
11/15/2009

1

Empirical Modelling as Construction Construal – in the sense of David Gooding

• Construing – “making sense of”/“explaining”

• Construals are a means of interpreting

unfamiliar experience and communicating

one's trial interpretations.

• Construals are practical, situational and often

concrete. They belong to the pre-verbal

context of ostensive practices.

The importance of construal …

In classical computer science, we aspire to

understand comprehensively first, then build

Before we can prescribe programs, we first

seek to prescribe the environment and the

function of the program and roles of the users

“If I were you, I wouldn’t start from here”

The importance of construal …

In practical computing , we often have to

negotiate with systems that are far from ideal

In prescribing programs, we find that the

function of the program and roles of the users

emerge and the environment is evolving

beyond our control

“We have to proceed from where we are”

The importance of construal …

Even in aspiring to high standards in specification

and comprehension, we have to communicate

about real-world confusion and how it might be

resolved …

… Empirical Modelling is concerned with giving

computer support to gaining such understanding

In “Constructivism in CSE”, Ben-Ari speaks of the

computer as “an accessible ontological reality” of which

the student must develop a mental model.

In practice, even computing utilities – and even more

systems! - are hard (?) for users to comprehend fully

Whether or not we can appreciate their full reality, need

to expose mental models of them … for many reasons

A case study in construal

11/15/2009

2

My working understanding of the vi editor

Key feature of vi: use of 'modes' (deprecated in HCI)

• When interacting with vi, we must know the current

mode at any time: “need a good construal of modes”

• UNIX makes so much tacit and invisible – this suits the

expert, but not the novice

Aim to gain / communicate understanding of vi modes by

making a model ...

.. . such a model benefits both the builder and the

observer, but mostly the builder

Construing modes in the vi editor

NORMAL / VISUAL (“vi”) MODE

LINE EDITING (“ex”) MODE

INSERT MODE

Background colour for the highlighted

character encodes the current mode

Basic observables …

• textediting – the text that is being edited

%eden

textediting is "where the edited text

goes\nit can have many lines\n";

• docwin – the panel holding the text

%scout

window docwin;

screen = <docwin>;

%scout

docwin = {

type: TEXT

frame: ([{0,0},{500,500}])

string: textediting

bgcolor: "white“

fgcolor: "red“

border: 1

};

… basic observables

>where the edited text goes

it can have many lines

~

~

Prefix to line defined by a dependency

“>” if it’s the current line

“ “ if it’s not current line and non-empty

“ ~” if it’s an empty line

Basic dependencies …

>where the edited text goes

it can have many lines

~

~

Character in focus defined by a dependency

… it depends on

• the content of the text

• the current line number

• the column number in the current line

… basic dependencies

11/15/2009

3

%eden

lines is [line1, line2, line3, line4];

line1 = "where the edited text goes";

line2 = "it can have many lines";

line3 = "";

line4 = "";

textediting is line1 // "\n" // line2 // "\n" // line3

// "\n" // line4 // "\n";

textediting is mark1 // line1 // "\n" // mark2 // line2 //

"\n" // mark3 // line3 // "\n" // mark4 // line4 // "\n";

mark1 = mark2 = mark3 = mark4 = " ";

currline = 1;

Formulating basic dependencies …

%eden

marks is [currline==1, currline==2, currline==3,
currline==4];

mark1 is (marks[1]) ? ">" : " ";

mark2 is (marks[2]) ? ">" : " "; …

initline1 is (lines[1]=="") ? " ~":" " ;

initline2 is (lines[2]=="") ? " ~":" " ; …

mark1 is (marks[1]) ? ">" : initline1;

mark2 is (marks[2]) ? ">" : initline2; …

colno = min(3, lines[currline]#);

currchar is substr(lines[currline], colno, colno);

Formulating basic dependencies …

Visualising

Dependencies

… using the DMT

“Dependency

Modelling Tool”

>where the edited text goes

it can have many lines

~

~

9

1

“e”

[1,0,0,0] “>“

“ ~”

“ “

“ ~”

“ ~”

“ “

“ ~”

“ “

Manual to automated

• Dependencies shape the environment for

agent interaction

• What the modeller can do e.g. redefine

currline and colno can be semi-automated

• Issues

– making it convenient to make changes

– constraining the scope of redefinition

For this we have to provide an interface

Shaped meaning interactively

• Illustrating how colno can be redefined:

currline++;

for (i=1; i<=9; i++) {

colno=i;

write(currchar);

}

• Introducing setcolno and arrow buttons

• Affording, then restricting cf. suppressing
automated interaction outside particular modes

11/15/2009

4

Personal (and scruffy!) construal

• Reflects my limited understanding of vi

• It’s not how vi works – e.g.

– text in vi is not stored as a list of lines

– the cursor control is not faithful to the editor

– my names for the modes are not as documented

… but debugging the users is as important as

debugging the software

Rethinking computing

• Fudging to cope with the empirical aspect in

handling font size cf. “tuning an instrument”

• Ambitious proposals for a broader science of

computing that embraces experiment fully

• Addressing the semantics of semantics

Acknowledgements

Allan Wong, who developed the DMT

Chris Roe, who investigated constructionism

Russell Boyatt, who put me right about vi

Ashley Ward, who helped debug the modellers

