
Programming and constructionism: Logo revisited

Using Basic Logo to draw a floorplan for a room

Logo was originally advocated as the primary vehicle for 'constructionism'. The idea was that

learning to draw geometric objects using Logo was a way to promote mathematical learning.

It is instructive to revisit the process that is involved in drawing simple diagrams using basic

Logo. We attempt to draw the Donald floorplan discussed in the labs, first invoking a basic

Logo extension to EDEN by loading the Run.e from logoparserRoe2002. For technical

reasons, it is essential to use tkeden-1.46.

%eden

initially set the pen up

execute following commands to get to bottom left corner at {50,50}

%logo

pen up

backward 200

left 90

forward 200

right 90

%eden

set pen down with pen colour black

%logo

pen down

forward 400

right 90

forward 10

right 90

forward 100

Now need to move without drawing to start drawing again from the lock of the door. I then

draw three lines to complete the N wall, and inseret E and S walls:

%eden

set pen up

%logo

pen up

backward 100

left 90

forward 100

%eden

set pen down with pen colour black

%logo

pen down

forward 300

right 90

forward 400

right 90

forward 400

%eden

leads to error: didn't correctly compute the length from the door lock

to the NE corner

I have made a mistake ... I try to correct this using undo()

%eden

undo();

BUT - only one undo is possible! (it affects line l6 as explained below)

To undo more radically, we can fish out the donald definitions of the lines that are being

drawn by the Logo commands, and redraw them ...

... consulting the donald definitions, we find that they are:

l6 = [{460.000000, 50.000000}, {60.000000, 50.000000}]

l5 = [{460.000000, 450.000000}, {460.000000, 50.000000}]

l4 = [{160.000000, 450.000000}, {460.000000, 450.000000}]

... but they really should have been as above with 460 replaced by 450 in every definition.

(Note in passing that the effect of the previous undo was to redefine the attributes of l6 so

that it became transparent.)

To fix the problem, we make the redefinition:

%donald

l6 = [{450.000000, 50.000000}, {50.000000, 50.000000}]

l5 = [{450.000000, 450.000000}, {450.000000, 50.000000}]

l4 = [{160.000000, 450.000000}, {450.000000, 450.000000}]

%eden

A_l6="color=black";

But now the Logo turtle is in the wrong place!

... fix this by finding out how the Logo turtle is modelled - this is done by:

_turtle_pos is cart(turtle_x, turtle_y);

The eden variables turtle_x and turtle_y are integers: so relocate via:

turtle_x = 50;

Can then resume the drawing of the floorplan - next focusing on the table:

%logo

pen up

right 90

forward 200

%logo

right 90

forward 200

pen down

forward 150

left 90

forward 150

left 90

forward 150

left 90

forward 150

left 90

forward 150

left 90

forward 150

left 90

pen up

forward 75

left 90

forward 75

At this point, I at first think about drawing the cable, and recognise many of the difficulties

• calculating the direction - which is arctan (325-50)/(325-250)

• calculating the distance

and worrying about how to cope with the non-integral distance and its effects - for instance,

on my ability to restore my current state after drawing the cable.

I proceed instead to try to draw the octagonal part of the lamp first ...

%logo

right 180

forward 25

right 90

forward 12

%eden

not the ideal place - intend 12.5, but that's not an option?

%logo

pen down

right 45

forward 25

right 45

forward 25

right 45

forward 25

right 45

forward 25

right 45

forward 25

right 45

forward 25

right 45

forward 25

right 45

forward 25

pen up

backward 12

right 90

forward 25

forward 12

It's now clear that this isn't right: the original octagon in the table_lamp is not a regular

octagon - the sides alternate in length between 50 and sqrt(1250), which is about 35.36 ...

... finally I come to draw the cable: The kind of calculations that we now need to do to draw

the cable: we ideally have the current position of the turtle at {325,325} (at the centre of

table), and want to be at (250, 50):

writeln(atan(75.0/275.0)*180/PI);

This gives an angle of about 15.26 degrees

writeln(sqrt(75.0*75.0+275.0*275.0));

This gives a distance of about 285.04

Can use these to estimate how to draw the cable using Logo commands:

%logo

pen down

right 15

forward 285

%eden

current turtle position is now close to the midpoint of the S wall of

the room

hdturtle();

A_l22="color=red";

Appendix: Making the Logo display window sensitive

can be useful to make the Logo window sensitive:

%scout

window show = {

 type: DONALD

 box: [{5, 40}, {505, 540}]

 pict: "draw"

 xmin: 0

 ymin: 0

 xmax: 500

 ymax: 500

 border: 2

 relief: "groove"

 sensitive: ON

};

Matters arising ...

There are lots of reasons to question whether programming in Logo is an effective way to

connect construction with learning (especially learning about the domain rather than about

Logo programming!). Some considerations are:

• state is being described through side-effect: not clear that side-effects generate

"observables" (e.g. how to reference what has been constructed? how to restore focus

to features no longer current in the construction?)

• undo is critically context-dependent: more generally, contextualisation of procedural

actions is at all times critical, but context is hard to control

• means to review and assess overall state is limited (cf. the way in which the EDEN

implementation supplies an environment for observation)

• making the translation between what I can conceive and what I can construct can be

very hard: cf. what is undecidable / infeasible in classical computer science

• essential need to remember where we are in the recipe - consequences of "losing our

place" very difficult to redeem

• no conceptual support at all for making 'meaningful' transformations to the cumulative

display (e.g. let's re-draw the floorplan after moving the table!)

Above all, there is a certain mindset that we have to have - one that novice programmers

being introduced to programming in a computer science department will be familiar with:

you avoid errors at all cost, plan meticulously and don't make experimental changes, treat the

machine with the utmost respect - try to find out everything about it and make sure you take

this into full consideration before you instruct it / interact with it.

In the words of Mordecai Ben-Ari (Constructivism in Computer Science Education - as cited

in EM paper #107): “intuitive models of computers are doomed to be non-viable” - computer

science students must contend with the computer as "an accessible ontological reality".

Of course, the computer environments proposed for constructionist learning have developed

far from primitive Logo. Modern variants of Logo for educational use, like Imagine Logo

have much in common with object-oriented programming environments where many of the

procedural elements exposed in basic Logo are no longer so explicit. But how programming

paradigms influence the expression of constructionist principles, and what aspects of a

computer environment liberate constructionist principles still remain significant questions.

References

• Chris Roe, Computers for Learning: An Empirical Modelling perspective, PhD thesis,

University of Warwick, November 2003 (especially Chapter 4, p.106)

• W.M.Beynon and Chris Roe. Computer support for constructionism in context. In

Proc. of ICALT'04, Joensuu, Finland, August 2004, 216-220. (EM paper #080)

• S.Papert. Mindstorms: Children, Computers and powerful ideas. New York: Basic

Books, 1980.

• S.Papert, I.Harel. Situating Constructionism. In S.Papert, I.Harel (eds).

Constructionism: Research reports and essays, Ablex Publishing, pages 1-11, 1991.

