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Abstract 
The accepted view of programming, rooted in 

Turing’s fundamental characterization of algorithms, has 

had a profound impact on the theory and practice of 

computing with yet broader implications for thinking 

about mind and culture. Where programming is 

traditionally conceived in terms of requirements, 

specification and implementation, this paper argues for a 

complementary conceptualization to support the 

development of the next generation of computing 

applications. It briefly reviews an extended programme of 

research into Empirical Modellng, an approach to 

creating interactive environments to enable programming 

based on identification and prescription. 
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1. Introduction 
 

Research into different paradigms for 'computer 
programming' has been dormant for many years. The 

established view of computer programming is nevertheless 
problematic in some respects. How programming is 

conceived exercises a strong explicit constraining 
influence over the theory of computing, and a more 

indirect but pervasive negative influence over thinking 
about computing practice. Different programming 

paradigms reflect different ways of understanding and 
observing application domains, and though each may be 

well-suited to specific kinds of application, they cannot in 
general be used coherently in combination. 

This paper argues that in developing the next 
generation of IT applications it will be vital to rethink 

computer programming. Specifically, programming has 
two complementary ingredients: the identification of 
patterns of reliable agency and state-change to embody the 

interaction with 'the computing machine', and the 
prescription of recipes to meet specific functional goals. 

The term 'identification' is used here in a broad sense to 
encompass the idea that a context for computation is not 

typically merely found, but engineered (cf. [6]). The term 
'prescription' entails specifying what agents act and how 

this action is mediated by stimuli to which they can 
respond. It must be emphasized that ‘identification’ and 

‘prescription’ are intended to designate activities that  lead 

to the discovery of actual environments, artifacts and 
mechanisms that can be directly constructed, observed and 

experienced, and are terms intended to be used only with 
such concrete products and recipes in mind. This level of 

concrete engagement with experience is what should be 
read into the expressions “reliable agency and state-

change to embody interaction” and “specifying what 
agents act and how this action is mediated by stimuli”. In 

this context, it is helpful to think of computer 
programming of the most primitive nature, such as was 

current before the advent of abstract programming 
languages. Identification was then associated with creating 

and configuring an electronic device, and prescription 
with giving instructions to the user about the physical 

actions required to supply the input data and initiate the 
program execution. In understanding what is meant by 

‘rethinking programming’, the major conceptual difficulty 
is that of appreciating that, whatever the level of 

sophistication of programming languages, there is always 
an implicit underlying account of how a program operates  

with reference to physical devices and explicit actions.  
In the history of programming, the two ingredients of 

identification and prescription have been addressed in 
different ways according to the evolving nature of the 

programming environment, the underlying technology and 
the human agency involved. Identification and 

prescription are necessarily interrelated, in that the 
validity of a prescription is predicated on the reliability of 

the patterns of interaction that have been identified. 
Though these ingredients may need to be developed 

concurrently through incremental evolutionary design, the 
process of programming can be radically transformed by 

recognising their conceptual separation. In particular, the 
first ingredient of programming, that of identification, 

involves activity that is typically not specific to any 
particular functional goal, and is intimately linked with 

understanding agency within the domain in which the 
application is to operate. 

The elaboration of the above ideas will be 
complemented by a brief review of Empirical Modelling 

(EM), an approach to creating interactive environments, 
extensively developed by the authors and their 

collaborators over many years [20], that specifically 
targets the identification aspect of programming. The term 

'modelling' is used here in recognition of the fact that 



identification is a more primitive and general activity than 

programming, as it relates foremost to domain 
understanding. In this respect, identification resembles 

and overlaps with requirements capture, but does not 
typically give such prominence to the articulation of 

functional goals. As has been discussed at length 
elsewhere, the greater generality of EM prompts its 

consideration as a broader foundation for computing than 
the science of programming alone can supply. 
 

2. Programming revisited 
 
The concept of 'computer programming' is by now so 

well-assimilated into information technology that it no 
longer attracts academic attention. The idea of developing 

new programming paradigms has long since fallen out of 
fashion. It is widely appreciated that focusing on 

paradigms for giving instructions to the computer has 
limited value – the real challenge in building large 

software systems lies in capturing the system requirements 
and arriving at the specification of the processes that are 

to be implemented in software. What is more, the 
computing culture has developed to such a level of 

sophistication that raw programming activity has become 
much less prominent. Many people make heavy use of 

computers in their work or studies without ever having to 
be conscious of the basic elements of programming that 

were once essential prerequisite knowledge. Special-
purpose tools and packages help to account for this, as do 

object-based environments and interfaces that hide the 
explicit generation of code. A significant development in 

such end-user programming applications is the shift 
towards environments based on spreadsheets, databases or 

rule-based methods that cannot readily be interpreted as 
varieties of classical computer programming executing 

beneath visual interfaces or at higher levels of abstraction. 
Of course, there is still an important role for specialist 

computer programming skills. Computer science 
departments and companies continue to train professional 

software developers, and there is major interest in niche 
applications, such as programming games or special-

purpose hardware devices, where optimisation is so vital 
that even low-level programming expertise is required. 

Educational software is one area where there is still 
motivation for getting the non-specialist involved in 

programming computers, either through training teachers 
to develop – or at any rate customise – software for their 

personal use, or through pursuing the ideals of 
constructionist learning, as first pioneered by Seymour 

Papert [15]. A level of expertise beyond that of the naive 
user is also significant wherever generic applications 

prove to be unsuitable, and special needs must be met. 
Notwithstanding this, one significant side-effect of side-

stepping programming in modern computing culture has 
been a growing tension between theory and practice. 

The underlying orientation of the theory of computing 
has changed little since its inception; it still places a 

conventional view of computer programming at its core. 

Seen in this light, the science of computer programming, 
and the theory of computation, are the key disciplines 

around which the whole of classical computer science is 
organised. The study of algorithms and the semantics of 

programming languages are then the foundation upon 
which all computing applications are deemed to rest. 

The practice of computing, by contrast, has developed 
to embrace much more than computer programming alone. 
The task of large-scale program development is of such 

complexity and subtlety that a complementary culture of 
concepts and methodologies for software development has 

emerged. The increasing prominence of new media for 
computer-based interaction and communication has 

focused attention on the experiential aspects of computer 
use, motivating much greater concern for understanding 

how cognitive and computational activities are related, 
and how they can be integrated. The computer’s role in 

supporting activities that were once viewed as peripheral 
to programming, and its pervasive influence in design, 

business and engineering, challenges the idea of computer 
programming as the central and universal characteristic 

activity in computing. 
Many different intellectual positions are represented in 

the response of the academic computer science 
community to this challenge. Some regard the theory of 

computation and its applications as defining the boundary 
of real computer science, and the only academic focus of 

study that is truly independent of the relatively ephemeral 
technologies and fashions that characterise computing 

practice. Others seek to demonstrate that the scope for 
applying science to computing can be radically enhanced 

through developing ever more sophisticated mathematical 
semantic models and specification techniques, and 

complementing these with empirical studies of 
programming practice. Some adopt a pragmatic 

engineering-oriented attitude to computing, and regard it 
as a broad applied science. Yet others consider 

computing-in-the-large to be a discipline to which hard 
scientific principles are of marginal importance, and 

locate computer science in a subfield of social studies. 
Whatever their outlook, most commentators would agree 

that, whilst the precise concept of 'effective procedure' 
that was introduced by Turing and others has proved to be 

a powerful abstraction that has brought clarity and insight 
to the study of algorithms, there is as yet no comparable 

more general 'theoretical' framework that can help us to 
determine which of the broader activities carried out 

under the banner of 'computing' are well-conceived and 
will represent a long-term contribution to the emerging 

discipline. They would also recognise the need for 
principles to guide emerging practice, and to discriminate 

between good and bad techniques and applications. 
The problematic nature of the relationship between 

computing theory and practice has implications for 
students and practitioners. Students who are attracted to 

computing through applications can find the discrepancy 



between informal and formal approaches to programming 

demoralising. Their aspiration is to use the computer in a 
creative and imaginative fashion, but they are obliged to 

conform to a discipline that obliges them to think in highly 
abstract and technical terms. Even those students who 

adapt well to learning computer programming are 
conscious that it is distinct from other essential computing 

skills. They also have to come to terms with the fact that 
the processes by which complex systems are developed 
are far from well-understood, and are typically the focus 

of controversies that are not resolved even after a specific 
choice of methodology has been made. All in all, the 

informed insider's view of software development is 
altogether more complicated and laced with uncertainty 

than that of the software adopters. In application areas 
such as education and business, it is unusual for those who 

champion the use of technology to recognise the potential 
relevance of these areas of doubt and obscurity for the 

computer specialist. This leads to conflicts similar to those 
experienced by pupils who learn mathematics in a 

constructionist idiom at school through writing programs 
in Logo, only to find that its procedural style is deprecated 

by computer scientists at university. 
  

3. Programming = identification+prescription 
 

It is helpful to review different varieties of computer 

programming activity with reference to the conception of 
programming as identification-and-prescription 

introduced above. This helps to elaborate on the meanings 
of these two ingredients of programming. It also has the 

side-effect of clarifying the way in which the meaning of 
the term 'programming' has developed, and sheds further 

light on its influence on computing culture. 
The most appropriate setting in which to appreciate the 

idea behind programming as identification-and-
prescription is that of programming a reactive system (cf. 

[9]). Within such a system there are many state-changing 
agents – they might include actuators, sensors and 

electromechanical devices as well as human agents with 
different levels of privilege to effect changes of state. 

Before any assumptions can be made about reliable 
patterns of interaction within such a complex collection of 

agents, much empirical study of their possible 
organisation and interaction must first take place. Even 

when the identification required to support prescription 
has reached a mature stage of development, it is still 

probable that the reliability of patterns of interaction will 
depend upon factors that are beyond absolute control. For 

instance, reasonable engineering assumptions will have to 
be made about the tolerances within which devices 

operate, which unavoidable natural hazards have been 
taken into account in the operating environment, and the 

extent to which successful or safe operation relies upon 
human discretion. In the narrow sense, the identification 

and prescription required to program the software 
components in such a system cannot in general be 

considered in isolation, since the assumptions about 

patterns of reliable interaction to which they are subject 
are intrinsically bound up with assumptions about the 

system as a whole. This argues for evolution of software 
that takes place in conjunction with the entire system 

development, in a manner that can perhaps only be 
abstracted from the whole task after a high degree of 

stability has been attained in the system conception and 
design. In effect, at any rate in the earlier stages of 
devising a reactive system, computer programming in the 

narrow sense involves identification and prescription that 
is inseparable from identification and prescription that is 

required to "program the system" in the broadest sense. 
As Harel remarks in [9], programming reactive 

systems is much more problematic than what he calls 
"one-person programming" applications. In the early 

batch-processing applications of computer programming, 
the programmer scarcely had any need to address the 

identification aspect of programming. The computing 
machine was a given (even if its reliability was more often 

suspect!) and the agency of the user was very limited. The 
embodiment of the interaction with the machine only 

required the design of suitable conventions by which data 
was to presented to the computer and returned to the user. 

The programmer's primary task was then prescribing 
recipes. It was in this context that the archetypal view of 

computer programming was established: programs 
computed an input-output relation by executing an 

abstract algorithm in a fashion that was closely matched to 
Turing's mathematical model of computation. 

As the very connotation of the term itself suggests, 
‘programming’ is first and foremost associated in 

traditional use with prescription. This emphasis makes 
most sense in the classical programming setting. The 

fundamental thinking that surrounds batch programming is 
that the program prescribes the sequence of actions to be 

carried out automatically by the computer, that this 
prescription can be set out in a formal high-level 

programming language, and is amenable to all manner of 
abstract transformations that still compute the same 

intended input-output relation. This establishes a way of 
thinking about prescription that has prevailed throughout 

all subsequent developments of the programming context. 
It is also fundamentally misleading. 

In general, the product of the identification activity is 
quite different from an ‘input-output’ computer. In 

programming a reactive system, prescription is associated 
with conceiving how the various agents are to interact in a 

sense that perforce engages with the actual observables 
that mediate their interaction, and has to take into account 

the peculiar characteristics of each component, whether 
human, electronic or mechanical. In establishing that such 

a system has been ‘correctly’ programmed, it is significant 
that – for example – sensors react only to particular kinds 

of stimuli within suitably maintained environments, that 
they respond within certain tolerances, typically 

autonomously and instantaneously, whereas human agents 



require visual or aural stimuli that are sustained long 

enough to attract intention and be interpreted, respond 
much more slowly and have discretion about whether they 

respond at all.  In this context, there is in general no 
counterpart of the textual program for prescription, and 

often no evidence apart from empirical data to justify any 
claims about the correctness of a recipe, or to assess in 

what sense alternative recipes are equivalent. 
Formal approaches to programming aspire to address 

this problem. A key notion is that of specification.  A key 

aspect of the specification concept is already implicit in 
the classical programming scenario: a high-level computer 

program is itself a formal linguistic artefact that is 
potentially amenable to reasoning, and – at the same time 

– is in some way sufficient to prescribe the actual pattern 
of physical interactions that mediate between the input 

and output the user and the computer. In this context, the 
fact that specification indeed can act in this dual role 

relies heavily on two simplifying assumptions: that what is 
required of the program is no more than the computation 

of an abstract functional relationship, and that the time 
taken for this computation is immaterial both in the sense 

that the user can wait, and that the machine will remain 
oblivious to external agency. How far this notion of 

specification generalises to other programming contexts is 
unclear. Many sophisticated specification methods make it 

possible to describe the intended outcome of a program 
precisely in ways that are useful in reasoning without also 

admitting an interpretation as a prescription such as, for 
example, a classical declarative program does. 

 

4. Motivations for rethinking programming 
  

In classical programming, the separation between 
identification and prescription is so sharp that the 

programming activity can be seen purely as prescription. 
As the programming context has become more subtle, the 

aspiration for software development methods has been to 
seek a process of identification that delivers an abstract 

specification to serve a dual descriptive/prescriptive role 
in respect of every software component. This is to 

presume that, in the identification process, the structure 
and pattern of interaction amongst the state-changing 

agents will stabilise, and the ways in which this interaction 
is mediated will be expressible in terms of functional 

relationships between identifiable observables whose 
values can be computed. This can be viewed as trying to 

reproduce the classical duality between ‘engineering the 
computing environment’ and ‘programming the 

computer’. 
This approach to generalised programming succeeds in 

certain contexts and domains. It can work well, for 
instance, where the identification of agents and their 

interactions conforms closely to an object-oriented ideal, 
so that each agent is a programmable device with a 

repertoire of standard operations for changing its own 
state, and can effect changes to the state of other agents 

only via message passing. The primary agency and 

interaction in a mobile telephone network is of this kind.  
It is appropriate when the actual configuration of agents 

and interaction patterns is already well-established and is 
proven to be effective. This might be the case when the 

agents of an existing system can be replaced by 
programmable electronic devices that can mimic their 

interaction faithfully, as when a routine manual activity is 
being automated. It can apply to situations in which the 
patterns of agency and interaction in a domain are so well-

understood and circumscribed for the purposes of the 
application that they can be predicted from theory. This is 

the case in typical applications of a ‘scientific computing’, 
or ‘engineering simulation’ nature. 

One response to the challenge presented by reactive 
systems outside such categories has been to try to connect 

identification more closely with theories of the domain. In 
this spirit, Turski and Maibaum ([18], p.100) promote the 

idea of ‘specification building [as] a lot like theory 
construction in science’. Such an approach is reductionist 

in spirit; it seeks to generalise the rational techniques that 
work in a 1-person programming context to such an extent 

that they can cope with the wilder problems of 
identification that reactive systems present. By way of 

illustration, Turski and Maibaum express their concern 
“that [the] very large class of … so-called real-time 

applications … is almost entirely dominated by 
specifications constructed from pragmatic observations” 

([18], p.16), and envisage that “a much more concise and 
general theory would arise form the study of relations and 

functional dependencies between events than from the 
registration of absolute time-intervals”. In effect, they 

propose that better ways of analysing and representing 
behaviours will enhance the role of reasoning, and 

diminish that of experiment. This outlook is consonant 
with the emphasis placed on the development of ‘the 

verifying compiler’ in meeting the Grand Challenge of 
developing dependable systems [19]. 

Tensions between pragmatism and theory are apparent 
in other aspects of complex software development. The 

“inevitable intertwining of specification and 
implementation” [17], and the topical interest in eXtreme 

Programming [3] testify to the fact that specification 
techniques alone cannot express the essential content that 

is associated with identification. Similar issues arise in 
specifying the semantics of families of interacting objects, 

and are reflected in the motivation for Harel’s proposed 
development of software using Play-In scenarios [10]. 

Loomes’s critique of reification in  software development 
[13] also calls into question the extent to which abstract 

specification can be interpreted as prescribing concrete 
experiences of interaction in general.  

Engineering practice provides a helpful alternative 
perspective on identification. The development of a 

complex system targets the creation of reliable patterns of 
interaction and interpretation in a very general sense, and 

these may be exploited in ways quite distinct from that 



associated with classical computer programming. Such a 

development may proceed through the construction of a 
succession of artefacts involving holistic observation 

supported by iteration and experiment. In such activity: 
abstraction, formal specification and reasoning need not 

play a significant role; reliability may be based upon no 
more than specific empirical evidence; there may be no 

comprehensive specification of function in input-output 
terms; nor any language in which to express the possible 
ways in which the product of identification can be 

‘programmed’ to participate in qualitatively different 
interactions.  In this context, it may be that the product of 

identification is an end in itself, in that it serves as a useful 
interactive environment like that associated with the 

classical computer itself, with a public building, or with a 
musical instrument. 

Whether or not we would regard such engineering 
activity as itself a form of generalised programming, it 

highlights highly significant issues concerning 
identification in the modern programming context. Well-

conceived engineering design activity delivers much more 
than a functional system. The nature of the development 

process makes it possible to take experiential aspects of an 
emerging system into account during its development. 

Because design decisions are based on experiment, the 
engineer typically has empirical knowledge of how the 

components of the system might behave “in the 
neighbourhood” of their normal working environment – 

that is to a say, if abnormal values are encountered, or 
exceptional circumstances arise. For similar reasons, good 

engineering design practice makes it possible to 
understand and audit the relationship between how the 

system is devised and set up and the implicit assumptions 
that have been made about its environment. 

This view of engineering practice is no doubt to some 
degree idealised. There are nonetheless practical reasons 

to suppose that programming as practised can benefit from 
such an empirical approach to design. Reactive system 

failures have been attributed to predictable commonplace 
singular events, such as a battery running down, for which 

no provision has been made in the abstract model of 
normal behaviour. Pragmatic iterative development has 

delivered working Internet protocols for which there is as 
yet no formal specification, and where attempts at 

development using more formal procedures have been 
unsuccessful  [16].  In contexts where model-building has 

been used to support historical investigation, as in the 
virtual reconstruction of Roman theatres by Beacham et al 

[2], it has become apparent that being able to adapt 
models to take account of different interpretations is of the 

essence. This is not to deny the vital importance of 
techniques of verification and optimisation in effective 

software development (consider, for instance, the security 
loopholes that formal analysis has disclosed in the 

Needham-Schroeder protocol after many years of 
apparently uncontroversial use), but to argue for a richer 

integration of formal and empirical perspectives. 

 

5. Broader implications 
 

The implications of rethinking programming are 
potentially much broader. Intellectually, the remarkable 

nature of Turing’s achievement in characterising 
computational procedures has had a major influence on 

our models of mind. Because of the pervasive nature of 
computing, the way we think about programming has also 

had a profound effect upon our ideas about society and 
culture. It is tempting to construe ourselves as 

computational agents responding to our environment in 
ways that – at some level – can be rationalised as directed 

towards specific functional goals. The analytical stance 
associated with classical programming and specification 

can too easily be read – or misread – as endorsing such a 
conception of human behaviour. Consider for instance 

Turski and Maibaum’s contention that: "Most frequently, 
the attempts to provide a computerized service for an 

application domain are at the same time first attempts to 
provide a workable theory of the domain." ([18], p16), or 

Gabbay’s comment to the effect that "A detailed rule 
based effective but rigid bureaucracy is very much similar 

to a complex computer program handling and 
manipulating data. My guess is that the principles 

underlying one are very much the same as those 
underlying the other." ([7], p.ix). 

This paper contrasts two discourses about 
programming, one expressed in terms of requirements, 

specification and implementation, the other in terms of 
identification and prescription. The rational discourse is 

primarily concerned with prescribing behaviour on the 
basis of certain knowledge, as in teaching and learning 

that involves revisiting what has already been established, 
or conforms to recognised pedagogical patterns. The 

pragmatic discourse is primarily concerned with 
identifying stable interactive environments and exploring 

what kinds of behaviours can be prescribed and 
interpreted within them, as in the personal learning 

activity involved in making sense of what is unfamiliar. In 
rethinking programming, it is necessary to support both 

these discourses, and find a coherent perspective from 
which they can be understood in their relation to each 

other. This has been one of the principal motivations for 
our research into Empirical Modelling. By way of 

conclusion, we shall present a brief outline of EM, 
together with references to many auxiliary papers 

specifically relating to this theme (see [20], where specific 
papers will be referred to by their publication indices). 

EM is centrally concerned with activities relating to 
identification. These are associated with investigating the 

observables, dependency and agency that characterise the 
application domain. The reliable patterns of agency and 

dependency that relate observables are embodied in 
artefacts whose state is specified by a network of 

functional dependencies similar in character to that 
underlying a spreadsheet. These artefacts are constructed 



using special-purpose notations for expressing 

dependencies between observables of many different 
kinds, and hybrid tools that support dependency 

maintenance, triggered actions and a range of standard 
procedural programming constructs. The initial motivation 

for developing EM principles was to devise an approach 
to program development that would combine the best 

qualities of declarative and procedural programming 
idioms. The combination of declarative and procedural 
elements in EM resembles that to be found in the 

spreadsheet: definitions declare the extant functional 
relationships between observables, and a set of 

redefinitions, executed in parallel, represents a family of 
concurrent actions on the part of agents. In this context, 

each redefinition represents an atomic action, and the 
consequent changes of state that are entailed in the set of 

actions are mediated by the dependencies.  An EM 
artefact is in the first instance a personal construction, 

similar to what Gooding [8] has characterised as a 
‘construal’, with an informal semantics implicit in the 

interpretations of interactions that are projected on to it by 
the modeller. 

EM has been studied in relation to design, modelling 
and programming activity in a wide variety of application 

domains. These include: engineering design, educational 
technology, humanities computing, and decision support.  

In these domains, EM respectively provides: a framework 
for supporting concurrent design activity [20:034]; a 

medium for model-building in the constructionist idiom 
[20:080]; principles for building artefacts to express and 

negotiate personal meanings [14]; support for open-ended 
decision-making based on subjective and qualitative 

criteria [20:061]. Note that, in all these areas, the qualities 
of spreadsheet models have already been observed (cf. [1, 

12]). The practical contribution of EM has been to further 
develop principles and tools for modelling with 

dependency in support of the pragmatic discourse on 
programming with which spreadsheets are primarily 

associated. EM also proposes a perspective on computing 
that unifies the rational and pragmatic discourses. A 

simple model that illustrates one aspect of this unification 
can be found in [20:051], and a deeper discussion of the 

significance of this agenda in relation to mathematics and 
computing in [5]. From a philosophical perspective, 

unifying rational and pragmatic discourses on 
programming is bound up with longstanding controversies 

about the relationship between logic and experience. 
Consider for instance Livingston’s observation, in his 

discussion of the controversy that surrounded Husserl's 
phenomenological method: that, "for deep-seated and 

internal reasons, the logical structure of experience may 
not be expressible in linguistic terms" [11]. The strong 

links that can be made between EM and William James’s 
‘philosophic attitude’ of Radical Empiricism offer a 

possible way to address this issue [4].  
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