
Modelling with definitive scripts

1

Empirical Modelling as Empirical Modelling as ConstructionConstruction
Background and History

A definitive notation = a simple formal language in
which to express definitions

A set of definitions is called a definitive script

Definitive notations different according to

types of the variables that appear on the LHS of
definitions and operators that can be used in

formulae on the RHS. These are termed the
underlying algebra for the notation.

The definitive notation concept

Todd relational algebra query language ISBL

Brian & Geoff Wyvill's interactive graphics languages

spreadsheets

style definition in word processors

The term "definitive notation“ first introduced by Beynon

“Modelling with Definitive Scripts” is fundamental to EM

[Rungrattanaubol’s PhD Thesis: A treatise on MWDS]

Related developments

spreadsheets with visualisation mechanisms

spreadsheet-style environments for end-user

programming (e.g. AgentSheets)

generalised spreadsheet principles in application-
builders (e.g. ACE), development tools (WPF)

“object-linked embedding" in Windows

What does definitive mean?

definition has a technical meaning in this module

definitive means "definition-based"

"definitive" means

more than informal use of a programming technique.

Definitive notations are

a means to represent state by definitive scripts

and how scripts are interpreted is highly significant.

Significance of interpretation …

Miranda can be viewed as a definitive notation over an
underlying algebra of functions and constructors

BUT this interpretation emphasises

program design as a state-based activity

rather than

declarative techniques for program specification.

[cf. ‘admira’ application and contrast with KRC]

Modelling with definitive scripts

2

Definitive notations

The tkeden interpreter uses many definitive notations

eden: scalars, strings, lists

DoNaLD: for 2-d line drawing

SCOUT: displays, windows, screen locations, attributes

EDDI: relational tables and operators

ARCA: edge-coloured digraphs in n-space

ARCA

Donald

Scout

EDDI (relational tables) and Eden (scalars / strings / lists) underlie

Donald

DoNaLD: a definitive

notation for line-drawing

Donald = a definitive notation for 2-d line-drawing

underlying algebra has 6 primary data types:

integer, real, boolean, point, line, and shape

A shape = a set of points and lines

A point is represented by a pair of scalar values {x,y}.

Defining shapes in DoNaLD

Two kinds of shape variable in DoNaLD:

these are declared as shape and openshape

An openshape variable S is defined componentwise

as a collection of points, lines and subshapes

Other mode of definition of shape in DoNaLD is

shape RSQ

RSQ=rotate(SQ)

- illustrated in definition of vehicle in VCCS model.

Agents and semantics

Archetypal use of MWDS: human-computer interaction

“single-agent modelling”

Variables in a definitive script represent

- the values that the user can observe

- the parameters that the user can manipulate

- the way that these are linked indivisibly in change

definitive script can model physical experiments

[cf the role of spreadsheets in describing and predicting]

Modelling with definitive scripts

3

int width, length

point NW, NE, SW, SE
line N1, N2, S, E, W
openshape door

within door {
point hinge, lock
line door

int width
boolean open

}

openshape table

within table {
int width, length
point NW, NE, SW, SE

line N, S, E, W
openshape lamp
within lamp {

point centre
int size, half
circle base
line L1, L2, L3, L4, L5, L6, L7, L8

}
}roomYung1989 About Definitive Scripts

Modelling with different motivations

Script of

definitions
room.d “Room as EM

teaching
artefact”

“Room as

architectural
drawing”

“Room as physical

artefact with mass
in time and space”

Script with specific range of interactions

roomviewerYung1991

roomYung1989

Donald

Scout

room3dMacDonald1998

graphicspresHarfield2007

room3dsasamiCarter1999

Modelling with definitive scripts

4

About Definitive Scripts

Observables, Dependency, Agency

The observables, dependencies and agency

that are topical relate to the situation and the

way in which a script is being interpreted.

In the architectural drawing, don’t observe time.

In the physical room, observe mass, time, force.

In teaching EM, we observe the screen display

itself and seek to interpret “absurd” definitions

About Definitive Scripts

Observables

Observables are entities

whose identity is established through experience

whose current status can be reliably captured by

experiment

Can be physical, scientific, private, abstract,

socially arbitrated, procedurally defined etc.

About Definitive Scripts

Dependency and Agency

An agent is an observable (typically composed

of a family of co-existing observables) that is

construed to be responsible for changes to the

current status of observables

A dependency is a relationship between

observables that - in the view of a state-

changing agent - expresses how changes to

observables are indivisibly linked in change

About Definitive Scripts

Single Agent modelling

In the primary and most primitive form of
Empirical Modelling, the modeller is the only
state-changing agent – though they may act in
the role of different agents: e.g. room user or
designer, architect, Empirical Modelling lecturer.

The dependencies between observables are
then those that are experienced by the modeller
acting in the situation: they express the way in
which changes to observables are connected.

About Definitive Scripts

Negotiated and evolving interpretations

The situation surrounding the interpretation of a

script is never completely closed or well-specified.

The modeller always has to exercise discretion to

achieve a degree of closure. Situations can blend.

Definitions stabilise as meanings are negotiated.

Stable definitions reflect established experience.

Skills and insights can give rise to new definitions.

About Definitive Scripts

Illustrative examples

Definitions stabilise as meanings are negotiated.

The model of the desk drawer gets improved.

Stable definitions reflect established experience.

The door location and mechanism gets fixed.

Skills and insights can give rise to new definitions.

We connect the door opening with the light coming

on, or learn to use a touch-sensitive switch.

