role that 

dependency plays in this context is semantically and logistically crucial. On this basis, the parallel 

with spreadsheets is probably the most significant. The extent to which this is corroborated by our 

practical examples will be an interesting topic of discussion. The PPIG audience may be familiar with 

other potential parallels to be considered.  

A further aspect of the with-construct that may be of particular interest to a PPIG audience concerns 

its most effective representation. At present, whilst it is not too painful to trace the stream-of-thought 

that leads to the construction of a script that includes several with's, it is not so easy to reconstruct this 

stream-of-thought, which is closely linked to a sequence of specific kinds of observation, by casual 

inspection of the script (cf. Listing 1 above!). This is in contrast to the directness of the connection 

between an observable in a construal and its counterpart in the referent. 

A further consideration is that, in order to make most effective use of the potential for replication that 

with affords, it seems to be necessary to allow the component observables introduced in a with-clause 

to have independent definitions. This is in danger of undermining a highly significant feature of 

definitive scripts as so far conceived: the fact that the value associated with an observable or 

component of an observable can always be inferred from a single definition. This principle, which is 

in some sense a counterpart – in a semantic frame that has inherent a notion of ‘the present moment’ – 

of referential transparency in a declarative programming language, makes a major contribution to the 

intelligibility of scripts. If overriding of component definitions is permitted, it becomes essential to 

structure scripts so as to make it possible to retrieve the authoritative as-of-now definition of all 

observable components. For instance, when the script fragment below is interpreted sequentially: 

a is 5; 
alist is a with ix is 1..10; 
alist[2] is 3*a; 

the current value of the second component of the list alist is 15, whilst all other components are 5. 

Some syntactic convention is then needed to ensure that the overriding that occurs in this context can 

be easily detected when reviewing the script. 

The need for independent definitions of the observables generated by a range scope can also be seen 

when observables such as buttons are generated in this way. It is essential to be able to distinguish 

between clicking on different buttons, and to be able to associate different actions with clicks 

accordingly. For instance, it is evident that in Figure 1 it is necessary to generate different actions 

according to which of the squares in the grid is selected on a mouse click. Figure 6 below (in which 

the syntax ‘::’ has been introduced as a synonym for with) illustrates work-in-progress on refinements 

of the MCE which help to address the concerns raised above. 



 

Figure 5: Extending the MCE to support overriding of range observables and scope browsing 
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