

Emergency Egress Simulation: Investigating an Empirical
Modelling Approach

0101187

Abstract

This paper examines the benefits of using an Empirical Modelling approach to simulating the
movement of a collection of people out of an area during an emergency, using an original model
developed with the tkeden tool. It is found that such a model can benefit from the use of EM,
since the need to allow the user to experiment is met by a coherent, open environment which can
cope well with change because of the use of dependency. Shortcomings are found in EM's
dependency notation, and language extensions are given to address these issues.

1 Introduction
This paper will examine and evaluate the benefits of
using an Empirical Modelling (referred to as “EM”)
approach to simulating the movement of people out
of an area during an emergency. The paper is based
on an original model called the Emergency Egress
Simulation (EES), developed by the author using the
tkeden tool.

In the first and second sections respectively, the
positive and negative experiences of creating the
model using EM are discussed, where possible
making comparisons with alternative solutions for
creating such a simulation. Finally, some
suggestions are made as to how EM tools such as
tkeden may be changed to improve their suitability
for creating such models.

1.1 Background: The EES model
In this model, one can observe a set of people
attempting to exit from a room. The room contains
walls (which a person cannot move through or see
over) and obstacles (which can be seen over but not
moved through). The user of the model may add,
move and remove walls, obstacles and people. The
model gives statistics, such as the total time it took
for every person to exit, and the number of people
that went through each exit. A replay function
allows the movement of people to be examined step
by step.

It is helpful at this point to try to define and
categorise the EES model so that it may be
understood how the experiences given here may

apply to other the creation of other models. It is:

• Multi-agent: with a population that is reasonably
homogeneous.1

• Data-intensive: much data must be handled,
modelling the position of walls, people,
obstructions and exits.

• Size-variable: the size of the population, room
area, and many other factors may increase or
decrease.

• Modelling complex behaviour: Even to achieve
simple overall behaviour, each person must be
constructed using complicated individual
behaviours.

2. EES and EM

2.1 Benefits of development in EM

2.1.1 Dependency models state
A core aspect of EM is the use of definitive
notations, and this has several advantages when
developing a model such as the EES. Since
dependency models relationships between
observables, its use within EM often removes the
need for certain procedures in the EES– those that
are there to maintain state. In traditional procedural
programming, relationships between two variables
must be maintained using procedural methods.
However, when using procedures, the programmer
must ensure that all of the necessary instructions are

1 However individuals within the population can have differing
properties, such as their speed of movement.

executed, in the correct order, to update the state of
each variable. Dependency is a more coherent way
of maintaining state, since observables have a well
defined relationship to each other, and that
relationship is automatically maintained by the
system.

A good example of this is the way in which the two
approaches are used to create graphical interfaces. In
the EES model, the DoNaLD notation (Beynon et al,
1986) is used to create an interface driven almost
entirely by dependency. (Some of the re-sizing of
the interface must still be done by procedures, but
this is because it requires the addition and removal
of definitions).

For instance, each person is drawn as a circle –
where their position, size and colour is determined
by a DoNaLD dependency similar to:

person1 = circle(origin + {person1_x! *
gridwidth!,
person1_y! * gridheight!}, personSize!)

This results in an interface which maintains itself
almost automatically. If a person's position
(represented by the EDEN observables person1_x
and person1_y) changes, then the animation will
update itself.

Contrast this with programming in C, for example,
where one must create procedures that draw and
remove the circle from the screen, and then
whenever the person's attributes are changed the
programmer must remember to call those
procedures. When one considers that there is a circle
for every person in the simulation, and a square for
every grid position, a typical interface with a 20 cell
wide and high grid may require around 450 shapes –

a substantial number of elements to control.

On face value, the advantage of using dependency is
that the modeller is relieved of the burden of
updating the interface, lightening their workload and
so quickening model development. However on a
deeper level it also means that drawing interfaces is
further abstracted away from the modeller, and that
the interface represents a continuous view of state
(as discussed above).

2.1.2 EES suits the empirical approach
Empirical modelling promotes experimentation as
the basis for improving a model. Therefore the
method of modelling is one of trial, review and
improvement. To this end, it is often said that
models made in EM can never be considered
finished – because of there is always more
experience which has not yet been accurately
modelled.

EES is good example of model that is never
finished: The amount of research devoted to
Artificial Intelligence shows that modelling human
behaviour is clearly very difficult. Indeed, AI is a
topic that is particularly suited to EM as it is rather
intangible, and so obtaining correct behaviour is
achieved through trial and error. Also, in AI, one is
generally only concerned with achieving the correct
external behaviour, and not with the internal
functionality which produces that behaviour. In
developing the model, the behaviour of the people
had to be continually adjusted and improved,
gradually adding new features to cope with
problems that new room designs exposed: To begin
with, the person simply walked straight at the exit,
but then it was given the ability to walk around
obstructions if it had no-where else to go. To add
realisim, a procedure was added to test if an exit
could be seen. Finally the person was designed to
prefer not going where it had been before.

The model is also suited to EM because it is by
nature experimental: its goal is to allow a user to
adjust the properties of the simulation to investigate
the effects on the observables, such as total exit
time, and then experiment with room designs to
improve their results.

2.1.3 Openness
Openness is the critical quality in allowing the
modeller or user to examine and experiment with the
model. A simple example of this within the model is
that a user can easily adjust, increase or decrease the
placement of items within the environment, such as
walls and people.

Figure 1: The animation section of the EES GUI

An example of more extreme modification is that
such changes can be made whilst a simulation is
running. For instance, one could simulate a person
breaking their leg by slowing their speed drastically.
A procedurally developed counterpart may well not
cope with such a change.

2.2 Issues with development in EM
A problem that arose in the creation of this model
was that often observables needed to be dependant
on every element in a list. For instance, the
num_used_exit_1 observable must depend on each
item in person_positions to calculate whether
each person used exit 1:

num_used_exit_1 is
(person_positions[1][5]==1) +
(person_positions[2][5]==1) + ...

However the number of items in the
person_positions list is subject to change as
people are added and removed from the model,
which poses problems: if more people are added
than is included in the num_used_exit_1 definition
then the result will be incorrect; even worse, if
people are removed, then the definition will contain
references to items that are no longer in the
person_positions list, and an error is generated.
Techniques employed in the model as work-arounds
to this problem are:

1. Adding triggered actions using execute() to
regenerate the dependencies – this is inelegant,
and also creates extra work for the modeller.

2. Lengthening the dependency to include terms for
as many people as may be needed. Extra
conditions must then be included every term to
prevent an error:

num_used_exit_1 is
(number_of_people >= 1 ?
person_positions[1][5]==1 :0) +
(number_of_people >= 2 ?
person_positions[2][5]==1 :0) +...

2.3 Recommendations
Ward (2004) recognises a number of issues relating
to the declaration of dependencies within lists, and
addresses them by introducing a new notation. It is
suggested that, in a similar way, the solution to the
issues raised may lie in introducing a new notation
which improves the set of operators that can be used
in a definition. When attempting to create the
definitions to control the visible attributes of a grid
cell, each one had to be assigned to a definition
similar to:

A_room1_grid_cellh1v1 is
occupancelist[1][1]==­1 ? attr_wall_cell

: (occupancelist[1][1]==­2 ?
attr_exit_cell : (occupancelist[1][1]==­
3 ? attr_obs_cell :
attr_unoccupied_cell));

As it is extended, such an expression can become
unwieldy. To alleviate the need to use nested
conditional operators, it is suggested that a set of
operators could perform a similar function to the
'switch' keyword of many procedural languages. So
the definition could be replaced with a syntax such
as:

A_room1_grid_cellh1v1 is
occupancelist[1][1]?? ­1 ^
attr_wall_cell: ­2 ^ attr_exit_cell: ­3
^ attr_obs_cell: attr_unoccupied_cell;

To address the problems expressed in 2.2, another
possible extension to the language is to add syntax
which will iterate over every item in a list in a given
way. It is possible that the definition from that
section could be replaced with:

num_used_exit_1 is
+{person_positions[$][5]==1};

Where the braces enclose that action to be
performed on each item, the $ is the value that is
iterated for the length of the list, and the symbol
before the braces denotes the action with which to
combine the results2. This syntax given is only to
demonstrate the concepts, and would require
refinement. A new notation could be written which
would translate these new operators into functions in
standard EDEN.

3. Summary
The EES model benefits well from the use of EM.
Such models, where the goal is to allow the user to
experiment, suit EM well. The use of dependency
allows such models to cope well with unforeseen
changes. EM encourages openness within the model,
which is vital for experimentation. However, in
some circumstances, EM does not cope well with
automatic scaling of the model, and extensions to
the EDEN dependency notation are suggested to
deal with these issues.

References
W.M. Beynon, D. Angier, T. Bissell and S. Hunt.

DoNaLD: A Line­drawing System Based on
Definitive Principles, 1986

A. T. Ward. Interaction with Meaningful State:
Implementing Dependency on Digital
Computers, 2004

2This could include +, ­, * and >,< for least and greatest

	1 Introduction
	1.1 Background: The EES model

	2. EES and EM
	2.1 Benefits of development in EM
	2.1.1 Dependency models state
	2.1.2 EES suits the empirical approach
	2.1.3 Openness

	2.2 Issues with development in EM
	2.3 Recommendations

	3. Summary
	References

