
 1 

 
 
 

Modelling Babbage’s Difference Engine 
 

0215594 
 

Abstract 
 

Charles Babbage’s Difference Engine is commonly considered to be the world’s first computer. As 
such it is an important part of any Computing teaching. Though much literature exists on Babbage, the 
construction of the engine and the algorithm it computes, little has been written about the actual 
operation of the machine. Constructionism is well known in the field of teaching and learning. This 
paper will attempt to identify the relative merits of constructionism in creating a model of the 
Difference Engine for educational purposes, describe the model and process and discuss this approach 
with regards to its relationship to Empirical Modelling. 
 
 

1 Introduction 
1.1 Historical Context 
Before the invention of calculating engines, indeed 
up until the 1940s, calculations involving complex 
functions, such as trigonometric calculations, could 
only be done with the aid of a set of tables, which 
had been pre-computed by hand. This laborious 
task was often fraud with calculation errors. Such 
errors had grave consequences, such as the sinking 
of ships because of subsequent navigation errors. 
Babbage himself proclaimed in 1821: “I wish to 
God these calculations had been executed by 
steam” (Swade, 2000).  
The first mention of a calculation machine was 
made by a German engineer called Johann Helfrich 
Müller in 1784 (Swade, 2000) in a letter to a 
colleague1. 
In 1812 Charles Babbage conceived the idea of the 
Difference Engine: “[a machine that uses] the fact 
that the nth order differences of a polynomial of 
degree n are constant in order to calculate 
successive values [of the polynomial]” (d’Ocagne, 
1986). Babbage never completed the Difference 
Engine, due to a number of intervening factors, his 
temper being not a small such factor.  
 
1.2 Motivation 
One of the main aspects of Empirical Modelling is 
teaching and educational technology (Beynon, 
1997). Whilst researching for this paper, it became 
clear that to this date no physical models exist, 
which can be used in the teaching of either the 
history of computing or mathematics; the few 
models that do exist, such as the one built for the 
Science Museum in London are not available for 

                                                 
1 For the text of the letter see Klipstein, P.E., “Beschreibung 
einer neu erfundenen Rechenmaschine”, Frankfurt, 1786 

demonstration to the public. It is difficult to see 
them in action and to get a first-hand, detailed 
account of how they operate. To the average 
museum goer this is not of great concern, however, 
considering that Charles Babbage’s Difference 
Engine is by some regarded to be the  first “proper 
computer”, it seems important that students, and 
also teachers, understand the principal workings of 
the machine. Currently the teaching extends only as 
far as explaining the method of finite differences 
that the Difference Engine uses to do its 
computations. However, the actual workings, the 
internal calculations, are, if at all, only glossed 
over.  
 
1.3 The Method of Finite Differences 
This section will serve as a quick explanation of the 
idea behind the Difference Engine 2 . Many 
calculations for tables, such as trigonometric 
functions can be approximated to a polynomial 
equation in one variable, of the form:  

f(x) = anx
n + an-1x

n-1 + … + a2x
2 + ax + a 

These polynomials can then be computed by 
substituting a value for x. The idea behind the 
Method of Finite Differences is that when the 
difference between two successive values of f(x) is 
taken, and then the difference between these 
differences is taken at some point the difference is 
constant. For an nth order polynomial this is the nth 
difference. As an example: let f(x)=x2: 
 
 
 
 
 

                                                 
2 For more information of the mechanical operation of the 
Difference Engine: http://www.satyam.com.ar/Babbage/en/ (last 
accessed 18/01/06) 



 2 

 

 

 
 
Given this table, it is possible to work out the value 
for when x = 11. Since the second difference is 
constant at two, we can assume that the next value 
after 19 is 19+2=21. From that we can calculate 
that 112 is 121 and any calculator will verify this. 
For very long high-degree polynomials it was often 
easier to calculate successive results via this 
method, which often ran to 6 or 7 differences. As 
Babbage himself said: “All tables can be computed 
by differences.” (Babbage, 1994) 
This process was laborious, however, and a single 
slight miscalculation would carry forward to the 
rest of the table, rendering it useless. This is the 
reason why Babbage thought of building a machine 
to automate these calculations. 
 

2 Previous Models 
Babbage invented the Difference Engine over 150 
years ago. Since then attempts have been made at 
actually building it, with varying degrees of 
success. Discussed here are three versions which 
were completed and adhere more or less closely to 
Babbage’s design. 
 
2.1 Scheutz Difference Engine 
The two Swedes George and Edvard Scheutz, 
father and son, were engineers and built one of the 
first versions of the Difference Engine. It is often 
claimed that they were unaware of Babbage’s 
design3 and invented their own Difference Engine 
(d’Ocagne, 1986). They felt, however, that the 
machine was too large to be completed successfully 
quickly. Thus, they built a smaller scale version, 
which held Babbage’s principle in mind, but 
deviated quite a lot from his designs. 
 

                                                 
3 As it says in a foot note, the Scheutzes were probably inspired 
by an untitled article about Babbage’s Difference Engine. See 
Lardner, D., Edinburgh Review, July 1834, LIX(CXX):263-327 

2.2 Robinson’s Meccano Engine 
Tim Robinson’s Difference Engine is probably one 
of the most curious. It is built entirely out of 
standard Meccano parts4. In some way it is ironic, 
that Babbage never built his own Difference 
Engine because of the lack of precision engineering 
and mass produced gears (and other mechanical 
parts). Whereas now, in principle, anyone with the 
right Meccano set can reproduce Babbage’s 
machine. 
 
2.3 The Science Museum Difference 
Engine 
This Difference Engine, which is on permanent 
display at the London Science Museum was begun 
in 1985 and completed its first successful, error-
free test run a month before Charles Babbage’s 
bicentennial in November 1991.5 
Though the Science Museum’s version of 
Babbage’s Difference Engine No 2 deviated slightly 
from Babbage’s original plans, these changes had 
been made so they were reversible and only 
implemented to facilitate operating the machine6. 
Since April, the 4,000 part printing mechanism is 
also in operation7. 
 
2.4 Software Models 
Ed Thalen has created a version of the Difference 
Engine as a Java Applet 8 . This applet only 
describes the functioning of the engine in terms of 
outputs of columns, but does recall the Difference 
Engines ability to handle the sine function by 
approximating it to a polynomial of degree 7. He 
also provides a description of tools that may be 
used to implement a version of the Difference 
Engine. 
 

3 Constructionism 
3.1 The complexity of modelling 
After reviewing the available material on the 
Difference Engine, it became clear very soon that 
any modelling done would have to be very basic. 
Not only does the author lack the specific 
mechanical engineering knowledge in order to 
design and construct the various elements, but also 
with very complicated and closely timed operations 
(such as for the carry) it was unfeasible to produce 
an actual rendition of the Difference Engine as 
software. 
                                                 
4http://www.meccano.us/difference_engines/rde_1/index.html 
(last accessed 18/01/06) 
5 http://www.sciencemuseum.org.uk/on-line/babbage/index.asp 
(last accessed 18/01/06) 
6 Described by Reg Crick (5th paragraph from the bottom) 
http://www.ftldesign.com/Babbage/ (last accessed 18/01/06) 
7 http://news.bbc.co.uk/1/hi/sci/tech/710950.stm (last accessed 
18/01/06) 
8 http://ed-thelen.org/bab/bab-diff-JavaScript.html (last accessed 
18/01/06) 

x f(x) 1st difference 2nd difference 
1 1 3 2 
2 4 5 2 
3 9 7 2 
4 16 9 2 
5 25 11 2 
6 36 13 2 
7 49 15 2 
8 64 17 2 
9 81 19 2 
10 100 21  

Table 1 – First and Second Differences for f(x) = x2 



 3 

However, this was not a deterrent from creating the 
Difference Engine, but rather forced a new view of 
how a model of the Difference Engine could be 
constructed empirically. 
 
3.2 What is constructionism? 
In its simplest form, constructionism is “learn by 
making” (Papert, 1991). By constructing artefacts 
to model the real world a deeper understanding of 
the workings of both the model and the real-world 
are fostered.  
We perceive the real world artefacts through what 
in computing terms would be called its output, 
which in Empirical Modelling is called an 
observable. Indeed, the only way of knowing that 
some action had taken place inside the artefact is 
by what we can observe from the outside. Of 
course these observables generally do not act 
independently, but rather are connected by some 
dependency, which can either exist between 
observables in the artefact or a wider system of 
artefacts. 
When we examine an artefact, we detect the 
changes in the observables; we can, given that we 
know the inputs then construe the dependencies 
between the observables. Doing this empirically, 
i.e. not from formal theory but from one’s own 
observations enables one to construct a mental 
model and hence with the right tools, a physical 
(software) model of the artefact. 
This resulting model may or may not have close 
resemblance to the inner workings of the actual 
artefact that is being modelled. The important part 
of constructionism is that by creating a model of 
the artefact a deeper understanding of the artefact is 
fostered. The fact that the model may have little to 
no resemblance to the real world referent is of little 
concern. In the end, the observables behave the 
same way and give the same values as the referent. 
Take a computer program as an example. It is not 
necessary to know in which programming language 
it was coded, nor whether object oriented practices 
were used, nor is it important whether the variables 
were named in an understandable fashion, nor 
whether the program was well commented. If all 
we have is the final, compiled program, we can 
recreate it, without having to know what it looks 
like on the inside. One could argue that such a 
program behaves like Schrödinger’s cat. We don’t 
know whether the model is the same as the 
program, until we can take a look at the program or 
the model behaves differently to the program. 
 
3.3 Constructionism in Empirical 
Modelling 
Constructionism and Empirical Modelling are 
much related fields. Both place an emphasis on 
artefacts as well as modelling in order to 
understand the artefact itself. While 
Constructionism approaches modelling from an 

educational angle, where the process of learning 
about the domain of an artefact is closely 
interwoven with the creation of a model to simulate 
that domain, Empirical Modelling focuses more on 
the philosophical aspects and the link between 
observations and the inner workings of artefacts. In 
(Beynon, 2004) the term construal is used to 
describe “a computer based artefact for active 
learning” it then goes on to say that “a construal is 
typically much more primitive than a program It is 
built with a referent in mind.” This referent, of 
course, is the original real-world artefact. This 
argument begins to outline the relationship between 
Constructionism and Empirical Modelling. 
Empirical Modelling gives Constructionism the 
tools and a theoretical framework, whilst 
Constructionism gives Empirical Modelling a real-
world application, a way to test theories. 
Furthermore, in many ways, developing a model in 
EM is constructionism. Modelling begins with a 
basic model and then builds (or constructs?) on it. 
Modelling, unlike developing “classical” computer 
programs, is an iterative process, which begins with 
a crude model that is then refined as more 
observables and dependencies are added. As such, 
a model can also never be complete, since no 
model can ever recreate the real world to 100%. 
However, Empirical Modelling supplies the correct 
tools for this iterative process, as described in the 
next section.   
  
3.4 Tools 
3.4.1 Definitive Notation 
When modelling dependencies in a constructionist 
manner, it is important that all or at least many 
parts of the model can be changed. This is not just 
in order to allow the model to be extended at will, 
or to be adapted to a previously unseen pattern in 
the observables, but also so that a variety of what if 
scenarios can be constructed. 
The ability to change the values of observables or 
dependencies is important in modelling. When 
wanting to investigate further the possible effects 
that a change in certain dependencies would have, 
or if the starting conditions changed, one has to 
turn to a model. The real world conditions of the 
artefact cannot be changed, so in turn one must 
look to a model. 
  
3.4.2 EDEN 
Conventional programming languages have a flaw, 
which renders them less effective when trying to 
study the effects of changing observables in a 
model: With every change they need to be 
recompiled. It can be argued that one can expose 
the variables via textboxes and buttons to the user, 
and while that may be true, it can only expose those 
parts of the model that the modeller has thought 
about exposing. In other words, only those 



 4 

variables that can be foreseen to be useful are 
exposed.  
With a modelling tool, like tkeden9, it is far simpler 
to build and interact with a model. Observables can 
be changed while the model is running, giving real-
time feedback about the change in the model. 
The EDEN suite of tools also includes support for a 
graphical representation of observables. This is 
particularly useful where a model is very large and 
potential users need a starting point to investigate 
the model. Furthermore, since modelling tries to 
mimic the real world, and real world artefacts 
usually have some sort of visual output, a model 
ought to as well. 
 
3.4.3 The Downside 
There are of course downsides to using these 
modelling tools. EDEN does not make 
programming knowledge obsolete. The necessity 
for having a modifiable l-value in order to assign to 
a variable is still present. As are programming 
constructs, such as for loops and if statements. 
Though these are of course necessary, they do limit 
the audience of the tool to those who already know 
how to program. 
Thus, if it hadn’t been for the author’s previous 
knowledge of programming, EDEB would not have 
been a very useful tool. 
Using the graphical tools, such as DoNaLD and 
Scout constrains the interaction with the model in a 
similar way that compiled programs do. Also, when 
seeing the final model, a user might not even think 
about the observables and dependencies, which are 
now hidden behind the graphical user interface. 
 

4 The Model 

 
Figure 1 – The digit wheels in operation 

                                                 
9 More information about tkeden and all its associated notations 
can be viewed here and a copy downloaded: 
http://www2.warwick.ac.uk/fac/sci/dcs/research/em/notations/in
tro/ (last accessed 18/01/06)  

 
4.1 Initial Problems 
With close to 4,000 gears, shafts, sprockets and 
other assorted parts, the Difference Engine was 
difficult to engineer in the 1830s due to the lack of 
precision engineering (Swade, 2000). 
Fortunately, this is not much of a problem when 
modelling a machine such as the Difference Engine 
in software. The main problem with parts such as 
gears is that they must be modelled before they can 
be used. This, as it turned out, was a much greater 
problem than originally perceived. Attempts at 
making variable tooth gears in tkeden’s 3D 
graphics tool, Sasami, failed. Thus with no way of 
creating all the necessary components in 3D, this 
course had to be abandoned. 2D construction of the 
Difference Engine was also considered and then 
discarded. A 3D machine simply cannot be 
modelled correctly and understandably in just two 
dimensions.  
Thus the constructionist idea was taken up.  
 
4.2 Outline of the Model 
The model of the Difference Engine can compute 4 
digit numbers to second order differences. The 
digits are arranged in wheels, running horizontally. 
The right-most wheel in each row represents the 
units, the next left wheel the tens and so on. Thus, 
the third wheel from the right actually represents 
the hundreds. Vertically arranged are from top to 
bottom the input/output wheels, first order 
difference wheels and then the second order 
difference wheels. 
The wheels are represented with a window to read 
of the value that the wheel is currently turned to 
and a line indicating where on the wheel zero is 
located. This gives a quick visual clue to how far 
the wheel has turned and will be further explained 
in the animation section. 
To the right of the wheels are the input textboxes. 
By entering a number here in the conventional 
form (i.e. 1234) the wheels for each particular row 
can be set. If a number larger than the number of 
digit wheels is entered, any digits greater than 103 
are ignored. The wheels cannot be set via these 
textboxes once the calculation mechanism has been 
set into operation, however, the underlying 
observables can of course still be altered. 
 
4.3 Operation 
A button at the bottom of the screen starts the 
calculation. Babbage’s machine calculated one 
result every four cranks of its main drive shaft. 
This button simulates four such cranks. While in 
operation, the button goes black, once the result 
appears on the input/output wheels, the button 
resets to its default colour.  
The calculation begins by counting down the 
second order difference onto the first order 



 5 

difference; this happens even when the second 
order difference is 0, in which case the first order 
difference remains unchanged. The wheels on the 
second order difference wheels will count down to 
zero whilst simultaneously the wheels on the first 
order difference will count upwards by the same 
amount. Once this is done the first order difference 
wheels will repeat the same process onto the 
input/output wheels. Once this has been completed, 
the first order and second order difference wheels 
will reset to the previous value they had. The 
model is then ready to calculate the next result. 
Initially the speed of the wheels turning is set to 
1000 milliseconds. This allows the operation of the 
calculation steps to be observed more easily. In 
order to get a feel for a more realistic speed it 
should be set to 100 milliseconds. 
 
4.4 Simplicity 
Babbage himself was very concerned not only with 
making the Difference Engine, but also with its 
use. In his autobiography he states that the 
Difference Engine “would be of comparatively 
little value, unless it were easily set to do its work, 
and […] executed not only accurately, but with 
great rapidity.” [BC31]. 
It seems though, that the machine was not at all 
“easily set to do its work”.  The technical manual 
prepared by Reg Crick and Barrie Holloway10 on 
the setting of the Difference Engine built for the 
Science Museum in London, describes the process 
in a series of steps. This includes setting the odd 
and even columns separately as well as several 
locks that need to be disengaged and re-engaged at 
the right time. This is certainly not as simple as 
Babbage leads us to believe.  
Furthermore, the digits on the Difference Engine 
read from bottom to top in order of increasing 
powers of ten. This can be confusing when 
attempting to read a value of the wheels. One 
would expect the digits to be aligned in the same 
way that one normally reads them, i.e. horizontally. 
For the Difference Engine after Babbage’s design, 
this was not much of an issue, since Babbage 
envisioned from the start to have a printing 
apparatus attached to the output column. From that 
point of view, the output column never needed to 
be read, the results would be printed out, organised 
into tables. Babbage considered this to be very 
important “as there was the possibility of errors by 
the operators.” (Nyman, 1982) 
Both of these issues we simplified in the model. 
Since the real physical processes of the Difference 
Engine aren’t modelled one-to-one, liberties were 
taken with the setting of the machine as well. 
Textboxes are used to set the wheels to the correct 
positions. Also the digit wheels are aligned 

                                                 
10 A copy can be found here: http://ed-
thelen.org/bab/bab_inst.html (last accessed 18/01/06)  

horizontally to facilitate reading off numbers. Since 
Eden does not contain any support for printing, 
especially line-by-line printing, this part of the 
Difference Engine was not implemented at all. 
 
4.5 The Modelling Process 
4.5.1 The Carry mechanism 
Though Babbage discovered himself whilst 
investigating the feasibility and design of the 
Difference Engine, “an intractable problem was 
always the ‘carry system’.” [NA48] This part of the 
model needed a great deal of attention. On the one 
hand, it was important that the model replicated the 
inner-workings of the Difference Engine; on the 
other hand, it would not have made sense to try and 
model the idea of an arm swinging around and 
knocking the next gear one tooth further. 
Thus, the carry mechanism functions like this: 
When a digit wheel changes, it checks whether the 
number it turns to is greater than ten. If that is the 
case, a carry is generated. When a carry is 
generated, the carry indicator is set to one. This 
change is registered and the next wheel is 
incremented. Then the carry indicator is reset to 
zero. This intermediary step seemed to follow the 
idea behind the Difference Engine’s carry 
mechanism more closely than if it had been 
omitted.   
 
4.5.2 Animation 
Anyone who has seen the Science Museum’s 
Replica of the Difference Engine cannot help but 
be awed by its rattling and stomping, the whirring 
of gears and the clatter of the crank shaft. It was 
obvious right away that the visual aspect of the 
Difference Engine was important and that it would 
have to feature in the final model in some way.  
The wheels are represented by a circle. Since a 
circle alone would not be able to convey the idea of 
movement, a line was added, which points to the 
zeroth position on the disk. The position of this line 
is directly linked to the value of the digit that it 
represents, so that if the value changes (whether it 
is within the model’s code or from user 
intervention) the facing of the line is automatically 
updated. Whilst the calculation is running, the 
values are constantly updated and the wheels 
appear to be spinning. This, it was felt give more 
realism to the working of the model. 
Also, for someone who is not familiar with the 
theory behind Babbage’s Difference Engine it is 
easy to see what processes are going on inside the 
model. 
When the model is set to the right clock speed 
(about 100 milliseconds) the wheels of the model 
spin fast enough to simulate actual movement. The 
clock can of course be slowed down to watch the 
process at a slower pace und thus understand it 
more easily.  
 



 6 

4.6 Extendibility 
When the model was constructed, it was done in a 
very exploratory manner. First two wheels were 
constructed and a carry mechanism between was 
implemented. Content that this approach would 
work, the input/output wheels were extended to 
four digits. After the first order difference was 
added, the model was, in principal complete. By 
adding a second difference to the model, it was 
proved that the model can be extended fairly easily 
(certainly more easily than the original Difference 
Engine). By copying the definitions file for the first 
order wheels and replacing the prefixes to variables 
and functions (a simple find and replace in most 
text editors) and editing some settings for the 
animation, another difference could be added in a 
matter of minutes. Likewise the number of digits 
could be extended fairly easily. 
One major advantage over this model to 
comparable software models is that there is no 
upper limit on the number of digits in the 
computation, other than memory and screen size 
limitations. Each digit is stored in an individual 
variable. EDEN does not have a “byte” data type 
(in fact a nybble would be sufficient) and therefore 
the digits had to be stored as integers. 
 
4.7 Limitations 
The main limitation of the model is the fact that it 
does not closely follow the engineering plans that 
Babbage drew up. It cannot convey the full extend 
of Babbage’s Difference Engine. Though it 
recreates the working, theoretical aspect of the 
machine and through the use of animation gives 
some idea of the visual aspect of the engine, it does 
not fully model the Difference Engine. Though a 
user might learn the working principle of the 
machine, inner operation of the machine is by far 
different. 
  

5 Conclusion 
Constructing the model has indeed been an iterative 
process, starting with two wheels and a carry 
mechanism between them; moving all the way on 
to being able to extend Babbage’s Difference 
Engine far beyond the capabilities that Babbage 
himself had dreamt of. 
It is, of course, clear that the inner workings of the 
machine and the model are vastly different. The 
former is purely mechanical, whilst the latter is 
pays very little tribute to the engineering principles 
present in the Difference Engine. 
The model, however, does mimic the function of 
the Difference Engine. Given the same problem 
and with the ability to synchronize the first step 
(the setting of the wheels), the model and the 

engine will both give the same answer every time11. 
In light of this, the model can be declared to be 
successful and to have demonstrated the principles 
of constructionism in action.  
Furthermore, the close working relationship 
between Constructionism and Empirical Modelling 
was demonstrated, by creating the model in the 
definitive notation, EDEN. 
The main question that remains at the end is in 
what way would the experience of making the 
model (and possibly even the experience of using 
the model) be enhanced, if the model were to be 
made to exact 3D specification of Babbage’s plans 
and furthermore, in what way this experience 
would differ, would a traditional programming 
language be used.  
 

References 
 
C. Babbage, “Passages from the life of a 
Philosopher”, Pickering & Chatto (Publishers) 
Limited, 1994 
 
W.M. Beynon, C. Roe., “Computer support for 
constructionism in context”, In Proc. of ICALT'04, 
Joensuu, Finland, August 2004, 216-220. 
 
M. Beynon,, “Empirical Modelling for Educational 
Technology”, In Proceedings of Cognitive 
Technology 1997, pages 54--68. University of 
Aizu, Japan, IEEE, 1997 
 
M. d’Ocagne,  “Le calcul simplifie”, Charles 
Babbage Institute Reprint Series for the History of 
Computing, The MIT Press and Tomash 
Publishers, 1986 
 
P. Morrison, E. Morrison, “Charles Babbage and 
his calculating engines”, Dover Publications, 1961 
 
A. Nyman, “Charles Babbage: Pioneer of the 
Computer”, Oxford University Press, 1982 
 
S. Papert, I. Harel, “Situating Constructionism”, 
Ablex Publishing Corporation, 1991  
 
D. Swade, “The Cogwheel Brain”, Little, Brown 
and Company, 2000 
 

                                                 
11 In fact, the Difference Engine would make calculation errors 
more often than the model, due to mechanical failures and the 
delicacy of the carry mechanism. 


