

Rethinking Programming

W M Beynon, R C Boyatt, S B Russ

Computer Science, University of Warwick, Coventry CV4 7AL, UK

Abstract
The accepted view of programming, rooted in

Turing’s fundamental characterization of algorithms, has

had a profound impact on the theory and practice of

computing with yet broader implications for thinking

about mind and culture. Where programming is

traditionally conceived in terms of requirements,

specification and implementation, this paper argues for a

complementary conceptualization to support the

development of the next generation of computing

applications. It briefly reviews an extended programme of

research into Empirical Modellng, an approach to

creating interactive environments to enable programming

based on identification and prescription.

Keywords: programming, specification, identification,

prescription

1. Introduction

Research into different paradigms for 'computer
programming' has been dormant for many years. The

established view of computer programming is nevertheless
problematic in some respects. How programming is

conceived exercises a strong explicit constraining
influence over the theory of computing, and a more

indirect but pervasive negative influence over thinking
about computing practice. Different programming

paradigms reflect different ways of understanding and
observing application domains, and though each may be

well-suited to specific kinds of application, they cannot in
general be used coherently in combination.

This paper argues that in developing the next
generation of IT applications it will be vital to rethink

computer programming. Specifically, programming has
two complementary ingredients: the identification of
patterns of reliable agency and state-change to embody the

interaction with 'the computing machine', and the
prescription of recipes to meet specific functional goals.

The term 'identification' is used here in a broad sense to
encompass the idea that a context for computation is not

typically merely found, but engineered (cf. [6]). The term
'prescription' entails specifying what agents act and how

this action is mediated by stimuli to which they can
respond. It must be emphasized that ‘identification’ and

‘prescription’ are intended to designate activities that lead

to the discovery of actual environments, artifacts and
mechanisms that can be directly constructed, observed and

experienced, and are terms intended to be used only with
such concrete products and recipes in mind. This level of

concrete engagement with experience is what should be
read into the expressions “reliable agency and state-

change to embody interaction” and “specifying what
agents act and how this action is mediated by stimuli”. In

this context, it is helpful to think of computer
programming of the most primitive nature, such as was

current before the advent of abstract programming
languages. Identification was then associated with creating

and configuring an electronic device, and prescription
with giving instructions to the user about the physical

actions required to supply the input data and initiate the
program execution. In understanding what is meant by

‘rethinking programming’, the major conceptual difficulty
is that of appreciating that, whatever the level of

sophistication of programming languages, there is always
an implicit underlying account of how a program operates

with reference to physical devices and explicit actions.
In the history of programming, the two ingredients of

identification and prescription have been addressed in
different ways according to the evolving nature of the

programming environment, the underlying technology and
the human agency involved. Identification and

prescription are necessarily interrelated, in that the
validity of a prescription is predicated on the reliability of

the patterns of interaction that have been identified.
Though these ingredients may need to be developed

concurrently through incremental evolutionary design, the
process of programming can be radically transformed by

recognising their conceptual separation. In particular, the
first ingredient of programming, that of identification,

involves activity that is typically not specific to any
particular functional goal, and is intimately linked with

understanding agency within the domain in which the
application is to operate.

The elaboration of the above ideas will be
complemented by a brief review of Empirical Modelling

(EM), an approach to creating interactive environments,
extensively developed by the authors and their

collaborators over many years [20], that specifically
targets the identification aspect of programming. The term

'modelling' is used here in recognition of the fact that

identification is a more primitive and general activity than

programming, as it relates foremost to domain
understanding. In this respect, identification resembles

and overlaps with requirements capture, but does not
typically give such prominence to the articulation of

functional goals. As has been discussed at length
elsewhere, the greater generality of EM prompts its

consideration as a broader foundation for computing than
the science of programming alone can supply.

2. Programming revisited

The concept of 'computer programming' is by now so

well-assimilated into information technology that it no
longer attracts academic attention. The idea of developing

new programming paradigms has long since fallen out of
fashion. It is widely appreciated that focusing on

paradigms for giving instructions to the computer has
limited value – the real challenge in building large

software systems lies in capturing the system requirements
and arriving at the specification of the processes that are

to be implemented in software. What is more, the
computing culture has developed to such a level of

sophistication that raw programming activity has become
much less prominent. Many people make heavy use of

computers in their work or studies without ever having to
be conscious of the basic elements of programming that

were once essential prerequisite knowledge. Special-
purpose tools and packages help to account for this, as do

object-based environments and interfaces that hide the
explicit generation of code. A significant development in

such end-user programming applications is the shift
towards environments based on spreadsheets, databases or

rule-based methods that cannot readily be interpreted as
varieties of classical computer programming executing

beneath visual interfaces or at higher levels of abstraction.
Of course, there is still an important role for specialist

computer programming skills. Computer science
departments and companies continue to train professional

software developers, and there is major interest in niche
applications, such as programming games or special-

purpose hardware devices, where optimisation is so vital
that even low-level programming expertise is required.

Educational software is one area where there is still
motivation for getting the non-specialist involved in

programming computers, either through training teachers
to develop – or at any rate customise – software for their

personal use, or through pursuing the ideals of
constructionist learning, as first pioneered by Seymour

Papert [15]. A level of expertise beyond that of the naive
user is also significant wherever generic applications

prove to be unsuitable, and special needs must be met.
Notwithstanding this, one significant side-effect of side-

stepping programming in modern computing culture has
been a growing tension between theory and practice.

The underlying orientation of the theory of computing
has changed little since its inception; it still places a

conventional view of computer programming at its core.

Seen in this light, the science of computer programming,
and the theory of computation, are the key disciplines

around which the whole of classical computer science is
organised. The study of algorithms and the semantics of

programming languages are then the foundation upon
which all computing applications are deemed to rest.

The practice of computing, by contrast, has developed
to embrace much more than computer programming alone.
The task of large-scale program development is of such

complexity and subtlety that a complementary culture of
concepts and methodologies for software development has

emerged. The increasing prominence of new media for
computer-based interaction and communication has

focused attention on the experiential aspects of computer
use, motivating much greater concern for understanding

how cognitive and computational activities are related,
and how they can be integrated. The computer’s role in

supporting activities that were once viewed as peripheral
to programming, and its pervasive influence in design,

business and engineering, challenges the idea of computer
programming as the central and universal characteristic

activity in computing.
Many different intellectual positions are represented in

the response of the academic computer science
community to this challenge. Some regard the theory of

computation and its applications as defining the boundary
of real computer science, and the only academic focus of

study that is truly independent of the relatively ephemeral
technologies and fashions that characterise computing

practice. Others seek to demonstrate that the scope for
applying science to computing can be radically enhanced

through developing ever more sophisticated mathematical
semantic models and specification techniques, and

complementing these with empirical studies of
programming practice. Some adopt a pragmatic

engineering-oriented attitude to computing, and regard it
as a broad applied science. Yet others consider

computing-in-the-large to be a discipline to which hard
scientific principles are of marginal importance, and

locate computer science in a subfield of social studies.
Whatever their outlook, most commentators would agree

that, whilst the precise concept of 'effective procedure'
that was introduced by Turing and others has proved to be

a powerful abstraction that has brought clarity and insight
to the study of algorithms, there is as yet no comparable

more general 'theoretical' framework that can help us to
determine which of the broader activities carried out

under the banner of 'computing' are well-conceived and
will represent a long-term contribution to the emerging

discipline. They would also recognise the need for
principles to guide emerging practice, and to discriminate

between good and bad techniques and applications.
The problematic nature of the relationship between

computing theory and practice has implications for
students and practitioners. Students who are attracted to

computing through applications can find the discrepancy

between informal and formal approaches to programming

demoralising. Their aspiration is to use the computer in a
creative and imaginative fashion, but they are obliged to

conform to a discipline that obliges them to think in highly
abstract and technical terms. Even those students who

adapt well to learning computer programming are
conscious that it is distinct from other essential computing

skills. They also have to come to terms with the fact that
the processes by which complex systems are developed
are far from well-understood, and are typically the focus

of controversies that are not resolved even after a specific
choice of methodology has been made. All in all, the

informed insider's view of software development is
altogether more complicated and laced with uncertainty

than that of the software adopters. In application areas
such as education and business, it is unusual for those who

champion the use of technology to recognise the potential
relevance of these areas of doubt and obscurity for the

computer specialist. This leads to conflicts similar to those
experienced by pupils who learn mathematics in a

constructionist idiom at school through writing programs
in Logo, only to find that its procedural style is deprecated

by computer scientists at university.

3. Programming = identification+prescription

It is helpful to review different varieties of computer

programming activity with reference to the conception of
programming as identification-and-prescription

introduced above. This helps to elaborate on the meanings
of these two ingredients of programming. It also has the

side-effect of clarifying the way in which the meaning of
the term 'programming' has developed, and sheds further

light on its influence on computing culture.
The most appropriate setting in which to appreciate the

idea behind programming as identification-and-
prescription is that of programming a reactive system (cf.

[9]). Within such a system there are many state-changing
agents – they might include actuators, sensors and

electromechanical devices as well as human agents with
different levels of privilege to effect changes of state.

Before any assumptions can be made about reliable
patterns of interaction within such a complex collection of

agents, much empirical study of their possible
organisation and interaction must first take place. Even

when the identification required to support prescription
has reached a mature stage of development, it is still

probable that the reliability of patterns of interaction will
depend upon factors that are beyond absolute control. For

instance, reasonable engineering assumptions will have to
be made about the tolerances within which devices

operate, which unavoidable natural hazards have been
taken into account in the operating environment, and the

extent to which successful or safe operation relies upon
human discretion. In the narrow sense, the identification

and prescription required to program the software
components in such a system cannot in general be

considered in isolation, since the assumptions about

patterns of reliable interaction to which they are subject
are intrinsically bound up with assumptions about the

system as a whole. This argues for evolution of software
that takes place in conjunction with the entire system

development, in a manner that can perhaps only be
abstracted from the whole task after a high degree of

stability has been attained in the system conception and
design. In effect, at any rate in the earlier stages of
devising a reactive system, computer programming in the

narrow sense involves identification and prescription that
is inseparable from identification and prescription that is

required to "program the system" in the broadest sense.
As Harel remarks in [9], programming reactive

systems is much more problematic than what he calls
"one-person programming" applications. In the early

batch-processing applications of computer programming,
the programmer scarcely had any need to address the

identification aspect of programming. The computing
machine was a given (even if its reliability was more often

suspect!) and the agency of the user was very limited. The
embodiment of the interaction with the machine only

required the design of suitable conventions by which data
was to presented to the computer and returned to the user.

The programmer's primary task was then prescribing
recipes. It was in this context that the archetypal view of

computer programming was established: programs
computed an input-output relation by executing an

abstract algorithm in a fashion that was closely matched to
Turing's mathematical model of computation.

As the very connotation of the term itself suggests,
‘programming’ is first and foremost associated in

traditional use with prescription. This emphasis makes
most sense in the classical programming setting. The

fundamental thinking that surrounds batch programming is
that the program prescribes the sequence of actions to be

carried out automatically by the computer, that this
prescription can be set out in a formal high-level

programming language, and is amenable to all manner of
abstract transformations that still compute the same

intended input-output relation. This establishes a way of
thinking about prescription that has prevailed throughout

all subsequent developments of the programming context.
It is also fundamentally misleading.

In general, the product of the identification activity is
quite different from an ‘input-output’ computer. In

programming a reactive system, prescription is associated
with conceiving how the various agents are to interact in a

sense that perforce engages with the actual observables
that mediate their interaction, and has to take into account

the peculiar characteristics of each component, whether
human, electronic or mechanical. In establishing that such

a system has been ‘correctly’ programmed, it is significant
that – for example – sensors react only to particular kinds

of stimuli within suitably maintained environments, that
they respond within certain tolerances, typically

autonomously and instantaneously, whereas human agents

require visual or aural stimuli that are sustained long

enough to attract intention and be interpreted, respond
much more slowly and have discretion about whether they

respond at all. In this context, there is in general no
counterpart of the textual program for prescription, and

often no evidence apart from empirical data to justify any
claims about the correctness of a recipe, or to assess in

what sense alternative recipes are equivalent.
Formal approaches to programming aspire to address

this problem. A key notion is that of specification. A key

aspect of the specification concept is already implicit in
the classical programming scenario: a high-level computer

program is itself a formal linguistic artefact that is
potentially amenable to reasoning, and – at the same time

– is in some way sufficient to prescribe the actual pattern
of physical interactions that mediate between the input

and output the user and the computer. In this context, the
fact that specification indeed can act in this dual role

relies heavily on two simplifying assumptions: that what is
required of the program is no more than the computation

of an abstract functional relationship, and that the time
taken for this computation is immaterial both in the sense

that the user can wait, and that the machine will remain
oblivious to external agency. How far this notion of

specification generalises to other programming contexts is
unclear. Many sophisticated specification methods make it

possible to describe the intended outcome of a program
precisely in ways that are useful in reasoning without also

admitting an interpretation as a prescription such as, for
example, a classical declarative program does.

4. Motivations for rethinking programming

In classical programming, the separation between
identification and prescription is so sharp that the

programming activity can be seen purely as prescription.
As the programming context has become more subtle, the

aspiration for software development methods has been to
seek a process of identification that delivers an abstract

specification to serve a dual descriptive/prescriptive role
in respect of every software component. This is to

presume that, in the identification process, the structure
and pattern of interaction amongst the state-changing

agents will stabilise, and the ways in which this interaction
is mediated will be expressible in terms of functional

relationships between identifiable observables whose
values can be computed. This can be viewed as trying to

reproduce the classical duality between ‘engineering the
computing environment’ and ‘programming the

computer’.
This approach to generalised programming succeeds in

certain contexts and domains. It can work well, for
instance, where the identification of agents and their

interactions conforms closely to an object-oriented ideal,
so that each agent is a programmable device with a

repertoire of standard operations for changing its own
state, and can effect changes to the state of other agents

only via message passing. The primary agency and

interaction in a mobile telephone network is of this kind.
It is appropriate when the actual configuration of agents

and interaction patterns is already well-established and is
proven to be effective. This might be the case when the

agents of an existing system can be replaced by
programmable electronic devices that can mimic their

interaction faithfully, as when a routine manual activity is
being automated. It can apply to situations in which the
patterns of agency and interaction in a domain are so well-

understood and circumscribed for the purposes of the
application that they can be predicted from theory. This is

the case in typical applications of a ‘scientific computing’,
or ‘engineering simulation’ nature.

One response to the challenge presented by reactive
systems outside such categories has been to try to connect

identification more closely with theories of the domain. In
this spirit, Turski and Maibaum ([18], p.100) promote the

idea of ‘specification building [as] a lot like theory
construction in science’. Such an approach is reductionist

in spirit; it seeks to generalise the rational techniques that
work in a 1-person programming context to such an extent

that they can cope with the wilder problems of
identification that reactive systems present. By way of

illustration, Turski and Maibaum express their concern
“that [the] very large class of … so-called real-time

applications … is almost entirely dominated by
specifications constructed from pragmatic observations”

([18], p.16), and envisage that “a much more concise and
general theory would arise form the study of relations and

functional dependencies between events than from the
registration of absolute time-intervals”. In effect, they

propose that better ways of analysing and representing
behaviours will enhance the role of reasoning, and

diminish that of experiment. This outlook is consonant
with the emphasis placed on the development of ‘the

verifying compiler’ in meeting the Grand Challenge of
developing dependable systems [19].

Tensions between pragmatism and theory are apparent
in other aspects of complex software development. The

“inevitable intertwining of specification and
implementation” [17], and the topical interest in eXtreme

Programming [3] testify to the fact that specification
techniques alone cannot express the essential content that

is associated with identification. Similar issues arise in
specifying the semantics of families of interacting objects,

and are reflected in the motivation for Harel’s proposed
development of software using Play-In scenarios [10].

Loomes’s critique of reification in software development
[13] also calls into question the extent to which abstract

specification can be interpreted as prescribing concrete
experiences of interaction in general.

Engineering practice provides a helpful alternative
perspective on identification. The development of a

complex system targets the creation of reliable patterns of
interaction and interpretation in a very general sense, and

these may be exploited in ways quite distinct from that

associated with classical computer programming. Such a

development may proceed through the construction of a
succession of artefacts involving holistic observation

supported by iteration and experiment. In such activity:
abstraction, formal specification and reasoning need not

play a significant role; reliability may be based upon no
more than specific empirical evidence; there may be no

comprehensive specification of function in input-output
terms; nor any language in which to express the possible
ways in which the product of identification can be

‘programmed’ to participate in qualitatively different
interactions. In this context, it may be that the product of

identification is an end in itself, in that it serves as a useful
interactive environment like that associated with the

classical computer itself, with a public building, or with a
musical instrument.

Whether or not we would regard such engineering
activity as itself a form of generalised programming, it

highlights highly significant issues concerning
identification in the modern programming context. Well-

conceived engineering design activity delivers much more
than a functional system. The nature of the development

process makes it possible to take experiential aspects of an
emerging system into account during its development.

Because design decisions are based on experiment, the
engineer typically has empirical knowledge of how the

components of the system might behave “in the
neighbourhood” of their normal working environment –

that is to a say, if abnormal values are encountered, or
exceptional circumstances arise. For similar reasons, good

engineering design practice makes it possible to
understand and audit the relationship between how the

system is devised and set up and the implicit assumptions
that have been made about its environment.

This view of engineering practice is no doubt to some
degree idealised. There are nonetheless practical reasons

to suppose that programming as practised can benefit from
such an empirical approach to design. Reactive system

failures have been attributed to predictable commonplace
singular events, such as a battery running down, for which

no provision has been made in the abstract model of
normal behaviour. Pragmatic iterative development has

delivered working Internet protocols for which there is as
yet no formal specification, and where attempts at

development using more formal procedures have been
unsuccessful [16]. In contexts where model-building has

been used to support historical investigation, as in the
virtual reconstruction of Roman theatres by Beacham et al

[2], it has become apparent that being able to adapt
models to take account of different interpretations is of the

essence. This is not to deny the vital importance of
techniques of verification and optimisation in effective

software development (consider, for instance, the security
loopholes that formal analysis has disclosed in the

Needham-Schroeder protocol after many years of
apparently uncontroversial use), but to argue for a richer

integration of formal and empirical perspectives.

5. Broader implications

The implications of rethinking programming are
potentially much broader. Intellectually, the remarkable

nature of Turing’s achievement in characterising
computational procedures has had a major influence on

our models of mind. Because of the pervasive nature of
computing, the way we think about programming has also

had a profound effect upon our ideas about society and
culture. It is tempting to construe ourselves as

computational agents responding to our environment in
ways that – at some level – can be rationalised as directed

towards specific functional goals. The analytical stance
associated with classical programming and specification

can too easily be read – or misread – as endorsing such a
conception of human behaviour. Consider for instance

Turski and Maibaum’s contention that: "Most frequently,
the attempts to provide a computerized service for an

application domain are at the same time first attempts to
provide a workable theory of the domain." ([18], p16), or

Gabbay’s comment to the effect that "A detailed rule
based effective but rigid bureaucracy is very much similar

to a complex computer program handling and
manipulating data. My guess is that the principles

underlying one are very much the same as those
underlying the other." ([7], p.ix).

This paper contrasts two discourses about
programming, one expressed in terms of requirements,

specification and implementation, the other in terms of
identification and prescription. The rational discourse is

primarily concerned with prescribing behaviour on the
basis of certain knowledge, as in teaching and learning

that involves revisiting what has already been established,
or conforms to recognised pedagogical patterns. The

pragmatic discourse is primarily concerned with
identifying stable interactive environments and exploring

what kinds of behaviours can be prescribed and
interpreted within them, as in the personal learning

activity involved in making sense of what is unfamiliar. In
rethinking programming, it is necessary to support both

these discourses, and find a coherent perspective from
which they can be understood in their relation to each

other. This has been one of the principal motivations for
our research into Empirical Modelling. By way of

conclusion, we shall present a brief outline of EM,
together with references to many auxiliary papers

specifically relating to this theme (see [20], where specific
papers will be referred to by their publication indices).

EM is centrally concerned with activities relating to
identification. These are associated with investigating the

observables, dependency and agency that characterise the
application domain. The reliable patterns of agency and

dependency that relate observables are embodied in
artefacts whose state is specified by a network of

functional dependencies similar in character to that
underlying a spreadsheet. These artefacts are constructed

using special-purpose notations for expressing

dependencies between observables of many different
kinds, and hybrid tools that support dependency

maintenance, triggered actions and a range of standard
procedural programming constructs. The initial motivation

for developing EM principles was to devise an approach
to program development that would combine the best

qualities of declarative and procedural programming
idioms. The combination of declarative and procedural
elements in EM resembles that to be found in the

spreadsheet: definitions declare the extant functional
relationships between observables, and a set of

redefinitions, executed in parallel, represents a family of
concurrent actions on the part of agents. In this context,

each redefinition represents an atomic action, and the
consequent changes of state that are entailed in the set of

actions are mediated by the dependencies. An EM
artefact is in the first instance a personal construction,

similar to what Gooding [8] has characterised as a
‘construal’, with an informal semantics implicit in the

interpretations of interactions that are projected on to it by
the modeller.

EM has been studied in relation to design, modelling
and programming activity in a wide variety of application

domains. These include: engineering design, educational
technology, humanities computing, and decision support.

In these domains, EM respectively provides: a framework
for supporting concurrent design activity [20:034]; a

medium for model-building in the constructionist idiom
[20:080]; principles for building artefacts to express and

negotiate personal meanings [14]; support for open-ended
decision-making based on subjective and qualitative

criteria [20:061]. Note that, in all these areas, the qualities
of spreadsheet models have already been observed (cf. [1,

12]). The practical contribution of EM has been to further
develop principles and tools for modelling with

dependency in support of the pragmatic discourse on
programming with which spreadsheets are primarily

associated. EM also proposes a perspective on computing
that unifies the rational and pragmatic discourses. A

simple model that illustrates one aspect of this unification
can be found in [20:051], and a deeper discussion of the

significance of this agenda in relation to mathematics and
computing in [5]. From a philosophical perspective,

unifying rational and pragmatic discourses on
programming is bound up with longstanding controversies

about the relationship between logic and experience.
Consider for instance Livingston’s observation, in his

discussion of the controversy that surrounded Husserl's
phenomenological method: that, "for deep-seated and

internal reasons, the logical structure of experience may
not be expressible in linguistic terms" [11]. The strong

links that can be made between EM and William James’s
‘philosophic attitude’ of Radical Empiricism offer a

possible way to address this issue [4].

6. Acknowledgements
We are indebted to Jane Sinclair for many discussions

relating to the general theme of this paper, and to Martin
Campbell-Kelly for prompting us to revisit programming.

7. References
[1] J. E. Baker and S. J. Sugden. Spreadsheets in education – the
first 25 years. Spreadsheets in Education, 1:18-43, 2003.

[2] Richard Beacham and H Denard, Roman Theatre, Frescos,

and Digital Visualisation: Internedial Research, in Proc. 4th Int

Symposium on Virtual Reality, Archaeology and Cultural

Heritage, 2003

[3] Kent Beck. Extreme programming explained: embrace

change. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[4] W M Beynon, Radical Empiricism, Empirical Modelling and

the nature of knowing, Pragmatics and Cognition, 13:3, 2005,

615-646
[5] W M Beynon and S B Russ, Redressing the past: liberating

computing as an experimental science, Computer Science

Research Report 421, January 2006, University of Warwick.

[6] W. M. Beynon and S. B. Russ. The interpretation of states: a
new foundation for computation? Computer Science Research

Report 207, February 1992, University of Warwick.

[7] D. M. Gabbay. Editorial Preface, Handbook for

Philosophical Logic, volume 1, 2nd edition, Kluwer Academic
Publishers, 2001.

[8] David Gooding. Experiment and the Making of Meaning.

Kluwer Academic, 1990.
[9] David Harel. Biting the silver bullet: Toward a brighter

future for system development. Computer, 25(1):8-20, 1992.

[10] David Harel and Rami Marelly. Come, Let's Play:

Scenario-Based Programming Using LSC's & the Play-Engine.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[11] P Livingston. Husserl and Shlick on the logical form of

experience. Synthese, 132:239-272, 2002.

[12] Willard McCarty, Humanities Computing, Palgrave
MacMillan, September 2005

[13] Loomes, M. J. & Nehaniv, C. L (2001). Fact and Artifact:

Reification and Drift in the History and Growth of Interactive

Software Systems, Proceedings of the Fourth International

Conference on Cognitive Technology: Instruments of Mind,

Springer Lecture Notes in Computer Science, vol. 2117, 25-39

[14] W McCarty, W M Beynon, S B Russ, Human Computing:
Modelling with Meaning in ACH/ALLC 2005 Conference

Abstracts, Humanities Computing and Media Centre, University

of Victoria, 138-145

[15] S. Papert. Mindstorms: Children, computers and powerful

ideas. Basic Books, New York, 1980.

[16] Andrew L. Russell. “Rough Consensus and Running Code”

and the Internet-OSI Standards War. IEEE Annals in the History

of Computing, 2005. (Forthcoming).
[17] William Swartout and Robert Balzer. On the inevitable

intertwining of specification and implementation.

Communications of the ACM, 25(7):438-440, 1982.

[18] W. M. Turski and T. S. E. Maibaum. The Specification of

Computer Programs. Addison-Wesley, 1987.

[19] Grand Challenge 6: Dependable Systems Evolution
http://www.fmnet.info/gc6

[20] The Empirical Modelling website at:
http://www.dcs.warwick.ac.uk/modelling

