An Empirical Modelling approach to Natural Language
Commands

0218982

Abstract

The paper details an approach to Natural Language Processing (NLP) based on the principles of Em-
pirical Modelling (EM). The suitability of EM as a tool for working with natural languages is discussed

as well as how NLP can integrate EM ideals. A definitive notation for making use of natural language
in EM IS presented, followed by an overview of an implementation, paying particular regard to how it

makes use of the features of EM.

Keywords: Empirical modelling, natural language

1 Introduction

Natural language processing and Empirical Mod-

elling are two seemingly unrelated topics, yet the lat-

ter provides an interesting base on which to build a
method for exploring the use of natural language as a
means of interacting with computers.

The words of computers and people are very dif-
ferent, and traditionally the onus has been on the hu-
man side to adapt in order to make interaction be-
tween the two possible. The use of natural language
as a user interface should remove much of the burden
from the user and has been a long-standing ambition
of many computer scientists. During the past cou-
ple of decades much work has gone into constructing
such interfaces but commercial success has been elu-
sive.

Methods of natural language processing are tra-
ditionally based either on formal grammars or, as
is now more common, statistical methods. Formal
grammars generally lack the flexibility required for
NLP and statistical methods, by their nature, work on
very large amounts of data, making them unsuitable
for use with smaller applications.

This paper provides an overview of an approach to
natural language processing that has been combined
with the ideals of Empirical Modelling to produce
a more informal technique, one that provides flexi-
bility and allows for exploration of language for use
within smaller domains. It first provides an overview
of the technique, followed by an interpretation based
on EM. The relationship between the two is then dis-
cussed and a definitive notation introduced. Finally,
an implementation is presented and possible future
extensions considered.

processing

2 An approach to NLP

The approach to natural language processing that is
used in this paper is based on command interpreta-
tion within limited domains (Rawlinson, 2005) and
is well-suited for use with Empirical Modelling. It
relies on identifying semantic entities within the in-
put and using the combination of these, along with
any keywords present, to match sentences to com-
mands. The recognition of entities is based strongly
on dependency, carrying out actions on identification
to convert text to a more usable form. The success of
this approach relies on two assumptions:

1. That although natural languages do not follow a
prescriptive grammar, sufficient formal structure
should exist describing individual semantic enti-
ties to be able to identify them and deduce their
meaning.

. That within limited domains, all possible actions
should be distinct enough to allow input sen-
tences to be mapped to individual commands
based on the semantic entities and keywords
identified in the input.

These assumptions are far from unreasonable, for-
mal structure, at least at some level, is a basic require-
ment of communication. Although natural language
can appear blah informal, once individual semantic
entities are identified the formal structure becomes
much easier to perceive. For example, when pre-
sented with two unlabelled juyside-by-side, there
are two primary ways of referring to an instance of

1This paper will make frequent references to the Jugs model
(Beynon, 1988).

Empty the jug on the left.
| | L L]
I
<empty> the <jug_word> on the <side>.

<empty> the <jug>.
I [1 |

I_I_I

<empty_jug>

Figure 1: The parsing of an example sentence using
the grammar in fig. 2.

one: either “the jug on the left”, or "the left jug”,
and although slightly contrived, these demonstrate
the ease with which it is possible for semantic enti-
ties to be identified. Furthermore, being able to infer
the meaning of a sentence (or rather in this case, map
an input sentence to one of a set of known commands)
based solely on these semantic entities identified with
the text is also a safe assumption. Consider the com-
mand “empty the jug on the left”; reducing this to
only those words that hold individual meaning, we
are left with “empty jug left”, and although now half
as long, the meaning is still intact, and conceivably
easier to parse, at least for a computer.

An example of this approach can be seenin fig. 1.

3 An EM approach to NLP

Three of the key concepts of EM are observability,

tended meaning of the input phrase, allowing for the
action to be carried out.

These relationships can be captured through
agency. By considering agents as some meaningful
sequence of observables with one replacement ob-
servable, applying them to the phrase replaces any
instances of the sequence with the replacements ob-
servable. If actions are also included, that are carried
out upon successful matching, the observables can be
given a value, that is then dependent on its action and
'child’ observables. Adding these actions allows for
the textual representation of the entities to be con-
verted to something more useful, such as from "thirty
two” to 32.

Matching a phrase that contains identified seman-
tic entities can then be carried out by a similar agent
that has a set of observables to match rather than a se-
guence. If all the observables are present in the string,
the agents action is executed.

4 Relationship with EM

“In the EM environment, there is not only a
chance to utilise one’s experience, but also
a chance to explore new experiences which
is often a source of enhancing one’s knowl-
edge.”

- Rasmequan and Russ (2002)

A key feature of many models in EM is their flexi-
bility and openness to interpretation. In general they
are never really considered ‘finished’ and are often
re-used or expanded into areas beyond their original
intended interpretation. The development of models
of language using the approach detailed in this paper

dependency, and agency, and these can be applied shares similar features. As they are not built on any

with the above approach to form an EM approach to
natural language command recognition. First, con-
sider some model and an input phrase that contains
some action that is to be applied to that model.
Observables can be thought of as collections of
symbols that hold some semantic meaning of impor-
tance to the model. There then exists a dependency
between the existence and meaning of one observ-

formal analysis of language, but on the user’s own
experience of, and interpretation of, language, differ-
ent users are likely to have different views of what is
required. This means the language associated with a
model can be continually developed as different peo-
ple make use of it and include their own understand-
ing.
One difference is that it is very difficult to re-

able, and the existence, meaning, and arrangement of interpret the meaning of language. Even though nor-

the observables that comprise it. This forms a tree-
like structure, moving from abstract concepts close
to the root, to more concrete ones at the leaves. The
premise is then that this can be taken to a point where
a meaning of the phrase can be construed from the
identified root observables and their locations, and if
done ’correctly’, this meaning should match the in-

mal models are open to interpretation, meaning is of-
ten implied by such things as variable names. The
ability to re-interpret a model becomes more difficult
the more concrete you try to make it. Notations such
as%scout and%sasami are a step in this direc-
tion; a picture of a jug can be difficult to interpret
as something else. Language is an extreme case of

this because the very purpose of language is to convey
meaning. So although parts of a model of language
may be extremely reusable, such as ones recognising
times and dates, the model as a whole is extremely
unlikely to fit in with other interpretation. The lan-
guage used to interact with a model, is based on the
current interpretation of the model, rather than the
model itself.

The language used with a model can also be con-
sidered as a means of knowledge storage. Tra-
dition methods of NLP usually use some form of
knowledge-base in order to disambiguate meaning.
However, in this case the meaning is built into the
model; the dependencies set up between semantic
entities and the actions carried out upon recognition
both implicitly and explicitly define various relation-
ships and so can be considered a form of knowledge.

5 A definitive notation

Definitive notations are a major tool used in EM and
S0 a notation use of several features of the AOP and
has been designed to be as intuitive as possible. The
basic template for an agent is:

type name = pattern
{

action
h

Wheretype can be either “agent” or “command” as
appropriatename is the name of the agent, appear-
ing between angled-bracketsattern is a space-
separated list of terms, which are detailed below, and
action , which is optional, is the code that is to be
executed if the pattern is matched.

These are 4 types of term, with 2 simply being used
to ease implementation.

"literal" <agent> (regex) ‘eden’

Literals and agents are part of the core of this ap-
proach, regular expressions were added in order to
reduce the number of agents required for simple
matches, making possible agents such as:

agent <jug> = (jug|glass|container);

Regular expressions are also allowed when referenc-
ing other agents, which is used as the mechanism for
combining several similar agents in to one. Access to
%eden observables improves integration with other
notations and allows for dependencies on other parts
of the model.

command <empty_jug>

{
h

<empty> <jug>

empty_jug($p2);

agent <empty> =
(empty|pour (outjaway));

agent <jug> = <jug_[12]>;

agent <jug_1> =

<jug_word> "on the" <side>

{
h

$v = $p3;

agent <jug_2> = <side> <jug_word>
$v = $pi;
¥

agent <side> = (left|right)
switch ($pl)
{

case "left" $v
case "right" : $v

h

agent <jug_word>
(jug|glass|container);

Figure 2: An example grammar.

Access to the identified terms is provided to the
action code by allowing variables of the foBpx to
be used, wherris the number of an identified term.

An example combining most features of the nota-
tion can be seen fig. 2. It carries out commands to
empty one of two jugs.

This notation is non-deterministic, and deliberately
so; to achieve otherwise would require enforcing
some form of arbitrary order or priority on semantic
entities, which is highly undesirable. In most cases
this should not present a problem as most sematic en-
tities, especially in an environment where their recog-
nition is controlled, should be reasonably distinct and
rarely overlap.

6

One of the key considerations was to decide on the
involvement of the Agent-Oriented Parser (Brown,
2000; Harfield, 2003) in the implementation. A cur-
sory investigation suggests that the AOP could be an
ideal starting pointing, however, its use in a major
way was rejected for several reasons.

Implementation considerations

e Firstly, it supports a relatively small number of
simple operations, which although ideal for its
intended use, can make the construction of rules
that do not match them slightly awkward. A se-
guence to be recognised can potentially require
one agent per term, making what could be a
simple recognition into a more complex set of
agents.

e Secondly, the AOP matches the entire input
string, whereas the approach in this paper rou-
tinely requires only partial matches. The could
be overcome by add dummy terms either side of
an agent, but yet again, this is adding unneces-
sary complexity.

e Finally, matching a command to an input sen-
tence requires consideration of individual parts
of the string in a potentially arbitrary order. The
AOP provides no mechanism for this beyond
including agents of every possible combination
This is possible for simpler commands, but the
number of agents grows quickly, potentially re-
quiring, for example, 24 agents to recognise a
command with just 4 terms.

Despite these incompatibilities, the AOP will not
be cast aside completely, it is an invaluable tool when
used as intended, in this case to convert from the de-
finitive notation above in to something more usable in
%eden.

7 Animplementation

Initially the AOP was used to produce a notation that
recognised agents in the definitive notation as de-
tailed in section 5 and converted them into a form
more easily usable ifbeden. Specifically it pro-
duces a list containing the agent type, the agent name,
a list of the terms to match, and the code to run when

pattern, or if none are present, it is made dependent
on the sentence currently be parsed.

The main function of the implementation is the
one that carries out general parsing. It essentially
attempts to match an agent to the sentence being
parsed, and on doing so modifies the sentence to re-
flect the action of the agent and updates the agent. In
doing so, any other agents that are dependent on ei-
ther the sentence or the agent just matched are passed
to the function to be matched as well.

The sentence being parsed is a list of tokens, with
each token being a list that contains the token’s type:
either a literal or an agent, the agents name if re-
quired, and the current value of the token. Initially
the sentence is a single literal token.

In order to receive the natural language input, a
dummy notation was made using the AOP that simply
passes the text to a function that creates the sentence
to be parsed.

The implementation is available at /csucfg/em/nlp/
when in the Department of Computer Science at the
University of Warwirck (January 2006).

8 Further work

There are three primary way in which the ideas in this
paper can be expanded, one being more specific than
the other.

The first is to expand the proposed definitive no-
tation to increase its similar to the notation found in
Rawlinson (2005), that is, to allows more complex
patterns to be recognised. Instead of simply using a
sequence of terms, it could be extended to allow com-
bination similar to regular expressions. This would
not increase the expressive power of the notation, but
would perhaps help reduce the number of agents re-
quired and therefore the overall complexity of the
grammar.

The second is to have some mechanism for deal-
ing with the dependency of actions and state. So for
example, breaking from the Jugs models and moving
on to the Lift (Beynon, 2003a), a command such as
“go to floor seven” could assert the state of begin on
floor seven, which would depend on being in the lift
at floor 7 and leaving it, which would require being
in the lift and pressing the button for floor 7, which
would require entering the lift etc. This would hope-
fully make specifying commands a simpler task and

the pattern is recognised. The agents are then passedopen-up the possibility of exploring state and action

to a function that first creates &eden observable

and then a procedure that passes the agent to the gen-

eral parsing function. The procedure is then made
dependent on either the other agents in the agent’s

dependency.

The final possibly for continuing the work of this
paper that has been considered is to add some form
of reasoning behind the language, which could be a

version of the previous suggestion but applied in a W.M. Beynon and S.B. Russ. The interpretation of
more intelligent way. Hopefully reaching the levels states: a new foundation for computationPhoc.
of projects such as SHRDLU (Winograd, 1968-70), PPIG’92, January 1992.

but in a more generic and flexible way.))
Rodney A. Brooks. Intelligence without representa-

tion. Artif. Intell., 47(1-3):139-159, 1991a.

9 Conclusion Rodney A. Brooks. Intelligence without reason. In
Proceedings of the 12th International Joint Con-

This paper details an attempt to bring together Empir- ference on Artificial Intelligence (IJCAI-91pages
ical Modelling with an approach to natural language 569-595, 1991b.

processing and in doing so it explores the relation-

ship between the two, proposes a definitive notation, C. Brown. An agent-based parsing system in eden,
and provides an overview of an implementation. The 3rd year project, University of Warwick, 2000.

two approaches are shown to complement each other
remarkably well, allowing for natural language inter- g ; . . .
action with a model to be explored and in doing so p|r|call modelling, 3rd year project, University of
increase the understanding of not only the language Warwick, 2003.

Antony Harfield. Agent-oriented parsing with em-

can be used for interaction with computers in general. modelling. InProceedings of the IASTED Confer-
ence on Applied Modelling and SimulatiodIT,
November 2002.

Acknowledgments

T.P. Rawlinson. Natural language processing in lim-

Thanks go to Steve Russ, Meurig Beynon, and the ited domains, 3rd year project, University of War-
other members of the Empirical Modelling group at wick, 2005.
the University of Warwick, for introducing the author

o the possibilities and applications of EM. Stuart Russell and Peter NorvigArtificial Intelli-

gence - A Modern Approacl2003.

Terry Winograd, Shrdlu. URL
References http://hci.stanford.edu/ winograd/shrdlu/, 1968-70.
The empirical modelling website. URL
http://www.dcs.warwick.ac.uk/modelling, January
2006.
Meurig Beynon, Jugs model. URL
http://empublic.dcs.warwick.ac.uk/projects/jugsBeynon1988/,
1988.
Meurig Beynon, Lift model of
netherlands scenario. URL
http://empublic.dcs.warwick.ac.uk/projects/liftBeynon2003/,
2003a.

W.M. Beynon. Radical empiricism, empirical mod-
elling and the nature of knowing. In Proceedings
of the WM 2003 Workshop on Knowledge Manage-
ment and PhilosophyApril 2003b.

W.M. Beynon. Empirical modelling and the foun-
dations of artificial intelligence. InfComputa-
tion for Metaphors, Analogy and Agentsecture
Notes in Artificial Intelligence 1562, pages 322—
364. Springer, 1999.

