
Neural Networks and Notations

0201991

Abstract

Neural Networks are primarily concerned with the modelling of biological systems within a mathe-
matical or computer based context. The fundamental component of a network, the neuron, has been
the subject of modelling since the middle of the last century. In this paper we explore a new ap-
proach to modelling based on integrating the mathematical basis of a model with the rich, interactive
processes found in the Empirical philosophy. We introduce a simple notation, N3, for creating mod-
els and demonstrate how it can be used to model neural networks through the definition of a simple
bottle-neck network. We conclude with a discussion of our approach and ask whether the Empirical
approach has benefits when modelling neural networks.

1 Introduction

Neural Networks are concerned primarily with the
modelling of parts of the human brain and nervous
system within a mathematical or computer based con-
text. Through the study of biological processes such
as vision, perception and memory, complex networks
have been created to allow computer vision, natural
language processing and efficient organisation of in-
formation. Although many of these tasks appear very
simple when observed in the day to day living of bi-
ological organisms, the models of these processes re-
veal how incredibly complex these systems are.

The fundamental component of the neural network
is the neuron, found biologically in the brains and
nervous systems of organisms. One of the earliest
studies in the modelling of a neuron, which ultimately
set the context of the field, was conducted by McCul-
loch and Pitts (1942) who argued that a neuron could
be modelled as some threshold function applied to the
sum of its weighted inputs. Since the development
of McCulloch and Pitts’ TLU neuron, a vast num-
ber of models (Hopfield, 1982; Hebb, 1949; Koho-
nen, 1990) have been proposed which seek to expand
the applications of neural networks and more faith-
fully represent the underlying biological mechanism.

In order to permit any kind of modelling, Neural
networks are often developed as a highly abstracted
representation of an underlying biological system.
Even though the biological behaviour may not typi-
cally be deterministic, the language of representation
for Neural Networks is often mathematics as it per-
mits concise descriptions of a system with the ability
to reason formally about its behaviour.

In this paper we seek to investigate the applications
of an Empirical philosophy with respect to the mod-

elling of Neural networks. We begin the paper with a
brief description of a new notation, N3, for defining
network models within the EDEN framework. This
is followed by a discussion of a bottleneck-network
model which learns the average luminance of pixels
within an image. We conclude with a review of the
techniques and tools used and ask whether the mod-
elling of neural networks within the Empirical frame-
work offers the richness of experiment and experi-
ence that the users of other models enjoy.

2 Modelling Neural Networks

In this section we discuss the Neural Network No-
tation (N3) language with which modellers can con-
struct simple neural networks and how the definitions
in the model are converted to EDEN dependencies.
As Neural Network models are often represented by
mathematics, N3 is closely akin to mathematics in its
appearance with the intention of permitting highly ex-
pressive models unhindered by the complexity of rep-
resenting objects such as vectors and matrices within
the EDEN language.

2.1 Neural Network Notation (N3)

The N3 (Neural Network Notation) notation is a sim-
ple notation developed to allow modellers to quickly
define neural models in a language similar to that
of conventional mathematics. The notation itself
composes sections of code written using the Agent-
Oriented Parser (AOP) (Brown, 2001; Harfield, 2003)
and traditional EDEN.

The main motivation for the use of N3 is to greatly
simplify the process of developing mathematically



based network models within EDEN. As models are
usually defined in terms of vectors and matrices, a
modeller would usually need to resort to managing
list data structures to achieve a behaviour similar to
that of the mathematical definition. Although this is
certainly possible, the experience for the modeller is
improved by removing this complexity and permit-
ting a richer input language.

The basic data structures of an N3 model are the
vector, the matrix and the scalar. If defined in the
model, these variables are parsed by the N3 notation
into EDEN scripts as either a list, a list of lists or a
float type respectively. Once the variables have been
defined, N3 permits users to develop relationships be-
tween the variables using operators highly similar to
that of mathematics. Figure 1 demonstrates how the
conversion process from an N3 model to EDEN hap-
pens at runtime. In this simple model, the user de-
fines their mathematical objectsx and y which are
then given default initial values within the EDEN
code. Once this N3 script has been input to the system
the variables defined are available in standard EDEN,
thus giving the modeller the opportunity to assign val-
ues with either EDEN or N3 or to build further de-
pendencies within their model by using the variables
as the basis of a dependency relationship in EDEN,
SCOUT or other notations.

In N3, operators are defined as procedures which
execute the appropriate operation for the definition
based on the types of the inputs. This approach al-
lows the model a considerably higher degree of flexi-
bility. By defining the intended operation of the user
as a procedure we can enforce alternative behaviours
based on the current state of the model thus freeing
the user to experiment with varying data types with-
out needing to change the expressions already entered
into the system. We take as example the code in Fig-
ure 1, in this model the current type of the variabley
is a vector. Hencemultiply is defined as the multipli-
cation of each element of the vector by the scalarx.
If the user were to experiment by enteringy = 0 into
the system the type ofy would change to be scalar,
hencev would be recalculated to be a scalar.

2.2 Dependency in an N3 Model

In N3 we take a definitive approach to the definition
of variables as described by Beynon and Russ (1991).
Instead of a variable definition such asx = y ∗ z as-
suming a procedural approach to evaluation wherex
is assigned the value of the corresponding multiplica-
tion of y andz, we assignx a definition in a similar
manner to that of a spreadsheet cell. When eithery or

N3 Statement:

%n3
vector y<2>
scalar x

v = x * y

Translated EDEN Statements:

%eden
y = [0,0];
x = 0;
v is multiply(x,y);

Figure 1: Translation of N3 definitions to EDEN

z are changed in some way, the value ofx is changed
also.

When assignments in N3 are parsed, a dependency
is created between the variable being assigned to and
the right hand side of the definition. An example of
the parsing process is shown in figure 1. The cre-
ation of dependencies rather a list of expressions to
be evaluated changes the modelling process to one
whereby the model can be created and refined inter-
actively as behaviour is explored from a process of
iteratively defining, executing and observing the out-
puts of a model.

2.3 Agency in an N3 model

At the heart of Empirical Modelling lies the concept
of an agent, which can be thought of as “an entity that
plays a role in the representation and transformation
of system state” (Beynon, 1994). A model written
using only N3 represents only the definitions of the
behaviour of the system and as such contains no au-
tonomous agents capable of changing the system state
with surprise to the user. In this regards we would cat-
egorise the behaviour of an N3 model as being that of
a 1-agent (Beynon, 2005) system whereby the behav-
iour is entirely specified by that of the user in their
role as the system super-agent. We would also ar-
gue that this is an important aspect of a notation such
as N3 where the aim is create a model with which
the user can gain a complete understanding of the be-
haviour of the network through interaction. As the
model functions in a manner similar to a spreadsheet,
the user has complete control over their experience of
the model and can experiment in a highly consistent
and clear manner.



3 Modelling a Bottleneck Net-
work

A bottleneck network in its simplest form is a net-
work of inputs and outputs both of sizex linked by
several ’hidden’ middle layers with the property that
the inner layers have a size≤ x. Bottleneck networks
have a wide variety of uses in neural network sys-
tems particularly in the field of image and signal en-
coding and noise reductions. A good description of
multi-layer networks can be found in Gurney (1997).
An example bottleneck network diagram is shown in
Figure 2.

The network implemented in the model accom-
panying this paper is a simple multi-layer network
which seeks to ‘learn’ the average luminance value
of pixels in a small input image with a view to be-
ing used as a basis for compressing and decompress-
ing highly similar images. The biological system of
interest is that of vision whereby regions of colour
are may be communicated in relatively low detail to
save the optical nervous connections from bandwidth
overload. The model works by showing the input im-
age to the learning routine on each iteration of the
training schedule. Within an iteration, the values of
a weight vector are compared to the current input
and where these differ a small change (defined by a
learning parameter) is made in the weight vector to
move elements of the vector closer to the input. Over
successive iterations, the values of the weight vector
tend to the average of the images input to the sys-
tem. Once a weight vector has been learned by the
system it can be used to compress images by averag-
ing the luminance of a group of pixels, communicat-
ing this average and then decompressing by reapply-
ing the weights to the average value. The compres-
sion factor of the model defines how many pixels are
grouped into a single value, in terms of our network,
this compression value also defines the fan-in of the
input elements to the midlayer of the network.

3.1 Modelling the Bottleneck Network
with N3

The first stage in developing our model is to build the
basic bottleneck network which takes an input vec-
tor (the pixels of the input image) and communicates
this input information to the output layer. This is done
by defining a vectorinput to contain the colour val-
ues of the pixels in the input image. Secondly, we
create another vectormidlayer which serves as the
middle, hidden layer of our network. For now we set
midlayer = input. Executing this assignment in N3

Figure 2: A Simple Bottleneck Network - the bottle-
neck occurring in the middle layer of the network

creates a dependency for themidlayer variable in the
values of vector input. Finally we create a third vec-
tor output and set this to equalmidlayer. Our basic
bottleneck network is now complete although it con-
tains no learning function and no processing of input
values.

3.2 Extending the model to include
learning

The learning function used in our model is a highly
simplified version of the Generalized Hebbian Algo-
rithm (GHA) (Haykin, 1999, p. 419). The GHA has a
vector of weightsw which is altered on each iteration
of the learning cycle by a vector∆w. ∆w is calcu-
lated as a function ofw, the inputs to the network and
a parameterη which controls the rate at which∆w is
converged to the input.

As the N3 notation is fairly close to mathemati-
cal definitions we can introduce the learning com-
ponent of our network by defining our two vectors
weight andweightdelta and our learning parame-
ter learning. We defineweightdelta in terms of
the input vector,weight and a scale factor to en-
sure the values remain with luminance. The N3 code
for building the learning component of our model is
shown in figure 3.

We cannot however, defineweight in terms of
weightdelta as this could create a cyclical depen-
dency. Instead, changes to weight must be made ex-
plicitly, so a we introduce atrainnetwork procedure
which when called updates the values ofweight by
theweightdelta vector.



scalar learning
scalar compression
scalar scalefactor
vector input<64>
vector weight<64>

tempy = elementmultiply(weight, input)
y = sum(tempy)
tempyinput = y * input
tempyweight = y * weight
tempsub = tempyinput - tempyweight
weightdelta = scalefactor *

(learning * tempsub)

Figure 3: Defining the learning function in N3

3.3 Increasing Accessibility through the
use of SCOUT

The founding aim of the EDEN toolkit was to provide
an improved user experience through the ability to en-
gage in a rich modelling experience by dynamically
defining and altering a model. As the EDEN language
developed additional graphical notations were added
to permit windowing capabilities and graphical draw-
ing. These notations are now manifested in SCOUT
and DoNALD (Yung, 1992) for drawing two dimen-
sional graphics and windows and Sasami for devel-
oping three dimension models.

In the model accompanying the paper, the user ex-
perience of the bottleneck network was limited to al-
tering variables within EDEN or N3 to certain values
and then observing these changes through traditional
EDEN querying. This experience was poor as it pro-
vided no graphical opportunity to view the results of
one’s modelling actions. As such, a graphical rep-
resentation of the learning experience was developed
through a SCOUT interface. This is shown in figure
4.

On the left hand side of the screen is an input im-
age consisting of a 16 x 16 grid of pixels, in the cen-
tre are a series of labels displaying observables about
the model and on the right the effect of compressing
an image using our ’learned’ weights. There is also a
small palette of colours at the bottom of the screen the
user can use to draw an image onto the left hand dis-
play. At launch, the compression factor of the model
is set to 1, that is no compression is taking place. A
value of 2 would indicate the bottleneck fan-in is by
a factor of 2.

This display has been used to extend the model fur-
ther, the input vector,input has been made a depen-
dency of all of the background colours of the input

Figure 4: N3 Image Display - Input Panel, Informa-
tion display and Output Panel

image. This dependency relationship means that as
users draw onto the input image themidlayer and
output variables are updated automatically, this is of-
ten reflected in the output image changing slightly de-
pending on the success of the training. The value of
the display labels in the central panel have also been
made through dependencies on theinput andweight
vectors in the model. For instance, the percentage
difference label is a dependency on the values of the
input and the current values of the weight vector.

4 Experiencing the Model

We have now defined our bottleneck network in terms
of its N3 definition and an associated graphical ele-
ment to increase the richness of the modelling expe-
rience. As it stands the model is basically a blank can-
vas where the user can experience by drawing images
onto the input and viewing how the learning function
adapts to ‘learn’ the input. The user is now able to
alter and experiment with the model definitions to ex-
amine how the network will behave in an alternative
context or if different definitions are input.

The main activities that can be experimented with
are changes to thetrainnetwork procedure that alter
the method in which the network learns, by chang-
ing this procedure the user can observe the behaviour
of different learning strategies. The user may also
change thecompression variable to determine how
aggressively the network will compress the informa-
tion containing within the input. The user is also free
to experiment with changing the mathematical model.

The wide variety of tasks that can be used as the
basis for experimentation show that although the no-



tation is very simple and indeed the accompanying
model is simple, the opportunities for exploration are
many. This is perhaps a clear demonstration that
modelling Neural Networks with Empirical tools can
lead to a richer experience and understanding than
simply the study of a models mathematical proper-
ties. Although the mathematics can tell us how the
network behaves, we argue that the experimentation
permitted by our notation and model achieves a better
understanding of how the definitions actually works
within their specific context, a view we believe corre-
lates with that of James (1979).

5 Technical Limitations of N3

One of the major technical limitations of the N3 nota-
tion is that in a usual scenario as assignment of a vec-
tor element to an expression, sayv<1> = y * 2
would be translated into an assignment of the first ele-
ment of the listv to be a dependency ofy . However,
this dependency creation is not permitted in EDEN
due to the highly dynamic nature of list structures and
as such assignments to elements of a vector in N3 be-
have in much the same way as a conventional C++ or
Java statement. The%edenslnotation is a prototype
language that has been developed to overcome some
of the dependency issues arising from the use of lists
within Empricial Modelling, particularly with respect
to the individual dependency of elements within a list.
For more information on%edenslthe reader should
consult Ward (2004).

A second technical limitation is the limited num-
ber of implemented mathematics operations for vec-
tors and matrices. In particular, there are no methods
for raising these structures to a power or conducting
advanced operations such as matrix convolutions or
correlations. If N3 were to be developed further, extra
operators to allow these operations may be required
to formulate larger and more complex neural network
models.

6 Model Perspectives

Throughout this paper we have discussed the concept
of richness in terms of modelling a neural network,
ultimately, this is key to successful model. A rich
user experience combined with an insightful model
encourages the user to experiment and learn through
their interaction. We would argue that N3 is success-
ful in raising the richness of the experience by pro-
viding a familiar notation combined with the empiri-
cal approach to permitting modelling using entirely

dynamic definitions. Given that the notation may
permit a rich experience, we must also ask how can
this experience be useful and what are the benefits
of taking this dynamic, empirically based approach
over say conventional mathematical models such as
Mathematica? The answer, we claim, is quite simple.
In Mathematica, the language is pure mathematics.
The user inputs mathematical equations and executes
them with respect to particular inputs. In this model
the user never experiences what this actually means
in the context of a Neural network, instead their ex-
perience is limited to the mathematics, the evaluation,
the symbols that make up a neural network definition.
The empirical approach differs from this because al-
though by using the N3 notation the modeller is work-
ing with a language similar to mathematics, their ex-
perience is different. Instead of entering formula after
formula and evaluating these, the user can experiment
with particular inputs and change and adjust small
parts of the system little by little, the user is not re-
quired to re-evaluate the whole adjusted equation in-
stead they can see the effect of their experimentation
as they conduct it. We would also claim that through
the integration of richer graphical elements the expe-
rience is widened further, the user has the ability to
define the model in mathematics but can experience
how the mathematics works when the model is ap-
plied to the context of study.

7 Conclusions

The motivation for the creation of the N3 notation
was to create a mechanism whereby modellers could
create neural network definitions in a language with
which they are already familiar but increase the rich-
ness of their modelling experience by engaging in an
interactive modelling process as opposed to a largely
declarative one. We would argue that the principle
achievement of N3 is to provide a mechanism for ex-
ploration through bringing the dynamic properties of
EDEN to a language similar to that of mathematics.
In doing so, the complexity of actually programming
the neural model is reduced when compared to al-
ternative procedural languages. We are also of the
opinion that through the integration of SCOUT and
DONALD the experience of the model can be ex-
tended further to a point where the user can actually
experience the mathematical definition of their model
within the context of its operation. As an example of
this we constructed a bottleneck network where the
user is actually capable of observing how the network
behaves with respect to visible inputs as opposed to a
series of numbers. This experience is a dramatic im-



provement over tools such as Mathematica, whereby
inputs are numbers and definitions instead of rich,
visible inputs as in our model.

The main contributions of this paper are to demon-
strate a potential for modelling neural networks
within the Empirical framework. We began by stat-
ing that many neural networks are highly abstracted
from the biological system being reasoned about. In
this way, network modellers are consistently seeking
to find more faithful machine representations of the
system of study. The Empirical approach allows us a
much higher degree of freedom to explore our mod-
els, to engage in alterations and refinements as we are
developing our models. With this in mind, we con-
clude that Empirical Modelling does have a lot to of-
fer in the modelling of Neural Networks furthermore,
the ability of the philosophy to allow interaction is,
we claim, richer than conventional modelling tools.

Acknowledgements

The author would like to thank both Dr. Steve Russ
and Dr. Meurig Beynon for providing a valuable in-
troduction to the world of Empiricial Modelling and
also the PhD tutors of the module for help inside and
outside of lab sessions. Thanks must also be given to
Professor Roland Wilson for a fascinating introduc-
tion to Neural Networks.

References

W.M. Beynon. Agent-oriented Modelling and the Ex-
planation of Behaviour.Shape Modelling Paral-
lelism, Interactivity and Applications, pages 54–
63, September 1994.

W.M. Beynon. Concurrent Systems Modelling:
Agentification, Artefacts, Animation.MSc Lecture
Series, November 2005.

W.M. Beynon and S.B. Russ. The Development and
Use of Variables in Mathematics and Computer
Science. The Mathematical Revolution inspired
by Computing IMA Conf Series 30, pages 285–95,
1991.

C. Brown. Agent-based Parsing System in EDEN.
May 2001.

K. Gurney.An Introduction to Neural Networks. Uni-
versity College London Press, 1997.

A. Harfield. Agent-Oriented Parser. May 2003.

S. Haykin. Neural Networks - A Comprehensive
Foundation. Pearson Education, second edition,
1999.

D.O. Hebb. The Organization of Behaviour. John
Wiley and Sons, 1949.

J.J. Hopfield. Neural networks and physical systems
with emergent collective computational properties.
In Proceedings of the National Academy of Sci-
ences of the USA, volume 79, pages 2554–2588,
1982.

W. James.Some Problems of Philosophy. Harvard
University Press, second edition, 1979.

T. Kohonen. The Self-Organizing Map. InIEEE,
volume 7, pages 1464 – 1480, 1990.

W. McCulloch and W. Pitts. A logical calculus of
the ideas immanent in nervous activity.Bulletin of
Mathematical Biophysics, 7:115–133, 1942.

A. Ward. Interaction with Meaningful State: Imple-
menting Dependency on Digital Computers. PhD
thesis, University of Warwick, 2004.

S. Yung. Definitive Programming - A Paradigm for
Exploratory Programming. PhD thesis, University
of Warwick, October 1992.


