

Playing games with observation, dependency and agency in a new environment for

making construals

Meurig Beynon, Russell Boyatt, Jonathan Foss,

Chris Hall, Elizabeth Hudnott, Nick Pope, Steve Russ

University of Warwick

Coventry, UK

wmb@dcs.warwick.ac.uk

Hamish Macleod

University of Edinburgh

Edinburgh, UK

h.a.macleod@ed.ac.uk

Ilkka Jormanainen, Tapani Toivonen

University of Eastern Finland

Joensuu, Finland

ilkka.jormanainen@cs.uef.fi

Piet Kommers

Helix-5

Twente, The Netherlands

pkommers@gmail.com

Dimitris Alimisis, Rene Alimisi, Emmanouil Zoulias

Edumotiva

Sparti, Greece

info@edumotiva.eu

Peter Tomcsanyi, Michal Winczer

Comenius University

Bratislava, Slovakia

tomcsanyi@slovanet.sk

Abstract—Making construals is a new digital skill that

complements conventional programming. Its primary focus is on

using computer-related technology to stage interactive experience

of unprecedented richness and subtlety. This paper is a tutorial

on the latest version of an instrument for making construals

developed in the ongoing EU Erasmus+ CONSTRUIT! project.

Its principal theme is the re-creation of “the OXO laboratory” –

an interactive environment in which variants of the game of

noughts-and-crosses can be freely designed and evaluated.

Keywords—construal; computing; spreadsheets; educational

technology; school education; constructionism; open educational

resources; educational games; software development

I. INTRODUCTION

The concept of 'making construals' as a new digital skill
was introduced in a tutorial paper [3] presented at iTAG in
2015. As explained in [3], making a construal differs from
writing a program. Rather than specifying a recipe to achieve
certain functional goals (a sequence of instructions, explicitly
or implicitly specified), it establishes an open-ended
environment for interaction (in the form of a family of
definitions, or script) within which the human and automated
agency in a domain can be expressed. Within this
environment, program-like behaviours can be crafted by the
maker and enacted by the computer. The traditional roles of
the human agents, whether users, learners, players, designers,
teachers or developers can be integrated and unified in this
way. This has significant implications for learning and for
designing computer games.

Making construals is the central theme of the ongoing
Erasmus+ CONSTRUIT! project [2]. A key objective for
CONSTRUIT! is to develop an open online course for making
construals that is accessible to a wider audience that includes
school teachers and students and practitioner communities.

Developing an appropriate online environment for making
construals ("the MCE") is a major component.

The principles and resources for making construals being
developed in CONSTRUIT! have been distilled from previous
work by computer science staff and students at the University
of Warwick in the Empirical Modelling project [1]. The early
prototypes for the MCE were based on the EDEN interpreter
(cf. Figure 1 below) that initially took the form of a desktop
application. Two online variants of EDEN were subsequently
introduced – Web EDEN [12] and JS-Eden [11]. The current
MCE is a radically revised version of JS-Eden based on
feedback from workshops organised by CONSTRUIT! in
Finland, Greece and the UK (including a workshop at iTAG in
2015). Introducing this latest version of JS-Eden is the
principal focus of our contributions to iTAG 2016.

This paper takes the form of a tutorial on the revised
version of the MCE [13] that has been developed by Nicolas
Pope with the support of Elizabeth Hudnott and Jonathan
Foss. New features to be introduced in this tutorial include:

 a hand-crafted parser that (unlike all previous parsers
deployed in making construals, which have been built
using standard parser-generating tools) gives much more
precise and directed feedback about syntax errors, and
also supports a form of "live edit" whereby the effect of
changing scalar values is immediately visible.

 a project manager for storing scripts online in such a way
that they can be made private or public and recorded in all
their intermediate versions.

 a with construct that makes it possible to generate a script
by deriving many variants of a script fragment from a
single instance – a technique that resembles, but differs
from, prototype-based object-orientation.

 a when construct that enables agent interactions
appropriately expressed using scripts of definitions to be
conveniently animated.

These features of the MCE will be illustrated with reference to
variants of the game of noughts-and-crosses for which we
adopt the generic term ‘OXO-like games’. Such a game is
based on two people taken turns to place a O or X on the
squares of a grid so as to create a target pattern (some form of
‘winning line’).

The paper has four main sections. The first section revisits the
‘OXO laboratory’ as originally conceived and implemented
(cf. [5,6]). Sections II and III introduce the MCE by
illustrating how the OXO laboratory can be reconstructed
within it. Section IV draws some brief conclusions.

II. CONSTRUALS OF OXO-LIKE GAMES.

The original idea of studying OXO-like games was
introduced by Beynon and Joy in [5]. The motivation was to
explore the possible merits of introducing programming via
the technique that has since been characterised as making a
construal. At that time, the principal alternative programming
paradigm to which first-year computer science students at
Warwick were being introduced was functional programming,
and writing a program to play noughts-and-crosses was one of

the student exercises. As discussed in [4], making a construal
and adapting it to play noughts and crosses was so unlike
programming that it became clear that it should not be
classified as a programming paradigm at all: “The primary
focus is upon modelling the environment and the agency that
can in principle support playing the game. The end result is
something that conceptually resembles a laboratory in which it
is possible to realise a traditional game of noughts-and-crosses
but where a whole cloud of alternative ways of playing the
game—and other more-or-less closely related games—can
also be equally conveniently realised.” [4].

Figure 1 illustrates the characteristics of the ‘OXO
laboratory’. The screenshot represents the final stage in a
process of incremental construction in which key observables
associated with playing noughts-and-crosses – and variations
based on the same 3 by 3 grid – are introduced layer-by-layer
(cf the “INCLUDE NEXT LAYER” button at the top left
corner). The concept of a ‘layer’ reflects the progressively
more elaborate and nuanced observables that the human player
must become familiar with in order to play the game. The
layers correspond to the visual components in Figure 1 as read
from left to right and top to bottom.

At the top left corner (“GEOMETRY”) is a representation
of the physical grid, together with the conceptual ‘winning
lines’. To its right (“STATUS”), there is a representation of the

Figure 1. Playing games with Noughts-and-Crosses (Simon Gardner, 1999 [6])

current configuration of Os and Xs on the grid. From this, the
current status of the game, as represented textually in the top
right hand panel, can be inferred from the rules. In Figure 1, it
is apparent that neither player has won, and that the game is
not yet over. The observables associated with the top row of
the display relate to features of the game that can be statically
observed by a knowledgeable player.

The display elements in the bottom row relate to the rules
of play. The fact that it is X’s turn to play can be inferred from
the ‘O to start’ annotated button since there are the same
number of Os and Xs on the board. The leftmost component of
the bottom row (“SQVALS”) is a naive static evaluation of the
board from the viewpoint of O, the player with the move. It
gives an indication of what is plausibly a good move. To its
right (“PLAY”) is a representation of the static evaluation that
informed the last move, as made by player X. When the
‘Computer On’ annotation is displayed, player X is automated
to make moves based on this static evaluation. Although there
is no visible distinction in Figure 1 between the state of the
grid as displayed on the bottom right panel (“GAMESTATE”)
and the static grid display (“STATUS”), these correspond to
conceptually quite different modes of observation, as will
become apparent.

There is a close correspondence between the sequence of
representations in Figure 1 set out above and the observations
that a person learning to play noughts-and-crosses has to
make. Informally, there is some progression from one mode of
observation to another. Being able to recognise that there are
Os and Xs on the grid is more basic than appreciating that they
stand in the abstract relation of ‘constituting a winning line’
for instance. Likewise, the automation of moves is only
possible provided that all the essential pre-requisite elements
of the game are in place. The script that is associated with
Figure 1 is made up of several simple scripts each devoted to
the corresponding mode of observation of a game. The
“INCLUDE NEXT LAYER” button triggers the introduction of
each of these scripts in sequence.

The basis for interpreting the construal shown in Figure 1
as a ‘laboratory’ for making OXO-like games is that the
component scripts can be freely modified to reflect different
conventions that might be adopted. The winning lines can be
changed, as can the rules that determine the status of a
position. In keeping with the theme of [3], the modes of
interaction with the construal are also exceptionally flexible.
With no automation in place, the maker can simulate all kinds
of scenarios, such as cheating through taking an extra turn or
overwriting a grid cell occupied by the opponent, dynamic
changes to the set of winning lines as play proceeds, or linking
permissible moves to a preliminary throw of a dice.

The interventions that can be carried out in this way can be
performed opportunistically and asynchronously in such a way
that the notions of playing and developing the game are no
longer well-defined, as when the winning lines are changed
after the game has been ‘won’, or the pieces on the board are
directly manipulated during play (cf. a O or X ‘falling off the
board’). Such possibilities underlie the distinction between
views such as GAMESSTATE and STATUS that are always
synchronised in normal play.

Figure 2 expresses the nature of the semantic relation
between the construal and the OXO-like game with which it is
associated. In referring to the construal of the standard game
of noughts-and-crosses as displayed in Figure 1 above, the use
of the term ‘representation’ is quite natural. It is appropriate
because the context for the interaction is stable and well-
established. In the process of devising a OXO-like variant the
nature of the relationship between the construal and its
referent is much more obscure. Removing a O or X from the
grid may have all kinds of meanings for the maker. Such an
action may be done in order to simulate an anomalous event in
normal play, to explore a new protocol for making moves, or
simply to check that some definition within the construal is
correctly framed and has the intended or expected effect. The
notion of ‘intended and expected effects’ itself presumes some
familiarity with interaction with the construal on the part of its
maker – to which the term ‘understanding’ in Figure 2 refers.
In general, the significance of the interactions involved in
making a construal has to be expressed in terms of
concurrently shaping all four of the key ingredients in Figure 2
– the construal itself, its referent, the maker’s understanding,
and the overall context for interpretation.

In the EDEN environment depicted in Figure 1, the
management of scripts takes a complex and clumsy form. The
screen display is complementary to an input window through
which the definitions in a script can be submitted. To change
the value or definition of an observable, a redefinition is
entered. The observables themselves are of diverse types
(corresponding to scalar data, or line drawings, or screen
layout for instance) and the current definition and values of
observables (which may take different syntactic forms) can be
accessed through a range of viewers. The distinctions between
one mode of observation and another that are visualised in
Figure 1 are reflected in the way in which scripts are recorded
in the file system. The core scripts that serve this purpose are
those that are introduced by pressing the “INCLUDE NEXT

LAYER” button. Other scripts, such as might be used to
change the set of winning lines, may also be recorded in
auxiliary files. In the process of conducting experiments

Figure 2. Making a Digital Construal

within the OXO laboratory, useful files might also consist of
annotated script fragments that are associated with incomplete
or inconclusive explorations. The maker’s “understanding”, as
expressed via informal familiarity with possible interactions
and interpretations, is in general essential in making sense of
such fragments. The relationship between the systematic
organisation of definitions within core scripts and the
unstructured sets of experimental definitions reflects that
between the well-defined contexts for observation (such as
playing a standard game of noughts-and-crosses) and the more
loosely defined regimes for interaction (such as trying to find
an interesting alternative set of winning lines) that can pertain
in Figure 2.

III. THE OXO LABORATORY IN THE MCE: INFRASTRUCTURE

The abbreviation ‘MCE’ will be used to refer to the latest
version of the environment for making construals [13]. This
differs radically from the original EDEN interpreter: it is an
online instrument that has been derived from the first JS-Eden
prototype [11] over the last few years.

The main characteristics of the MCE will be introduced
with reference to the re-creation of the core ingredients of the
OXO laboratory as outlined above. Particular topics of interest
are how the MCE seeks to meet the challenges of creating a
more effective interface for experimentation with scripts, how
the MCE can be extended in ways outside the scope of the
original version, and the potential for new applications.

Figure 3 shows the overall concept behind the MCE
interface as it might be deployed to create an environment
similar to the OXO laboratory. From right to left, the three
panels in the interface are respectively: a canvas on which the
noughts-and-crosses position is displayed, an input window
in which scripts can be viewed and input can be entered via an
ensemble of tabs, and an observable list in which the current
values of selected observables are displayed.

The general principles of using the MCE are based on
modelling the key observables, dependencies and agency at
work in the domain (see [3] for more details). Scripts of
definitions describe configurations of observables and
dependencies which express the way in which state-changes in
the referent are linked. Figure 4 is a simple example of such a
script. The dimensions of the grid depend on an observable
‘size’ which can potentially be redefined by the players or the
developer.

When a construal is first made, it is built up incrementally
by entering observables and their definitions into an input tab.
There is at most one definition on each line, each terminated
by a semi-colon. A definition can be interpreted by placing the
mouse in the gutter to its left, then clicking with the left mouse

button on the ‘play’ icon (▶) that appears. A tab may contain a

script that in the context of Figure 1 would have been stored in
an external text editor: the definitions within the script that are
to be interpreted can be chosen selectively in any order,
independent of the content of the whole script. Selective
interpretation of this nature is particularly useful whilst the

construal is immature. When a sufficiently stable script has
been crafted, it can be interpreted as a whole by clicking on
the tab name with the right mouse button and selecting the
‘Run’ option from the drop down menu.

As is illustrated in Figure 3, scripts can be imported into a
tab – in this way they are automatically interpreted. The
imported scripts listed in Figure 3 are ‘stable’ scripts that
correspond to modes of observation of a game of noughts-and-
crosses such as feature in the OXO laboratory in Figure 1.
Figure 4 is the content of the first imported script to be listed.
By default, imported scripts are interpreted but not displayed
in a tab. There is a simple way in which an imported script can
be loaded into a tab for inspection: first click on the spyglass
(“inspect”) icon at the left on the bottom of the input window,
then click on the name of the imported script (now highlighted

Figure 3. The OXO laboratory in the MCE

in red) which you wish to load. Figures 4-9 display the content
of the tabs that can be derived in this way.

The most important role of the MCE is to enable the maker
to make connections in their experience. The maker edits the
script and simultaneously observes the effect via the picture or
the observable list. As illustrated in Figure 3, the observable
list displays only the current values of observables, and those
that are defined by dependency are shown in green. The
content of the observable list can be specified using a search
expression – as illustrated in the showObservables()

command in Figure 3. In addition to the discrete mode of
redefinition described above, the MCE also supports a form of
live edit. This is invoked by holding the left mouse button
down in the gutter until a red star symbol appears. The impact
of editing the corresponding definition is then automatically
registered whilst it is syntactically correct. Live editing of
observables defined using explicit scalar values can be carried
out by hovering the mouse over the scalar value, depressing
the mouse and moving it to the left or right. This is a
convenient way in which to experiment with the observable
‘size’ in Figure 4 for instance.

In the original OXO laboratory, scripts were created using
an external editor and stored as text files. As illustrated by the
‘INCLUDE NEXT LAYER’ button in Figure 1, the management
of scripts was then handled by file inclusion. By contrast, the
scripts that are to be imported in Figure 3 are recorded online
within a project manager that is stored on the JS-Eden server.
The project manager can be accessed by clicking on the
‘more’ menu icon (⋮) on the bottom left hand corner of the
input panel (cf. Figure 3). Selecting ‘Browse Agents’ from the
pop-up menu then lists the available scripts. In order to upload
scripts to the project manager, it is necessary to login. On start
up, the login icon appears at the top right corner of the MCE
screen – clicking on it offers you the option of logging in via a
Google or Twitter account. When you upload a script, you
have the option of making it private or public.

Taken together, the features discussed in this section
supply the infrastructure for the role of the experimenter in the
OXO laboratory. The crafting of the core scripts to suit
different modes of observation can be carried out by editing
and/or live editing definitions in a targeted fashion. All
versions of a script that are uploaded are recorded in the
project manager and can be retrieved and reloaded. Scripts
under development are also automatically saved in the local
browser, and can be loaded from the View History option on
the ‘more’ menu. This feature can be useful where versions
are intentionally recorded as alternatives. For instance, the
script in Figure 5 defines the normal set of winning lines in
noughts-and-crosses, but a script with alternative definitions
for lin1, ..., lin8 can easily be substituted.

The project manager is also a convenient way of sharing
construals with other makers and enables remixing in an
unconstrained way that is characteristic of construals. In this
respect, making construals has more in common with software
development associated with spreadsheets (cf. [10]) than with
traditional programming.

Figure 4. The script that defines the grid

Figure 5. Defining the winning lines

IV. THE OXO LABORATORY IN THE MCE: CONSTRUCTION

In a recent study on teaching programming to primary
school pupils, Kalas [8] highlights the need to stage activities
in an appropriate sequence. In the first instance, pupils learn to
manipulate artifacts manually. They then learn to control (or
‘drive’) them by issuing commands. Finally, they program
them to operate autonomously.

The primary focus in making construals is on the first
stage identified by Kalas. The discussion in the previous
section highlights how the MCE gives support for human
agency in shaping the development of a construal. In this
process, in the same spirit that Kalas moves from ‘direct
manipulation’ to ‘driving’, the maker not only shapes features
of the design of the construal but also rehearses actions that
are part of its intended behaviour. Finally, some of these
actions may then be automated in a program-like fashion. In
contrast to traditional programming, making construals
supports the free transition between these categories that is
characteristic of a child playing with an artifact, as when
manipulating a toy by hand when its battery runs out, or
reverting to remote control of an autonomous robot.

The stages identified by Kalas are well-represented in the
progression of modes of observation and agency that are
associated with Gardner’s model of noughts-and-crosses
shown in Figure 1. This section describes how a similar
process can be realised within the MCE.

The ‘status’ and ‘boardcontent’ scripts, as imported in
Figure 3, are listed in Figures 6 and 7. The observable
‘boardstate’ in Figure 6 is defined as a list that encodes the
contents of the nine grid squares: blank, O or X. The text
labels that are displayed on the grid are then defined by
dependency in Figure 7. Redefining ‘boardstate’ corresponds
to directly manipulating the construal.

The next stage in elaborating the construal is to introduce
automated agents that can be instructed to update the
definition of the observable boardstate. In the MCE, this can

be done by introducing a triggered action that responds to
changes to an observable, and performs an appropriate
redefinition. The procedure ‘makemove’ in Figure 8 is such an
action. The grid square to be updated is identified by creating
dependencies based on the position of the mouse. The script in
Figure 8 exemplifies the kind of script that is generated at an
intermediate stage when interpreting the location of a
mouseclick in this way. The definitions of the observables
mouseXnear1 are here framed in terms of absolute coordinates
for the centres of the grid squares sq1, ..., sq9 that were
determined by surveying the canvas and observing the
coordinates of the mouse pointer. This is unsatisfactory in that
it fails to work for different values of the observable ‘size’. It
is instructive to consider how flaws of this kind can be
addressed within the MCE simply through refining the
definition of mouseXnear1 and its counterparts.

Figure 8 also illustrates how the interface mechanisms for
construals within the MCE can be supplied by html widgets
such as a drop down list. In this case, such a list allows the
maker to make a move on behalf of player O or player X. A
small refinement of this definition would ensure that the
option for a player is matched to the game position.

Figure 7. Displaying the pieces on the grid

Figure 8. Placing pieces on the grid

Figure 6. Defining the board state

The most interesting observables from the perspective of a
game designer are those that are associated with the rules of
the game. In Figure 1, examples of such observables are
whether either player has won, whose turn it is, and whether
there is a valid move.

The script shown in Figure 9 frames dependencies to
express whether X has won, O has won or the game is drawn.
The latter condition is declared to be true when the board is
full and neither X nor O has won. Dependencies of this nature
are not of the kind that can be easily expressed using standard
formulae and built-in operators.

In Figure 9, two different approaches are used to illustrate
how such dependencies can be formulated. The approach
adopted in the EDEN interpreter, as deployed in Gardner’s
version of the OXO laboratory, is to introduce a maker-
defined operator that can be used on the right-hand side of a
definition. Such an operator can be written in a traditional
procedural style (cf. the ‘makemove’ action in Figure 8). The
function ‘nofpieces’ listed in Figure 9 is an illustrative
example: it takes two parameters, a list representing values of
all squares in the current position and a parameter to specify
whether Xs or Os are to be counted.

Another possible approach is based on the use of the
recently introduced with construct. This construct is closely
aligned to the idea of observation that underpins making a
construal. Its use is illustrated in Figure 9 in the definition of
the observables ‘xwon’ and ‘owon’. Informally X has won if
one of the winning lines comprises only Xs. The generic
condition for a winning line to consist of all Xs is expressed in
the definition of ‘xwonI’. The with construct makes it possible
to mimic the process of observing each of the winning lines to
determine whether or not it is a winning line for X. The
observable ‘xwonIs’ registers the outcomes of inspecting all

the winning lines as a list. The value of ‘xwon’ is then true
provided that at least one of the outcomes is true; this can be
expressed using a standard operator that locates the index of
an element in a list, returning 0 if it is absent.

Gardner’s original noughts-and-crosses model included a
computer player that was based on a static evaluation function.
From the perspective of human play, this approach to move
selection is highly artificial and contrived. For instance, in
observational terms, when making a move, player O typically
surveys the set of winning lines to identify whether one of
them has two Os on it and, if so, places an O accordingly.
Expressing this pattern of observation was infeasibly complex
in the environment that Gardner deployed in Figure 1, but
becomes possible if we use the with construct. An
experimental script for this purpose is listed in the box below:

This script looks formidable and difficult to interpret. There is
a very direct correspondence between the definitions in the
script and what – in human terms – are elementary acts of
observation, however. The observable ‘lin_w’ is a template for
the question: does the line ‘lin’ have just two Os on it? The
observable ‘winlines’ lists the answers to this question for
each of the winning lines. Likewise, ‘gaponlin’ is a template
for: where is / is there a blank square on the line ‘lin’? and
‘playonlines’ records where there are blanks on winning lines.
The observable ‘alllinesindex’ performs a task that comes
naturally to the human observer but is taxing in conventional
programming notations (cf. the use of pointers); it transforms
the observable alllines (see Figure 5) so that the observables
lin1,..., lin8 are reinterpreted: lin5 is read as [2,5,8] rather than
[s2,s5,s8] and so on. Finally, ‘wline’ records the index of a
winning line that has just two Os on it, if there is one. Note
that the abstract term ‘index’ here has a simple concrete
observational equivalent – it expresses an answer to the
question: where is some object of interest located in a list?

Figure 9. Interpreting the game rules

end_of_game is owon || xwon || draw;

lin_w is lin[1]+lin[2]+lin[3] == -2;

winlineix is lin_w with lin is alllines[ix];

winlines is winlineix with ix is 1..8;

gapinlin is 1 if lin[1]==0

 else (2 if lin[2]==0

 else (3 if lin[3]==0 else 0));

playonlinix is gapinlin with lin is alllines[ix];

playonlines is playonlinix with ix is 1..8;

alllinesindices is alllines with

s1 is 1, s2 is 2, s3 is 3,

s4 is 4, s5 is 5, s6 is 6,

s7 is 7, s8 is 8, s9 is 9;

winindex is _index if winlines[_index] else 0;

iswinindex is winindex with _index is 1..8;

wline is max(iswinindex);

when ((player==o) && wline>0 && !end_of_game) {

 boardstate[

 alllinesindices[wline][playonlines[wline]]

] = o;

}

The observables and dependencies in the listing above are
complemented by a when clause to express the commonsense
action of O as a human player: if it is Os turn to play and there
is a winning line with just two Os on it, place an O in the
blank square on that line.

V. CONCLUDING REMARKS

The main architect of the latest version of the MCE,
Nicolas Pope, has transformed the environment in ways that
both highlight points of affinity with contemporary software
development environments and expose the novelty and
potential of making construals. The unusual qualities of the
interactions associated with the OXO laboratory in Figure 1
were hard to appreciate in a setting where script management
relied on external text editors and configuration of scripts as
text files. Pope’s introduction of the with construct as an
adjunct to networks of dependencies promises to transform
scripts so that (as illustrated in the listing above) they are more
closely matched to commonsense modes of observation. It
remains to be seen how far this quality can be made apparent.

When reflecting on making construals in the MCE, it is
natural to look for connections with established practices. The
way that dependency is deployed in section IV (see Figures 6,
7 and 8) brings to mind the well-known model-view-controller
pattern, for instance. In making construals, there is a tension
between creating exploratory informally defined artifacts to
aid personal understanding and stable artifacts combining
well-rehearsed interactions and well-defined interpretations
that everyone can understand. This tension extends to the
meta-level, where using built-in features and established
patterns may seem more appropriate than crafting observables,
dependencies and agency from first principles in a personal
style. The MCE has its own mechanisms for scaling geometry
for instance, so that the observable ‘size’ in Figure 3 can be
made redundant. Specifying dependencies associated with
mouse actions on the display in Figure 8 explicitly can also be
avoided by exploiting more advanced features of the MCE.

In this context, the unstructured messy practices of makers
of construals may be contrasted with those of tidy-minded
programmers. The simplified interface displayed in Figure 3 is
untypical of what is involved in more ambitious modelling
exercises, where there may be many input windows, canvases
and instances of viewers playing a similar role to the
observable list. In making complex construals, it is often
helpful to consult many different views of the same script: for
instance, examining the values of the observables by clicking
on them in the ‘inspect’ mode, or studying the relationship
between them using a ‘dependency map’. As several of the
listings above illustrate, crafting a script evokes the spirit of
bricolage. In traditional software design, by contrast, good
practice favours eliminating redundancy, conformance to
standards, and clarification through abstraction.

Making construals is not well-oriented towards the
simplification that stems from retreating from experience to
abstraction. It can play an important role in rationalising, but
is best-suited to what cannot be formalised and is not fully
understood (cf.[7]). This has particular relevance for tasks that
present challenges in ‘wicked design’ [9]. Though off-the-

shelf JavaScript components can be incorporated into a
construal, the benefit of making construals is in the learning
experience, even when this may involve ‘reinventing the
wheel’. Another variety of re-use is then more appropriate,
where makers build and share small construals that can be
combined and integrated into larger construals. A core idea is
that viewing ‘the same thing’ from many perspectives is not
redundancy. This is also illustrated in the MCE through the
potential for modelling behaviours both objectively (as in
conventional functions and procedures) and in ways that
reflect an agent-oriented viewpont (as in with‘s and when‘s).

The MCE is still at an early stage of development. A core
aim of CONSTRUIT! is to make the practice of making and
sharing construals accessible to everyone. Outstanding
challenges include creating an interface to the project manager
than can do justice to this vision and finding a way to expose
the powerful intuitive foundation for the with construct.

ACKNOWLEDGMENTS

We thank Tim Monks, Antony Harfield and Joe Butler for
their work on JS-Eden, and Mike Joy for his work on [5] and
as Coordinator for CONSTRUIT!. This project has been
funded with support from the European Commission under the
Erasmus+ programme (2014-1-UK01-KA200-001818). This
publication reflects the views only of the authors, and the
Commission cannot be held responsible for any use which
may be made of the information contained therein.

REFERENCES

[1] Empirical Modelling, “Empirical Modelling,” 2015.
http://go.warwick.ac.uk/em. [Accessed: 08-Jul-2015].

[2] The CONSTRUIT! Project, “The project,” 2015.

http://construit.org/. [Accessed: 08-Jul-2015].
 [3] Beynon, M. et al, "Making construals as a new digital skill:

dissolving the program - and the programmer - interface," Proc.

2015 International Conference on Interactive Technologies and
Games, 22-23 October 2015, Nottingham, UK, pp9-16

 [4] Beynon, M. and Russ, S. "Experimenting with Computing", The

Journal of Applied Logic 6, pp. 476-489, 2008
[5] Beynon, M .and Joy, M. “Computer programming for noughts-and-

crosses: New frontiers,” in Annual Psychology of Programming

Interest Group Conference PPIG’94, 1994, pp. 27–37.
[6] S. Gardner, “empublic: oxoGardner1999,” 1999.

http://empublic.dcs.warwick.ac.uk/projects/oxoGardner1999/.

[Accessed: 08-Jul-2015].
[7] Jackson, M.A. "What can we expect from program verification?,"

IEEE Computer, 39(10), 53–59.

 [8] Kalas, I.. "On the Road to Sustainable Primary Programming,"
Constructionism 2016, February 1-5, Bangkok, Thailand.

https://www.youtube.com/watch?v=55hlqh7g-xk

[Accessed: 22-May-2016].
[9] Lansdown, J. R. "Graphics, Design and Artificial Intelligence,". (ed.

R.A. Earnshaw) Proceedings of the NATO Advanced Study Institute

on Theoretical Foundations of Computer Graphics and CAD held at
II Ciocco, Italy, July 4-17, 1987, pp. 1153-1174

[10] Nardi, B.A. "A Small Matter of Programming: Perspectives on End

User Computing," The MIT Press, Cambridge, MA. 1993
[11] Monks. T. "A definitive system for the browser," 2011.

http://go.warwick.ac.uk/em/publications/mscprojects/timmonks/.

[Accessed: 22-May-2016].
[12] “Web Eden,” 2013. http://go.warwick.ac.uk/em/software/webeden/.

[Accessed: 08-Jul-2015].

[13] "The environment for making construals (the MCE)", May 2016.
 http://jseden.dcs.warwick.ac.uk/scifest16/ [Accessed: 22-May-2016]

